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Abstract

Quaternary semiconductor Cu,FeSnS, (CFTS) nanoparticle powder have been prepared by a simple
chemical technique. The synthesized CFTS nanoparticles have been characterized via powder XRD
analysis, Raman spectra, FE-SEM-EDS, UV-Visible absorption spectroscopy, thermal analysis and
electrochemical characterization. Powder XRD and Raman spectroscopy confirm the phase and
structure of the prepared nanoparticles. The optical absorption studies reveal that the CFTS
nanoparticles have a direct optimal band gap in the range from 1.32 to 1.5 eV, which indicates that
these nanoparticles are potential absorber materials for thin-film photovoltaic application. The
synthesized CFTS nanoparticles were transformed to the ink form and the obtained nanoparticle ink
coated on a FTO conducting substrate (surface resistivity-13 2sq~'). The catalytic activity of the
substrate was analyzed by electrochemical impedance spectroscopy (EIS) and cyclic voltammogram
(CV) curves. The appropriate optical band gap and stable electrical properties indicate that Cu,FeSnS,
Nanoparticles are potential materials for thin-film photovoltaic application.

1. Introduction

Considering the needs of the ever growing population, the demand for energy is expected to become twice in the
ensuing decade. Conventional sources like fossil fuels (coal, natural fuel and gas) are being used up at a rapid
pace. Itis very essential to find other sources which are renewable, cheap and non-toxic. Among the various
types of renewable energy, solar energy is highly attractive as it is sustainable, limitless and non-polluting. Solar
cells harness the solar energy and convert it into electric energy.

Initially, more than 80% of the solar industry was based on silicon solar cells. Silicon based photovoltaic cells
depend on the use of thick absorber materials with an indirect band gap. However, the materials used for these
absorber layers are expensive [1].

Inorganic thin-film solar cell technology depends on direct band gap absorber materials like CulnGaSe,
(CIGS) [2], Cu,ZnSn(S, Se) 4 (CZTS) [3, 4], Cu,FeSnS, (CFTS) [5], CdTe and TiO, which have been widely
investigated for use in thin film solar cells. Being direct optical band gap, there is no need a thick absorber film.
High power conversion efficiency has been achieved with these materials. However, these solar cells cannot be
used expansively as they employ relatively rare and expensive elements like indium (In) and gallium (Ga). To
attain the goal of low expenditure photovoltaic technology, it is required to analyze other semiconductor
materials containing sulfur, which is low- noxious, as a replacement for selenium (Se) and iron which is available
in plenty in the place of In and Ga [6]. CFTS nanoparticles are among the most promising nanomaterials for use
as absorbers in thin film solar cells in view of the appropriate direct optimum band gap (Eg = 1.2to 1.5e¢V) and
the profusely available and non-toxic elements [7-9].

Many vacuum and non- vacuum based systems have been developed to prepared CFTS nanomaterials.
Physical techniques are expensive as their operation is difficult, and complex equipment and high vacuum are
needed. On the other hand, chemical techniques are simple and cheap; there is low wastage of materials and no
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need for vacuum, making them suitable for large scale production [10, 11]. Absorber nanomaterials show
enhanced optical, chemical and mechanical properties in comparison to the bulk material. Nanomaterial
technique ensures controlled nucleation and grain growth. The incorporation of dopants to control the
chemical and structural properties can also been done easily. Hence, many efforts are being made to devise
effective methods for the synthesis of the CFTS nanoparticles [12, 13].

Earlier researchers have used different techniques such as the solvothermal method [14], liquid reflux
method [15], spray pyrolysis technique [16] and micro-wave irradiation method [17], for the preparation of the
CFTS nanoparticles. In this present study, an effort has been made to prepare CFTS nanoparticles by the
hydrothermal method as this technique is simple, eco-friendly, and cheap and can produce phase pure
nanoparticles with high crystallinity. The precursor materials were first dissolved in the solvent and heated at the
optimized time and temperature to produce the nanoparticles. The synthesized nanoparticles were dispersed in
an environmentally benign solvent to produce a nanoparticle ink which was coated on ultrasonically cleaned
FTO conducting glass substrates by the spin coating method [18]. Chemat KW 4A model spin- coating ensures
uniformity of the thin film and produces good quality films suitable for photovoltaic applications.

2. Materials and methods

2.1. Preparation of Cu,FeSnS, nanoparticles

The cationic precursors, copper (II) chloride (CuCl,.2H,0), iron (I) chloride (FeCl,.4H,0) and tin (IT) chloride
dehydrate (SnCl,.2H,0) and the anionic precursor, thiourea (CH4N,S), all of 99.9% purity, were procured from
Sigma Aldrich chemicals.

