Acknowledgement

ACKNOWLEDGEMENT

I pray my obeisance to **GOD**, the almighty to have bestowed upon me good health, courage, wisdom, zeal and light to undertake Ph.D research task in the field of Environmental Chemistry and enabling me to its completion.

I profusely thank our **Managing Trustee**, **Sri G. Rangaswamy** and **Chairperson**, **Smt.R.Nandini**, PSGR Krishnammal College for Women, for providing all the necessary facilities to carry out my research work.

It is with immense pleasure that I acknowledge **Dr N. Yesodha Devi, M.Com., Ph.D., Secretary**, PSGR Krishnammal College for Women, for her stable support in all my endeavours.

I express my profound gratitude to the Principal **Dr S.Nirmala, MBA., M.Phil., Ph.D.,** PSGR Krishnammal College for Women, for the valuable support rendered during the research period.

I take this opportunity to express my sincere gratefulness to thank **Dr. Subramanian Chitra, M.Sc., M.Phil., Ph.D.,** Associate Professor and Head, Department of Chemistry, PSGR Krishnammal College for Women, for the kindness and motivational suggestions during the tenure of my work.

I heartily owe my sincere thanks to **Dr. A. Shamitha Begum, M.Sc., M.Phil., Ph.D.,** Dean, Academic Affairs and **Dr. K. Parameswari, M.Sc., M.Phil., Ph.D.**, Controller of Examinations, PSGR Krishnammal College for Women, for their encouragement and support.

At this moment of accomplishment, I would like to express my sincere and deepest gratitude to my Research Supervisor, **Dr N.Muthulakshmi Andal., M.Sc., Ph.D.**, Assistant Professor, Department of Chemistry, PSGR Krishnammal College for Women, for suggesting me the problem, valuable guidance, scholarly inputs, consistent encouragement, patience and motivation throughout my study without which the research would have been a distant dream.

It is an honour for me to thank **Dr S.Meenakshi**, Professor and Head, Department of Chemistry, Gandhigram Rural University for the valuable suggestions and discussions during Doctorial Committee meeting.

I express my gratitude and indebtedness to my **Department Colleagues** for their encouragement, companionship and friendly working atmosphere.

My sincere thanks are due to all the **Non-Teaching staff** of Department of Chemistry, PSGR Krishnammal College for Women, for their assistance rendered. Especially, Mrs. P.Vinothini, Mrs P.Vadivu and Mrs S.Kanimozhi, for their timely help and wishes.

I would like to thank **Dr K.S.Thangamani**, Assistant Professor, Department of Chemistry, Dr. NGP Institute of Technology and **Dr S.Charulatha**, Assistant Professors, of my department for their moral support and help. My special words of gratitude to **Ms.J.Anuradha**, **Ms.N.S.Gayathri** and **Ms.K.Vivithabharathi** for the personal and professional assistance extended through out. I thank **Ms.G.Preethi** and **Ms.J.Reshma Anjelin**, Research Scholars, Department of Chemistry, PSGR Krishnammal College for Women, for their technological support.

I would like to acknowledge **all the teachers**, from my childhood.

A special note of respectful regards to my teachers', the stalwarts of Chemistry Department, PSGR Krishnammal College for Women, Mrs. T.Nalini, Mrs. W.Premalatha Ponmani, Former HODs Mrs. V.Parvathi, Mrs. R.Rathinammal, Dr P.Jeyamani- Retd. Professors for their blessings.

I owe a lot to my Parents, **Mr M.Neethimani** and **A.Janci Rani**, who encouraged and helped me at every stage of my personal and academic life who longed to see this achievement come true.

I specially thank my dear Husband, **G.Arunan**, as words cannot express for all the sacrifices made for my behalf. I am grateful to my kids, **A.S.Mithraa** and **A.Hemaakshi**, my siblings **S. Jaya Surya, R.S Harini and** other family members for providing me thorough moral and emotional support.

