CHAPTER NUMBER

CONTENTS

TITLE	PAGE NUMBER
Abstract	i
List of Figures	iv
List of Tables	Х
List of Abbreviations	xi

CHAPTER I

INTRODUCTION

1.	Introduction to Nanotechnology	1
1.1.	Nanomaterials	1
	1.1.1. Classification of nanomaterials	2
1.2.	Synthesis of nanomaterials	4
1.3.	Nanoparticles	4
	1.3.1. Types of nanoparticles	5
	1.3.2. Properties of nanoparticles	5
1.4.	Applications of nanotechnology	7
	1.4.1. Electronic applications	7
	1.4.2. Energy applications	8
	1.4.3. Nanoscale sensors	8
1.5.	Review of Literature	9
1.6.	Materials and methods	19
	1.6.1. Graphite	20
	1.6.2. Graphite oxide	21
	1.6.3. Graphene oxide	21
	1.6.3.1. Synthesis of graphene oxide	22
	1.6.3.2. Structure of graphene oxide	24
	1.6.3.3. Properties of graphene oxide	26
	1.6.4. Reduced of graphene oxide	28
	1.6.4.1. Synthesis of reduced graphene oxide	28

	1.6.4.2. Properties of reduced graphene oxide	30
1.7	Functionalization of graphene	30
	1.7.1. Metallic nanostructures	31
	1.7.2. Nobel metal nanoparticles	32
	1.7.2.1. Silver nanoparticles	32
	1.7.2.2. Gold nanoparticles	34
	1.7.3. Metallic compound nanostructures	35
	1.7.3.1. Zinc oxide nanoparticles	35
	1.7.3.2. Copper oxide nanoparticles	37
1.8	Polymers	39
	1.8.1. Cyclodextrin polymer	39
1.9	Functionalization of polymer	42
	1.9.1. Covalent bonding	43
	1.9.2. Non-covalent bonding	43
1.10	Applications	43
	1.10.1. Graphene-Enzyme based sensors	44
	1.10.2. Non-enzymatic sensors	44
	1.10.3. Electrochemiluminescence sensors	45
	1.10.4. Immunosensors	45
1.11	Characterization techniques	46
	1.11.1. FT-IR Spectroscopy	46
	1.11.2. X-ray diffraction analysis	47
	1.11.3. Scanning Electron Microscopy	48
	1.11.4. Energy Dispersive X-ray analysis	49
	1.11.5. High Resolution Transmission Electron Microscopy	50
	1.11.6. Electrochemical analysis	51
	1.11.7. Cyclic voltammetry	52
1.12.	Objective of the present work	55
1.13.	Organization of the thesis	57
	References	60

CHAPTER II

SYNTHESIS TECHNIQUES

2.1.	Introduction	73
2.2.	Synthesis of graphene oxide	74
	2.2.1. Synthesis procedure	74
2.3.	Synthesis of β-CD functionalized rGO nanosheets	75
	2.3.1. Synthesis procedure	75
2.4.	Synthesis of metal (Ag, Au)/metal oxide (ZnO, CuO) nanoparticles embellished β-CD functionalized rGO nanosheets	77
	2.4.1. Synthesis procedure	77
2.5.	Preparation of phosphate buffer solution	78
	2.5.1. Synthesis procedure	78
2.6.	Preparation of modified electrodes	79
2.7.	Conclusion	80
	References	81

CHAPTER III

SYNTHESIS AND CHARACTERIZATION OF β-CYCLODEXTRIN FUNCTIONALIZED REDUCED GRAPHENE OXIDE NANOSHEETS FOR ELECTROCHEMICAL DETECTION OF NITROPHENOL

3.1.	Introduction	83
3.2.	Materials and methods	84
3.3.	Results and discussion	85
	3.3.1. FT-IR Spectral analysis	85
	3.3.2.Structural analysis	87
	3.3.3. SEM analysis	89
	3.3.4. EDAX analysis	90
	3.3.5. Electrochemical behaviour of modified electrodes	92