An aqueous solution of the cationic precursors (0.02M of CuCl,.2H,0, 0.008M of FeCl,.4H,0O and 0.002M
SnCl,.2H,0) was prepared by adding them in distilled water in the above sequence, allowing adequate interval
to dissolve the solute. The anionic precursor thiourea (0.04 M) was next mixed in the above aqueous solution.
The mixture was vigorously stirred for 3 h and ultrasonicated for 30 min to homogenize the solution. The
obtained solution was shifted into 50 ml capacity of stainless steel autoclave and retained at 190 °C for 24 h. The
obtained product was centrifuged and washed repeatedly using water and ethanol, and then dried at 90 °C for
7 h, before being used for characterization.

To convert the powder into the thin film form it was dissolved in ethanol and grinding for 3 h to geta
homogeneous slurry, which was spin-coated on the FTO substrate at a 2000 rpm speed for 30 s. The obtained
thin film was heated using a hot plate at 150 °C for 10 min to eliminate the solvent. The spin - coating and drying
process for several times to obtain the required thickness. The resultant thin-film was annealed by 400 °C
intended for 30 min to obtain the CFTS absorbance layer.

2.2. Material characterization

Powder XRD study was carried out using the Panalytical XPERT Pro (Netherlands) x-ray diffraction system with
Cu-Ka radiation source (wavelength = 1.5406 A) operated at 45 kV. The XRD powder patterns were obtained
in the scanning range of 26 = 10°-90° at a scanning rate maintained at 2° min~'. The micro- Raman spectra
were obtained by using a ‘WiTec alpha 300’ Raman microscope (Germany) in the Raman Spectral range from 50
t0 4000 cm ™. The synthesized nanoparticles was studied by FE-SEM using the $4160 Hitachi equipment and
the chemical composition analyzed by Bruker-4010 model EDS analyzer. The optical UV—vis- NIR spectra were
studied using a JASCO (model V-770) UV—vis- NIR spectrophotometer. Electrochemical measurement was
done using the electrochemical workstation.

3. Result and discussion

3.1. Structural analysis
The crystalline structure of the Cu,FeSnS, nanoparticle and its phase were analyzed by powder XRD studies.
Figure 1 shows the powder XRD peak positions of hydrothermally prepared nanoparticles. The CFTS powder
showed strong diffraction peaks correspond to (112), (200), (201) and (312) planes. These are in good agree
with the JCPDS card number: PDF 44 - 1476 in the tetragonal space group (I-42m). These results agree with
reports in previous literature [19, 20]. The lattice parameters for the tetragonal structure were estimated using
the relation,
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Figure 1. Powder XRD spectrum for CFTS nanoparticles.
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Figure 2. Raman spectrum for CFTS nanoparticles.

Where, d is the interplanar spacing and h, k and  are the Miller indices. The lattice parameters were
calculated tobea = b = 5.55 Aand ¢ = 10.76 A which agree with the JCPDS card valuesa = b = 5.43 Aand
¢ = 10.73 A. The crystallite size was estimate by using the Scherrer’s formula,

kA

- 3 cos 0 @

Where, D is the grain size, k is the constant (0.9), \is the x-ray wavelength radiation and 3 is the FWHM of the
peak. The mean crystallite sizes of the synthesized nanoparticles were calculated to be within the range from 8 to
30 nm.

3.2. Raman spectroscopy analysis

In order to confirm the phase and crystal structure of the CFTS absorber material, Raman spectrum of the
nanoparticles were recorded and are shown in figure 2. The micro- Raman spectroscopy assist in identifying the
secondary phases and confirms the phase purity of the CFTS absorber powder material. Miao et al [ 10] have
obtained Raman peaks at 318 and 284 cm ™' which are due to the CFTS nanoparticles. The peak obtained at 372
cm™'isascribed to Cu,Sn3S; (CTS) nanoparticles. The strong peak obtained at 318 cm ™' indicates the good
crystalline structure of the film. Chatterjee et al [11] have shown a conspicuous peak at 320.9 cm ™', which is

3



I0OP Publishing Mater. Res. Express7 (2020) 035012 R Deepika and P Meena

Absorbance (a.u.)

T T T T T T T T T T T
300 350 400 450 500 550 600 650 700 750 800 850 900

Wavelength (nm)

(a)

(o v)2

L
1.0 1.2 1.4 1.6 1.8 2.0 2.2 24 2.6 2.8 3.0
Energy(eV)
(b)

Figure 3. (a). Absorption spectrum of CFTS nanoparticles. (b). The plot of hv versus (ahv)?* for CFTS nanoparticles.

attributed to the strong asymmetry vibration of the pure-anion mode of the sulfur atoms around the tin metal.
This also confirms the phase purity of CFTS absorber nanomaterials. Vanalakar et al [21] have shown secondary
impurity peaks at 293, 319, 332,352 and 492 cm™! corresponding to FeS, Cu,FeSnS,, Cu,SnS,, Cu,FeS, and FeS
respectively. The Raman spectra show impurity peaks and the most intense peak is seen at about 319 cm ™' which
is attributed to the characteristic mode of Cu,FeSnS,.