N.SHYAMALA DEVI

Abstract

ABSTRACT

Heavy metal contamination of water bodies is a serious environmental threat as that of global warming. Industries such as chemical, leather, dye, electroplating, battery services are the significant sources which discharge wastewaters, containing toxic metal ions and anions polluting the aqueous streams, while exceeding their standard permissible limits. This is found to increase alarmingly day by day due to the extensive use of these ions by the above mentioned industries. Based on the thorough analysis of industries in Coimbatore district, many electroplating battery, laundry units are reported to discharge into the water streams and soils, on a large scale. Most of these units are listed under red category by Tamil Nadu Pollution Control Board. Considering these fact, Pb(II), Ni(II) and phosphate ions which are extensively employed in these industries have been chosen for their remediation. Ecofriendly materials are identified in trapping the chosen toxic metal ions from aqueous solutions through adsorption process. One agricultural/ one animal litter wastes viz., Pistachio vera shells/Bivalve shells are identified, treated with suitable chemicals and categorized into various particle sizes. The modified materials of varied particle sizes are subjected to physico-chemical characteristic studies to determine the pH, conductivity, density, moisture content, ash content, specific gravity and porosity. Surface and functional groups characterizations are performed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses.

Batch equilibration mode experiments are set up to assess the sorption capacity of the selected adsorbents under different operating factors: particle sizes/ doses of the sorbent materials upon a range of initial concentrations of metal ions at different pH environments, agitation time intervals between the sorbent and sorbate species and the temperatures of the six sorption systems. Exploratory desorption and regeneration experiments are carried out for the metal laden adsorbents, as the repeated reusability of the materials is essential. From the experimental procedures, the nature of the adsorption and kinetics are explained employing certain isothermal models. Outcome of batch studies reveal the potentiality of both the materials, were bivalve shells exhibited better sorption nature. Quantification through column studies to assess the adsorbents' efficiencies in the continuous column running with the aqueous metal ion solutions, followed by testing the field samples collected from Lakshmi Electroplating Finishers and SIDCO Industrial Estate(Lead- acid battery unit). Column results exhibited almost 99% metal removal efficiency of the shell powders, thereby emphasizing the promising characteristics of the identified materials.

Contents

CONTENTS

Chapter No.		Title	Page No.
Ι	Intro	duction	1
	1.1	Importance of Water	1
	1.2	Characteristics of Water	1
	1.3	Water Pollution & its Sources	2
	1.4	Heavy Metal Pollution	5
	1.5	Anionic Pollution	12
	1.6	Treatment Methods of Heavy Metals	16
	1.7	Review of Literature	19
	1.8	References	25
II	Aim a	and Scope	35
III	Expe	rimental Section	36
	3.1	Identification of Adsorbent Materials	36
	3.2	Pistachio vera Shell	36
	3.3	Bivalve Shell	36
	3.4	Assortment of Chosen Materials	37
	3.5	Choice of Metal ions/ Anion	37
	3.6	Categorized Materials - Modification	38
	3.7	Proximate Analysis: Physico-chemical Characterization Studies	38
	3.8	Preparation of Adsorbate Solutions	44
	3.9	Experimental Design	44
	3.10	Analysis of the Samples	45
	3.11	Data Analysis	46

Chapter No.		Title	Page No.
	3.12	Column Studies	46
	3.13	Desorption	47
	3.14	Regeneration	47
	3.15	Collection of Effluent Samples	48
	3.16	Adsorption Isotherm	48
	3.17	Activation Factors	50
	3.18	References	51
IV	Pb(II)) Adsorption onto TPVSP and TBVSP	54
	4.1	Microscopic, BET and BJH Analyses	54
	4.2	Physico-Chemical Properties – TPVSP/TBVSP	57
	4.3	Morphological Studies	58
	4.4	Batch Equilibration Studies	63
	4.5	Isothermal Studies	69
	4.6	Adsorption Dynamics	73
	4.7	Conclusion	74
	4.8	References	75
V	Ni(II)	Adsorption onto TPVSP and TBVSP	79
	5.1	Surface Characterization studies	79
	5.2	FT-IR Spectral Studies	80
	5.3	Batch Equilibration Studies	81
	5.4	Isothermal Studies	88
	5.5	Adsorption Dynamics	82
	5.6	Conclusion	94
	5.7	References	95