3.4. Conclusion

References

CHAPTER IV

INVESTIGATION ON DECORATION OF SILVER NANOPARTICLES ON POLYMER FUNCTIONALIZED REDUCED GRAPHENE OXIDE NANOSHEETS FOR ELECTROCHEMICAL SENSING APPLICATIONS

4.1	Introduction	99
4.2.	Materials and methods	101
4.3.	Results and discussion	102
	4.3.1. FT-IR Spectral analysis	102
	4.3.2. Structural analysis	103
	4.3.3. SEM analysis	105
	4.3.4. EDAX analysis	108
	4.3.5. HRTEM analysis	110
	4.3.6. SAED analysis	111
4.4.	Electrochemical behaviour of modified electrodes	112
4.5.	Electrochemical detection of nitrophenol isomers	113
	4.5.1. Effect of rGONS/ β -CD/Ag concentration on electrocatalytic activity	113
	4.5.2. Effect of electrolyte pH	116
	4.5.3. Effect of scan rate	118
	4.5.4. Effect of analyte (o-, p- and m-NP) concentration	121
4.6.	Conclusion	123
	References	125

CHAPTER V

INFLUENCE OF GOLD NANOPARTICLES CONCENTRATION ON POLYMER FUNCTIONALIZED REDUCED GRAPHENE OXIDE NANOSHEETS AND ITS ELECTROCHEMICAL SENSING PERFORMANCE

5.1.	Introduction	128
5.2.	Materials and methods	129
5.3.	Results and discussion	130
	5.3.1. FT-IR Spectral analysis	130
	5.3.2. Structural analysis	131
	5.3.3. SEM analysis	132
	5.3.4. EDAX analysis	134
	5.3.5. HRTEM analysis	136
	5.3.6. SAED analysis	137
5.4.	Electrochemical behaviour of modified electrodes	138
5.5.	Electrochemical detection of nitrophenol isomers	140
	5.5.1. Effect of rGONS/ β -CD/Au concentration on electrocatalytic activity	140
	5.5.2. Effect of electrolyte pH	142
	5.5.3. Effect of scan rate	144
	5.5.4. Effect of analyte (o-, p- and m-NP) concentration	147
5.6	Conclusion	150
	References	151

CHAPTER VI

IMPACT OF STRUCTURAL AND MORPHOLOGIAL PROPERTIES OF rGONS/β-CD/ZnO NANOCOMPOSITES ON THE ELECTROCHEMICAL DETECTION APPLICATION

6.1.	Introduction	155
6.2.	Materials and methods	156
6.3.	Results and discussion	157
	6.3.1. FT-IR Spectral analysis	157
	6.3.2. Structural analysis	158
	6.3.3. SEM analysis	160
	6.3.4. EDAX analysis	163
	6.3.5.HR TEM analysis	164
	6.3.6. SAED analysis	166
6.4.	Electrochemical behaviour of modified electrodes	167
6.5.	Electrochemical detection of nitrophenol isomers	168
	6.5.1. Effect of rGONS/β-CD/ZnO concentration on	
	electrocatalytic activity	169
	6.5.2. Effect of electrolyte pH	170
	6.5.3. Effect of scan rate	173
	6.5.4. Effect of analyte (o-, p- and m-NP) concentration	176
6.6.	Conclusion	179
	References	180

CHAPTER VII

INCLUSION OF COPPER OXIDE NANOPARTICLES AND β-CD POLYMER FOR THE ENHANCEMENT OF ELECTROCATALYTIC PROPERTY OF REDUCED GRAPHENE OXIDE NANOSHEETS AND ITS SENSING APPLICATIONS

7.1.	Introduction	185
7.2.	Materials and methods	187
7.3.	Results and discussion	188
	7.3.1. FT-IR spectral analysis	188
	7.3.2.Structural analysis	190
	7.3.3. SEM analysis	192
	7.3.4. EDAX analysis	194
	7.3.5. HRTEM analysis	196
	7.3.6. SAED analysis	197
7.4.	Electrochemical behaviour of modified electrodes	198
7.5.	Electrochemical detection of nitrophenol isomers	199
	7.5.1. Effect of rGONS/ β -CD/CuO concentration on electrocatalytic activity	200
	7.5.2. Effect of electrolyte pH	201
	7.5.3. Effect of scan rate	203
	7.5.4. Effect of analyte (o-, p- and m-NP) concentration	207
7.6.	Conclusion	209
	References	211