From figure 2, it is observed that the strongest peak is at 320 cm ™' and an additional shoulder peak is at 285
cm™ ' which confirm the specific vibration mode of the CFTS quaternary semiconductor material. The strong
peakat 320 cm™ s attributed to the A, symmetric vibrational motion of sulfur atoms in CFTS, and the shoulder
peak to the pure anion-mode of the sulfur atoms around the copper cation, indicating that the powder has good
crystallinity and phase pure CFTS has been obtained, confirming the XRD results.

3.3. UV-vis-NIR spectral analysis

To understand the optical absorbance properties of the synthesized CFTS powder, the UV-spectrum is recorded
in the DRS mode in the wavelength ranging from 250-900 nm. The UV spectra obtained are shown in

figure 3(a). It is observed that the prepared Cu,FeSnS, nanoparticles exhibit a wide absorption in the UV visible
region with absorption tails that extend into longer wavelength region. The optical band gap of the CFTS
nanoparticles was estimated from a plot of (Ochv)2 as a function of hv, where v is the absorbance, h is the Planck’s
constant and v is the frequency. Here (ahv) = A(hv — Eg)", where Eg (eV) is the optical band gap energy and
n= % for direct optical Eg semiconductor. The optical Eg was determined to be approximately 1.39 eV by extra
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Figure 4. (a). SEM image for CFTS nanoparticles. (b). EDS spectra of CFTS nanoparticles.

plotting the linear part of the spectrum to zero as in figure 3(b). This is close to the optimum value for high
conversion efficiency [22, 23].

3.4. Morphological and compositional analysis
The FE-SEM image of the CFTS nanoparticles is shown in figure 4(a). The CFTS nanoparticles reveal slight
agglomeration with irregular sphere like particle average size from 10-30 nm, which agrees with the XRD data.
This slight agglomeration could be attributed to an increase in surface energy with decrease in size [24]. This
kind of sphere like morphology enhances photon absorption and hence finds use in photovoltaic applications.
The EDS spectrum in figure 4(b) indicates peaks corresponds to copper, iron, tin and thiourea, endorsing the
phase purity of the Cu,FeSnS, nanoparticles. The elemental composition ratio of copper, iron, tin and thiourea
in Cu,FeSnS, is about 29.82: 15.93: 3.78: 50.47, which is close to the initial starting material [25].

3.5. Thermal analysis

Thermal analysis using TGA and DSC was done to study the various phase transformations. The obtained TGA
and DSC curves are shown in figures 5(a) and (b). From the TGA plot, it observed that the first loss occurs from
80 °Cto0 100 °C. This ascribed to the decomposition of the Cu-Fe-Sn-thiourea-oxygen complex to form CFTS
and other organic solvents. The second weight loss starting from 280 °C and ending at 540 °C can be due to the
oxidation of the sulfides; above 320 °C is comparatively slow oxidation of sulfides due to loss of weight. A
substantial weight loss is observed in the third region because of the calcination of structural water which is
eliminated below 300 °C. In the final region, the sample is nearly stable without any weight loss. The DSCcurve
shows an exothermic peak ranging from 380 °C—430 °C which shows the crystallization of the synthesized
powder. The decomposition in Cu-Fe-Sn-S _ oxides compound under a slow atmosphere indicates to the

5



10P Publishing

Mater. Res. Express7 (2020) 035012 R Deepika and P Meena
1104 0.1
0.0
1 W
" M\ E o
Za £021
] =
z S
= -0.31
804
.44
704 0.54
100 200 300 100 00 100 200 30 400 500
Temperature (°C ) Temperature (°C )
(a) (b)

Figure 5. (a). TGA and 5(b). DSC curves for CFTS nanoparticles.
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Figure 6. CV curve for CFTS annealed CFTS thin film.

lessening of oxidation state. Decomposition under an oxygen atmosphere is more suitable to reduce oxidize the
C-N or C-H bonds in the carbon-based solvents [26].