Chapter No.		Title	Page No.
VI	Phos	phate Adsorption onto TPVSP and TBVSP	96
	6.1	Scanning Electron Microscopy/ EDAX studies	96
	6.2	Batch Equilibration Studies	97
	6.3	Isothermal Studies	104
	6.4	Adsorption Dynamics	109
	6.5	Conclusion	110
	6.6	References	111
VII	Colu	mn Experiments	113
	7.1	Packing and Continuous Running of Columns	113
	7.2	Effluent Treatment- Continuous column operations	114
	7.3	Reference	116
VIII	Sumr	nary	117
	Appe	ndix	

List of Tables

LIST OF TABLES

Table No.	Title	Page No.
	Introduction	
1.1	Column Water Pollutants - Adverse effects	5
1.2	Significant Anthropogenic Sources of Heavy Metal Pollution	6
1.3	Heavy Metal – Industrial Effluents	11
1.4	Tolerance Limits for Toxic Trace Metals for Drinking Water	12
1.5	Advantages/ Disadvantages of Treatment Methodology	17
	Experimental Section	
3.1	Pistachio vera & Bivalve Shells Composition	36
	Pb(II) Adsorption onto TPVSP and TBVSP	
4.1	Physico-Chemical Parameters	57
4.2	Effect of Cations/ Anions/ Co-ions	67
4.3	Effect of Temperature	67
4.4	Equilibrium Concentrations-Isothermal Data	69
4.5	Isothermal Constants	70
4.6	Equilibrium Parameter (RL)	71
4.7	Thermodynamic Parameters	74
	Ni(II) Adsorption onto TPVSP and TBVSP	
5.1	Effect of Particle Size	82
5.2	Effect of Initial Concentration and Contact time [Ni(II)-TPVSP]	83
5.3	Effect of Initial Concentration and Contact time [Ni(II)-TBVSP]	83
5.4	Effect of Dosage [Ni(II)-TPVSP]	85
5.5	Effect of Dosage [Ni(II)-TBVSP]	85

Table No.	Title	Page No.
5.6	Effect of Cations/ Anions/ Co-ions	87
5.7	Effect of Temperature	88
5.8	Equilibrium Concentrations-Isothermal Data	89
5.9	Isothermal Constants	89
5.10	Equilibrium Parameter (RL)	90
5.11	Thermodynamic Parameters	93
	Phosphate Adsorption onto TPVSP and TBVSP	
6.1	Effect of Particle Size	97
6.2	Effect of Initial Concentration and Contact time	98
6.3	Effect of Dosage	100
6.4	Effect of Co- existing Ions	104
6.5	Equilibrium Concentrations-Isothermal Data	105
6.6	Isothermal Constants	105
6.7	Equilibrium Parameter (RL)	107
6.8	Thermodynamic Parameters	110
	Column Experiments	
7.1	Column Analysis	114
7.2	TBVSP vs Effluent	115

List of Figures

LIST OF FIGURES

Figure No.	Title	Page No.
	Introduction	
1.1	The Impact of Excess Nutrients on Ecosystem	14
	Experimental Section	
3.1	Pistachio vera and Bivalve shells - Images	37
3.2	Moisture Determination Apparatus	39
3.3	Atomic Absorption Spectrophotometer Shimadzu (AA 6200)	45
3.4	UV-Visible Spectrophotometer (Lab India)	46
	Pb(II) Adsorption onto TPVSP and TBVSP	
4.1 (a)	TPVSP – Microscopic Image	54
4.1 (b)	TBVSP – Microscopic Image	54
4.2 (a)	BET – TPVSP	55
4.2 (b)	BJH – TPVSP	55
4.3 (a)	BET – TBVSP	56
4.3 (b)	BJH – TBVSP	56
4.4 (a)	SEM - Bare PVSP	59
4.4 (b)	SEM - Unloaded TPVSP	59
4.4 (c)	SEM - Pb(II)-TPVSP	59
4.5 (a)	SEM - Bare BVSP	59
4.5(b)	SEM - Unloaded TBVSP	59
4.5 (c)	SEM - Pb(II)-TBVSP	59
4.6 (a)	EDAX - Bare PVSP	60
4.6 (b)	EDAX - Unloaded TPVSP	60