CHAPTER VIII

SUMMARY OF RESULTS AND CONCLUSION

216
tide 216
zed 217
zed 219
trin 220
trin 221
222

LIST OF PUBLICATIONS 223

PAPERS PRESETED IN INTERNATIONAL CONFERENCE 225

ABSTRACT

The present research work mainly focuses on the development of efficient electrode modified material using various concentrations of metal (Au, Ag) / metal oxide (ZnO, CuO) nanoparticles embellished β -cyclodextrin functionalized reduced graphene oxide nanosheets for the effective electrochemical detection of nitrophenol isomers (ortho-, para- and meta-nitrophenol). The synthesized nanocomposites are analyzed through various characterization techniques to investigate their functional, structural and morphological properties along with their electrocatalytic applications.

Graphene oxide (GO) nanosheets are prepared by modified Hummer's method and functionalized using β -cyclodextrin polymer (rGONS/ β -CD) via chemical reduction method. The influences of β -cyclodextrin polymer on the functional, structural and morphological properties of reduced graphene oxide nanosheets are investigated using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX) and High resolution transmission electron microscopy (HRTEM) with Surface area electron diffraction (SAED) analysis. The XRD pattern of GO and rGONS/β-CD nanocomposites indicate the formation of GO and polymer functionalized reduced graphene oxide nanosheets with the sharp and broad diffraction peak at 10.3° and 23° respectively. The SEM analysis showed the formation of wrinkled and less transparent β -CD functionalized reduced graphene oxide nanosheets. The elemental compositions of the synthesized samples are characterized using EDAX analysis and confirmed the presence of carbon and oxygen elements without any impurities. The electrocatalytic analysis is performed for the detection of ortho-nitrophenol isomer using GO, rGONS and rGONS/β-CD nanocomposite modified GCE and the results show a well defined redox peak with the current value of -0.21 mA for rGONS/β-CD nanocomposite modified GCE than the other nanocomposite modified electrodes.

The various concentrations of silver nanoparticles embellished β -cyclodextrin functionalized reduced graphene oxide nanosheets are synthesized by simple wet chemical method. The influence of various concentrations of silver nanoparticles on the structural, morphological and electrocatalytic properties of rGO/ β -CD nanosheets are studied using FT-IR, XRD, SEM, EDAX and TEM with SAED analysis. It is observed

from XRD analysis that the crystallite size of the silver nanoparticles varied between 18 nm to 23 nm. TEM analysis shows the formation of spherical shaped silver nanoparticles in the rGO/ β -CD nanosheets and the SAED pattern confirms its polycrystalline nature. The electrochemical analysis revealed that the synthesized rGONS/ β -CD/Ag nanocomposite is best suited for the detection of ortho-nitrophenol with the linear range of detection from 1 mM to 12 mM and sensitivity value of about 0.28 mA mM⁻¹ cm⁻².