3.6. Cyclic voltammogram (CV) measurements

To study the electro catalytic ability of the annealed Cu,FeSnS, thin-films was evaluated by cyclic voltammetry
measurements were performed under three electrode system with 0.1M NaOH electrolyte in the potential
ranging from —1.0 V — 1.0 V with scan rates (sc) of 5and 10 mVs~'. FTO glass was used as the working electrode
slurry was spin-coated onto the FTO substrate <1 cm x 1 cm> while platinum wire and Ag/AgCl were
employed as the counter and reference electrodes. From figure 6, it is observed that fora 5 mVs ! scan rate, the
anodic peak is observed at 0.012 mA cm™?and cathodic peaks at — 0.0087 mA ¢cm ™~ *and —0.0154 mA cm 2.
The corresponding potentialof the anodic peak is at 0.0518 V and that of the cathodic peaks are at —0.135 V and
—0.4195 V respectively.

Fora 10 mVs™ ' scan rate, the maximum current density peaks were detected at 0.0109 mA cm ™2 (anodic
peak) and —0.0095 mA cm ™~ >and —0.0179 mA cm > (cathodic peaks). The corresponding potential of the
anodic peak is 0.0085 V and the cathodic peak potentials are —0.049 V and —0.385 V respectively (figure 6). It is
observed that the area under the CV curve increased with the scan rate. The cathodic peak at maximum current

6
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Figure 7. (a) EIS spectra: Nyquist plot and 7(b). Equivalent circuit for annealed CFTS thin film.

density indicates an electrochemical behavior and good catalytic activity of the annealed CFTS in NaOH
electrolyte.

Anima Ghosh et al[27] have reported that the cyclic voltammetric curves for copper based chalcogenide thin
films show a rise in the current density when illuminated visible light. These films are used in photo-
electrochemical applications. Shanlong Chen et al [28] have shown that the CV curves of CZTS CEs (counter
electrode) display cathodic peaks. The analogous nature of the curves for Cu,ZnSnS, and Platinum CEs
indicates similar electro chemical activities.

3.7. Electrochemical impedance spectroscopy (EIS) analysis: nyquist plot
EIS: Nyquist plot study was used to investigate the catalytic action of the CFTS film. The impedance plot
(Nyquist plot) was obtained by plotting the real part (Z') against the imaginary part (Z").

The Nyquist plots under illumination in the frequency ranging from 100 kHz — 10 mHz with an amplitude
of 5mV is shown in figure 7(a) for the annealed CFTS thin film. The equivalent circuit as shown in the inset of
figure 7(b). Rs (series resistance) is the equivalent circuit in the electrode system. Ret (charge transfer resistance)
is due to the high- frequency range in the semcircle. Electrolyte-electrode interfaces in the CPE (corresponding
constant phase angle element). Inset shows the figure 7(b), charge transfer—resistance and twin layer
capacitance at the electrode- electrolyte interfaces (R1,C1), the recombination charge transmission resistance
and capacitance at the electrode-electrolyte interfaces (R2 , C2) respectively. In previous literature, Chen et al
[29] have shown that a small Rs value ensures good binding between the film and the FTO substrate and the CTS
(Cu,SnS;) material exhibits higher catalytic activity. Mokurala et al [30], have shown that a smaller R, value
specifies the capable for quicker electro-catalytic lessening of ions in the electrolyte. A marginally higher Rs value
is due to the reduced binding strength of the thin film to conducting glass (FTO).

From figure 7(a) it is observed that, R, and R, exhibit values of 10.81 2 and 5.4 Q) respectively for the
annealed CFTS film electrode. R, is responsible for the increase in the catalytic activity of the annealed CFTS
film. According to earlier researchers [29, 30], a good electrocatalytic activity characteristic was also observed in
the dense CFTS film prepared by spin-coating. This agrees with the results obtained from the EIS and CV curves.
The optimized CFTS thin films exhibit good photovoltaic performance and electrochemical properties which
make them suitable for solar cell applications.

4, Conclusion

Copper iron tin thiourea nanoparticles were prepared by a simple chemical route technique. XRD studies
revealed that CFTS nanoparticles have a tetragonal structure. The formation of tetragonal space group I-42m is
confirmed by Raman spectroscopy. The synthesized CFTS nanoparticles are found to have an optical Egis 1.39
eV makes them potential to use as an absorber layer in photovoltaic application. Morphological studies show
that the average size of the prepared nanoparticles in the range from 10-30 nm and show slight agglomeration
with irregular sphere like particles. The phase transformation and annealing temperature were determined by
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TGA and DSC thermal analysis. The cyclic voltammetry measurements show the electro-catalytic of the
annealed Cu,FeSnS, thin-film electrodes. Electrochemical impedance spectroscopy results show good electro-
catalytic and lesser charge transferal resistance to the electrode - electrolyte interfaces. On the beginning of the
CV curves and Nyquist plot, improved performance of the annealed CFTS thin films is observed which is
ascribed to the superior catalytic activity of CFTS in NaOH solution. The obtained results indicate that
quaternary CFTS nanoparticles and annealed thin films exhibit the potential for use as absorber layers in solar
cell applications.
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