Figure No.	Title	Page No.
4.6 (c)	EDAX -Pb(II)-TPVSP	60
4.7 (a)	EDAX - Bare BVSP	60
4.7 (b)	EDAX - Unloaded TBVSP	60
4.7 (c)	EDAX - Pb(II)-TBVSP	60
4.8 (a)	FT-IR Spectra - Unloaded TPVSP	61
4.8 (b)	FT-IR Spectra - Pb(II)-TPVSP	62
4.9 (a)	FT-IR Spectra - Unloaded TBVSP	62
4.9 (b)	FT-IR Spectra - Pb(II)-TBVSP	62
4.10	Effect of Particle Size	63
4.11	Effect of Initial Concentration and Contact time (TPVSP)	64
4.12	Effect of Initial Concentration and Contact time (TBVSP)	64
4.13	Effect of Dosage (TPVSP)	65
4.14	Effect of Dosage (TBVSP)	65
4.15	Effect of pH (TPVSP/ TBVSP)	66
4.16	Desorption of Pb(II)	68
4.17	Pb(II)-TPVSP - Regeneration	68
4.18	Pb(II)-TBVSP - Regeneration	68
4.19	Langmuir Plot (TPVSP)	70
4.20	Langmuir Plot (TBVSP)	70
4.21	Freundlich Plot (TPVSP)	71
4.22	Freundlich Plot (TBVSP)	71
4.23	DKR Plot (TPVSP)	72
4.24	DKR Plot (TBVSP)	72

Figure No.	Title	Page No.
4.25	Van't Hoff's Plot (TPVSP)	73
4.26	Van't Hoff's Plot (TBVSP)	73
	Pb(II) Adsorption onto TPVSP and TBVSP	
5.1 (a)	SEM -Unloaded TPVSP	79
5.1 (b)	SEM -Ni(II)-TPVSP	79
5.2 (a)	SEM -Unloaded TBVSP	79
5.2 (b)	SEM -Ni(II)-TBVSP	79
5.3 (a)	EDAX-Unloaded TPVSP	80
5.3(b)	EDAX-Ni(II)-TPVSP	80
5.4(a)	EDAX-Unloaded TBVSP	80
5.4(b)	EDAX-Ni(II)-TBVSP	80
5.5 (a)	FT-IR Spectra Ni(II)-TPVSP	81
5.5 (b)	FT-IR Spectra Ni(II)-TBVSP	81
5.6	Effect of Particle Size (mm)	82
5.7	Effect of Initial Concentration and Contact time (TPVSP)	84
5.8	Effect of Initial Concentration and Contact time (TBVSP)	84
5.9	Effect of Dosage (TPVSP)	86
5.10	Effect of Dosage (TBVSP)	86
5.11	Effect of pH (TPVSP)	87
5.12	Effect of pH (TBVSP)	87
5.13	Desorption of Ni(II)	88
5.14	Langmuir Plot (TPVSP)	90
5.15	Langmuir Plot (TBVSP)	90