The different concentrations (0.002 M, 0.004 M, 0.006 M, 0.008 M and 0.01 M) of gold nanoparticles encapsulated β -cyclodextrin functionalized graphene oxide nanocomposites (GO-\beta-CD-Au) are synthesized via wet chemical method and the effect of gold nanoparticles concentrations on the surface property of rGONS/ β -CD nanocomposite is investigated using FT-IR, XRD, SEM, EDAX and TEM analysis. The FT-IR spectra reveal that the blue shift in the bands may be due to the intermolecular interaction between the graphene oxide and β -cyclodextrin. The structural analysis reveals that the crystallite size of the gold nanoparticles ranges from 9.16 nm to 9.20 nm for the concentration of 0.002 M to 0.006 M and there is an increase in the crystallite size from 9 to 12 nm for 0.008 M and 0.01 M. This may be due to the aggregation of gold nanoparticles encapsulated on the surface of rGONS/β-CD. The SEM analysis shows that the rGONS/β-CD/Au nanocomposite synthesized using 0.006 M concentration of gold (III) chloride trihydrate is uniformly decorated with large number of gold nanoparticles. The TEM analysis confirms the formation of uniformly decorated spherical shaped gold nanoparticles on the surface of wrinkled cyclodextrin functionalized reduced graphene oxide nanosheets. The physico-chemical studies revealed the impact of gold nanoparticles concentration on the electrocatalytic property of rGONS/CD nanocomposites. It is further confirmed by the cyclic voltammetry analysis and the results reveals a better linear detection range over the concentration from 100 μM to 280 μM with the sensitivity value of about 8.87 $mA\mu M^{\text{-1}}cm^{\text{-2}}$ for the detection of ortho-nitrophenol. Hence, the synthesized electrode material is better for the detection of ortho-nitrophenol than para- and meta-nitrophenol isomers.

The facile wet chemical method for the synthesis of novel zinc oxide (ZnO) nanoparticles embellished beta-cyclodextrin (β -CD) polymer functionalized reduced graphene oxide (rGO) nanosheets (rGONS/ β -CD/ZnO) using different molar ratios of zinc acetate dihydrate is reported. The synthesized rGONS/ β -CD/ZnO nanocomposites

are investigated using FT-IR, XRD, SEM, EDAX and TEM with SAED analytical techniques. The molar ratio of Zn^{2+} ions in the reaction system plays a crucial role on the structural and morphological properties of rGONS/β-CD/ZnO nanocomposite and also in its electrocatalytic applications. The XRD analysis shows that the crystallite size of ZnO nanoparticles varies linearly for the molar ratio of Zn^{2+} ions from 0.002 M to 0.008 M and dramatically increases for the molar ratio of 0.01 M, due to the aggregation of ZnO nanoparticles on the rGONS/β-CD surface. The SEM and TEM morphological analysis reveals that the spindle like zinc oxide nanoparticles is effectively embellished on the rGONS/β-CD surface without agglomeration for the molar ratio of Zn²⁺ ions from 0.002 M to 0.008 M. The electrochemical study shows that the rGONS/ β -CD/ZnO nanocomposite synthesized using the molar ratio of Zn²⁺ ions from 0.002 M to 0.008 M exhibits linear detection response with higher electrocatalytic activity towards the detection of nitrophenol isomer, which may be attributed to the large surface area from high loading concentration of ZnO nanoparticles with smaller crystallite size on the rGONS/β-CD surface. The cyclic voltammetric response of 0.008 M molar ratio of synthesized rGONS/β-CD/ZnO nanocomposites shows the best linear range of detection for para-nitrophenol isomer among the three nitrophenol isomers from 10 to 240 µm with a high sensitivity value of $13.8 \text{ mA } \mu\text{M}^{-1}\text{cm}^{-2}$.

The synthesis of beta-cyclodextrin (β -CD) functionalized copper oxide nanoparticles (CuO) encapsulated reduced graphene oxide (rGO) nanosheets (rGONS/ β -CD/CuO) for the sensitive electrochemical detection of nitrophenol isomers is described. The functionalization and encapsulation of reduced graphene oxide nanosheets surface using beta-cyclodextrin and copper oxide nanoparticles are done by using chemical reduction of graphene oxide with beta cyclodextrin and copper (II) acetate monohydrate chemical reagents. The physico-chemical properties of synthesized rGONS/ β -CD/CuO nanocomposites are investigated using FT-IR, XRD, SEM and TEM analytical techniques. The SEM and TEM morphological analysis confirms that β -CD molecules are effectively functionalized on the surface of reduced graphene oxide nanosheets and also the encapsulated spherical shaped copper oxide nanoparticles on the surface of homogenous rGONS/ β -CD nanosheets. The electrochemical study shows that the rGONS/ β -CD/CuO nanocomposite modified GCE exhibits a good electrochemical behaviour for the reduction of para-nitrophenol with linear range of detection 60 μm to 90 μm and 120 μm to 280 μm and the sensitivity of 10.4 mA $\mu M^{-1} cm^{-2}.$

The results of the present work summarize the synthesis of graphene based polymer functionalized meta/metal oxide nanoparticles at nanometer size with the appreciable structural and morphological properties and are best suited for the electrochemical sensor applications.

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1.1	Classification of nanomaterials	2
1.2	Synthesis of nanomaterials	4
1.3.	Structure of graphite	20
1.4.	Structure of graphite oxide	21
1.5.	Structures of graphene oxide	22
1.6.	Synthesis methods of graphene oxide	23
1.7.	(a) Hofmann, Ruess, Scholz, Nakajima(b) Lerf, Dekany structures of graphene oxide	25
1.8.	Structure of reduced graphene oxide	28
1.9.	Functionalization possibilities of graphene (a) Edge (b) Basal- plane (c) Non-covalent adsorption on basal plane (d) Asymmetric (e) Self assembly	31
1.10.	Structures of Zinc oxide	36
1.11.	Structure of Copper II oxide	38
1.12.	Types of cyclodextrin polymer	40
1.13.	Types of functionalization of polymer	42
1.14.	Application of graphene based nanomaterials	44
1.15.	X-ray diffraction of two plane system	48
1.16.	Electrochemical cell setup	51
1.17.	Reversible redox reaction	53
1.18.	Irreversible redox reaction	53

1.19.	Quasi reversible redox reaction	54
1.20.	Adsorption redox reaction	54
2.1.	Schematic diagram of synthesis of graphene oxide using modified Hummer's method	71
2.2.	Schematic illustration of chemical functionalization of β -CD onto the rGONS	73
2.3.	Schematic illustration of decoration of silver nanoparticles on the β -CD functionalized rGONS	74
2.4.	Schematic illustration of surface modification of GCE using synthesized nanocomposites	76
3.1.	FT-IR spectra of (a) Graphene oxide (b) reduced graphene oxide (c) β -cyclodextrin functionalized reduced graphene oxide nanosheets	82
3.2.	X-ray diffraction pattern of (a) Graphene oxide (b) reduced graphene oxide (c) β -cyclodextrin functionalized reduced graphene oxide nanosheets	84
3.3	SEM images of (a) Graphene oxide (b) reduced graphene oxide (c) β -cyclodextrin functionalized reduced graphene oxide nanosheets	86
3.4.	EDAX Spectra of (a) Graphene oxide (b) Reduced graphene oxide (c) β -cyclodextrin functionalized reduced graphene oxide nanosheets	87
3.5.	Cyclic voltagramm of 14 mM of o-NP at (a) bare GCE (b) GO/GCE (c) rGONS/GCE (d) rGONS/ β -CD/GCE in 0.1 PBS solution at the scan rate of 10 mV/s	90
4.1.	FT-IR spectra of silver nanoparticles loaded β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of silver nitrate	99
4.2.	XRD spectra of silver nanoparticles loaded β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of silver nitrate	101
4.3.	SEM images of silver nanoparticles loaded β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of silver nitrate	103