Figure No.	Title	Page No.
5.16	Freundlich Plot (TPVSP)	91
5.17	Freundlich Plot (TBVSP)	91
5.18	DKR Plot (TPVSP)	92
5.19	DKR Plot (TBVSP)	92
5.20	Van't Hoff's Plot (TPVSP)	93
5.21	Van't Hoff's Plot (TBVSP)	93
	Phosphate Adsorption onto TPVSP and TBVSP	
6.1 (a)	SEM -Unloaded TPVSP	96
6.1 (b)	SEM - PO ₄ ³⁻ -TPVSP	96
6.2 (a)	SEM -Unloaded TBVSP	96
6.2 (b)	SEM - PO4 ³⁻ -TBVSP	96
6.3	EDAX- PO4 ³⁻ -TPVSP	97
6.4	EDAX- PO4 ³⁻ - TBVSP	97
6.5	Effect of Particle Size (mm)	98
6.6 (a)	Effect of Initial Concentration and Contact time (TPVSP)	99
6.6 (b)	Effect of Initial Concentration and Contact time (TBVSP)	100
6.7 (a)	Effect of Dosage (TPVSP)	101
6.7 (b)	Effect of Dosage (TBVSP)	102
6.8 (a)	Effect of pH (TPVSP)	102
6.8 (b)	Effect of pH (TBVSP)	103
6.9	Effect of Temperature (PO4 ³⁻ TPVSP/ TBVSP)	103
6.10	Effect of Co-existing ions	104
6.11	Langmuir Plot (TPVSP)	106

Figure No.		Title	Page No.
6.12	Langmuir Plot (TBVSP)		106
6.13	Freundlich Plot (TPVSP)		107
6.14	Freundlich Plot (TBVSP)		107
6.15	DKR Plot (TPVSP)		108
6.16	DKR Plot (TBVSP)		108
6.17	Van't Hoff's Plot (TPVSP)		109
6.18	Van't Hoff's Plot (TBVSP)		109
	Column Experiments		
7.1	Column- Pb(II)-TBVSP		113
7.2	Column- Ni(II)-TBVSP		113

List of Abbreviations and Notations

LIST OF ABBREVIATIONS AND NOTATIONS

- WHO World Health Organization
- USEPA United States Environmental Protection Agency
- APHA American Public Health Association
- TPVSP Treated Pistachio vera Shell Powder
- TBVSP Treated Bivalve Shell Powder
- SEM Scanning Electron Microscope
- BET Bruner Emmett Teller
- BJH Barrett Joyner Halenda
- FT-IR Fourier Transform InfraRed spectrophotometer
- EDAX Energy Dispersive X-ray spectrometer
- AAS Atomic Absorption Spectrophotometer
- Conc. Concentration
- λ_{max} Wavelength(nm)
- $pH_{zpc} \quad \ \ \, \quad pH$ at which the surface charge of the adsorbent is zero
- C_i Initial metal ion concentration (mg/L)
- Ce Equilibrium metal ion concentration in solution (mg/L)
- R² Correlation co- efficient
- qe Amount of metal ions adsorbed per gram of adsorbent at equilibrium (mg/g)
- qt Amount of metal ions adsorbed per gram of adsorbent at time 't' (mg/g)
- qm Maximum monolayer adsorption capacity (mg/g)
- b Langmuir adsorption constant
- K_F Freundlich adsorption capacity (mg/g)

n	-	Freundlich isotherm constant
R	-	Gas constant (8.314 J/mol K)
βdr	-	Mean free energy of sorption per mole of adsorbate (mol^2/J^2)
3	-	Polanyi Potential
E	-	Mean free energy (kJ/mol)
ΔG°	-	Gibb's free energy change of adsorption (kJ/mol)
ΔH°	-	Enthalpy change of adsorption (kJ/mol)
ΔS°	-	Entropy change of adsorption (J/mol K)

List of Instruments / Equipments Used for Various Studies

LIST OF INSTRUMENTS / EQUIPMENTS USED FOR VARIOUS STUDIES

- 1. Atomic Absorption Spectrophotometer
- 2. BET Surface Analyser
- 3. CHNS Analyser
- 4. Digital Conductivity Bridge
- 5. Digital Electronic Balance
- 6. Digital pH Meter
- 7. Energy Dispersive X- ray Spectrometer
- 8. Fourier Transform Infrared Spectrophotometer
- 9. Hot Air Oven
- 10. Nikon Diaphot light Microscope
- 11. Orbital Mechanical Shaker
- 12. Scanning Electron Microscope
- 13. Thermostat controlled Mechanical Shaker
- 14. UV-Visible Spectrophotometer