4.4.	EDAX spectra of silver nanoparticles loaded β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of silver nitrate	106
4.5.	TEM images of silver nanoparticles loaded β-cyclodextrin functionalized reduced graphene oxide nanosheets using 0.006 M concentration of silver nitrate	107
4.6.	SAED pattern of silver nanoparticles loaded β-cyclodextrin functionalized reduced graphene oxide nanosheets using 0.006 M concentration of silver nitrate	108
4.7.	Cyclic voltagramm of 14 mM of o-NP at (a) rGONS/Ag/GCE (b) rGONS/ β -CD/Ag/GCE in PBS solution at the scan rate of 10 mV/s	109
4.8.	Cyclic voltagramm of 14 mM of o-NP at (a) 0.002 M (b) 0.004 (c) 0.006 M (d) 0.008 M and (e) 0.01 M silver nanoparticles loaded β -cyclodextrin functionalized reduced graphene oxide nanosheets in PBS solution	111
4.9.	Effect of pH on the redox peak current of (a) 14 mM o-NP and its linearity (b) 25 mM p-NP and its linearity (c) 12 mM m-NP and its linearity in 0.1 M of PBS solution at the scan rate of 10 mV/s	114
4.10.	(a), (c) and (e) Effect of scan rate on the reduction current response for 14 mM, 25 mM and 12 mM of o-, p- and m-NP in 0.1 M PBS solution (b), (d) and (f) Linear relationship between E_{pa} , I_{pa} and square root of scan rate	117
4.11.	Cyclic voltagramm of rGONS/ β -CD/Ag/GCE in 0.1 M PBS solution containing various concentration of (a) o-NP, (b) p-NP and (c) m-NP	119
5.1	FT-IR spectra of gold nanoparticles encapsulated β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of gold (III) chloride trihydrate	127
5.2.	XRD spectra of gold nanoparticles encapsulated β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of gold (III) chloride trihydrate	128
5.3.	SEM images of gold nanoparticles encapsulated β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of gold (III) chloride trihydrate	131

5.4.	EDAX images of gold nanoparticles encapsulated β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of gold (III) chloride trihydrate	133
5.5.	TEM images of gold nanoparticles encapsulated β -cyclodextrin functionalized reduced graphene oxide nanosheets using 0.006 M concentration of gold (III) chloride trihydrate	134
5.6.	SAED pattern of gold nanoparticles encapsulated β -cyclodextrin functionalized reduced graphene oxide nanosheets using 0.006 M concentration of gold (III) chloride trihydrate	135
5.7.	Cyclic voltagramm of 280 μ M of o-NP at the (a) rGONS/Au/GCE (b) rGONS/ β -CD/Au/GCE in 0.1 M PBS solution at the scan rate of 10 mV/s	137
5.8.	Cyclic voltagramm of 280 μ M of o-NP at (a) 0.002 M (b) 0.004 (c) 0.006 M (d) 0.008 M and (e) 0.01 M of gold nanoparticles encapsulated β -cyclodextrin functionalized reduced graphene oxide nanosheets in PBS solution	138
5.9.	Effect of pH on the redox peak current of (a) 280 μ M o-NP and its linearity (b) 210 μ M p-NP and its linearity (c) 220 μ M m-NP and its linearity in 0.1 M of PBS solution at the scan rate of 10 mV/s	142
5.10.	(a), (c) and (e) Effect of scan rate on the reduction current response for 14 mM, 25 mM and 12 mM of o-, p- and m-NP in 0.1 M PBS solution (b), (d) and (f) Linear relationship between E_{pa} , I_{pa} and square root of scan rate	144
5.11.	Cyclic voltagramm of rGONS/ β -CD/Au/GCE in 0.1 M PBS solution containing various concentration of (a) o-NP, (b) p-NP and (c) m-NP	146
6.1.	FT-IR spectra of zinc oxide nanoparticles embellished β - cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M molar ratio of zinc acetate dihydrate	155
6.2.	XRD spectra of zinc oxide nanoparticles embellished β - cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M molar ratio of zinc acetate dihydrate	156
6.3.	SEM images of zinc oxide nanoparticles embellished β - cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M molar ratio of zinc acetate dihydrate	159

162	EDAX spectra of zinc oxide nanoparticles embellished β - cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M molar ratio of zinc acetate dihydrate	6.4.
163	TEM images of zinc oxide nanoparticles embellished β - cyclodextrin functionalized reduced graphene oxide nanosheets using 0.008 M molar ratio of zinc acetate dihydrate	6.5.
164	SAED pattern of zinc oxide nanoparticles embellished β -cyclodextrin functionalized reduced graphene oxide nanosheets using 0.008 M concentration of zinc acetate dihydrate	6.6.
165	Cyclic voltagramm of 220 μ M of o-NP at the (a) rGONS/ZnO/GCE (b) rGONS/ β -CD/ZnO/GCE in PBS solution at the scan rate of 10 mV/s	6.7.
167	Cyclic voltagramm of 220 μ M of o-NP at (a) 0.002 M (b) 0.004 (c) 0.006 M (d) 0.008 M and (e) 0.01 M zinc oxide nanoparticles embellished β -cyclodextrin functionalized reduced graphene oxide nanosheets in PBS solution	6.8.
169	Effect of pH on the redox peak current of (a) 220 μ M o-NP and its linearity (b) 240 220 μ M p-NP and its linearity (c) 240 μ M mM m-NP and its linearity in 0.1 M of PBS solution at the scan rate of 10 mV/s	6.9.
173	(a), (c) and (e) Effect of scan rate on the reduction current response for 220 μ M, 240 μ M, 240 μ M of o-, p- and m-NP in 0.1 M PBS solution (b), (d) and (f) Linear relationship between E _{pa} , I _{pa} and square root of scan rate	6.10
175	Cyclic voltagramm of rGONS/ β -CD/ZnO/GCE in 0.1 M PBS solution containing various concentration of (a) o-NP, (b) p-NP and (c) m-NP	6.11.
185	FT-IR spectra of copper oxide nanoparticles decorated β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of copper II acetate monohydrate	7.1.
187	XRD spectra of copper oxide nanoparticles decorated β - cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of copper II acetate monohydrate	7.2.

7.3.	SEM images of copper oxide nanoparticles decorated β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of copper II acetate monohydrate	189
7.4.	EDAX spectra of copper oxide nanoparticles decorated β -cyclodextrin functionalized reduced graphene oxide nanosheets using (a) 0.002 M (b) 0.004 M (c) 0.006 M (d) 0.008 M and (e) 0.01 M concentration of copper II acetate monohydrate	192
7.5.	TEM images of copper oxide nanoparticles decorated β -cyclodextrin functionalized reduced graphene oxide nanosheets using 0.004 M concentration of copper II acetate monohydrate	193
7.6.	SAED pattern of copper oxide nanoparticles decorated β - cyclodextrin functionalized reduced graphene oxide nanosheets using 0.004 M concentration of copper II acetate monohydrate	194
7.7.	Cyclic voltagramm of 230 μ M of o-NP at (a) rGONS/CuO/GCE (b) rGONS/ β -CD/CuO/GCE in PBS solution at the scan rate of 10 mV/s	195
7.8.	Cyclic voltagramm of 230 μ M of o-NP at (a) 0.002 M (b) 0.004 (c) 0.006 M (d) 0.008 M and (e) 0.01 M copper oxide nanoparticles decorated β -cyclodextrin functionalized reduced graphene oxide nanosheets in PBS solution	197
7.9.	Effect of pH on the redox peak current of (a) 230 μ M o-NP and its linearity (b) 300 μ M p-NP and its linearity (c) 260 μ M m-NP and its linearity in 0.1 M of PBS solution at the scan rate of 10 mV/s	199
7.10.	(a), (c) and (e) Effect of scan rate on the reduction current response for 14 mM, 25 mM and 12 mM of o-, p- and m-NP in 0.1 M PBS solution (b), (d) and (f) Linear relationship between E_{pa} , I_{pa} and square root of scan rate	203
7.11.	Cyclic voltagramm of rGONS/ β -CD/CuO/GCE in 0.1 M PBS solution containing various concentration of (a) o-NP, (b) p-NP and (c) m-NP	205

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
1.1	Physicochemical properties of Reduced Graphene Oxide	30
1.2	Physicochemical properties of gold nanoparticles	34
1.3.	Physicochemical properties of zinc oxide	37
4.1	Linear range of detection and sensitivity value of the rGONS/ β -CD/Ag nanocomposite	120
5.1	Linear range of detection and sensitivity value of the rGONS/ β -CD/Au nanocomposite	147
6.1	Linear range of detection and sensitivity value of the rGONS/ β -CD/ZnO nanocomposite	176