Results and Discussion

Chapter IV

Adsorption Studies Employing PJBAC

Results of varied experiments verified for chosen dyes and copper ion are explained in this chapter.

4.1 BET and BJH Analyses

The adsorption performance of any system mostly depends on the internal pore structure. Pore sizes classified according to International Union of Pure and Applied Chemistry declare the range d<20 Å to be micropores, 20 Å < d< 500 Å to be mesopores and d > 500 Å to be macropores¹¹⁹. PJBAC was found to be mesoporic in nature after phosphoric acid activation process which was confirmed by 283.4 Å predominantly, as their pore diameter lie in the range of 20 Å < d < 500 Å. The linearity of BET plot (Figure 4.1) indicates prominent surface area and pore size distribution in favour of mesoporous and macroporous materials (Table 4.1). BJH analysis is employed to determine specific pore volume based on the pattern of lines as shown in figure 4.2. Figure 4.3 depicts a typical N₂ sorption isotherm indicative of adsorption and desorption curves. The hysteresis loop observed between the lower adsorption and upper desorption curves implies the existence of mesoporosity.

Figure 4.1 BET plot

Figure 4.2 BJH plot

Figure 4.3 Adsorption/Desorption Isothermal Plot

4.2 Physico- Chemical Characterisation

The physico-chemical parameters of PJBAC are listed in Table 4.1. It is obvious from the table that the apparent density value of PJBAC is 0.52 which describes the carbon grade determination. Activated carbons with a random arrangement of micro-crystallites and relatively low apparent density exhibit a strong cross-linking system. Also, it is reported that the fine sized carbons having an apparent density in the range of 0.25 -0.75 g/mL¹²⁰ exhibit effective sorption of dyes and heavy metal ions. The low bulk density value supports the presence of large number of pores in PJBAC and in turn 7.2% moisture content of PJBAC implies least influence on its adsorptive power¹²¹. 4.8% ash content is indicative of presence of inorganic constituents in trace amounts. The low acid value and water soluble matter corresponds to the insolubility of carbon in acids/water, thereby facilitating its utility in the analysis of acidic/alkaline nature of dye wastewaters.

Zero point charge (pHzPc) is of fundamental importance in surface science, explaining the ability of the sorbent to adsorb harmful ions from aqueous solutions. The neutral pHzPc value (Table 4.1) supports the extensive sorption nature of PJBAC towards toxic cations and anions¹²². The percentages of C, H, N and S elements registered higher carbon content against other elements.

Appreciable iodine number (757mg/g) and methylene blue number (588mg/g) values suggest high degree of activation/ uptake of dye molecules based on PJBAC

suitability¹²³. Notable porosity value emphasizes effective sorptive nature¹²⁴. It is related to the bulk density and specific gravity of PJBAC. A comparison table 4.1a of PJBAC against other sorbents show the carbon under study is found to possess better sorption properties.

Properties	PJBAC				
pH of 1 % solution	6.68				
Conductivity	0.15				
Ash content (%)	4.8				
Moisture (%)	7.2				
Volatile matter (%)	19.1				
Acid soluble matter (%)	1.7				
Water soluble matter (%)	2.1				
Bulk density (g/mL)	0.52				
Specific gravity	1.54				
Porosity (%)	53.10				
Methylene blue value (mg/g)	588				
Iodine number (mg/g)	757				
PHzpc	6.3				
Surface area (m ² /g)	385.2				
Mean Pore diameter (A ^o)	28.6				
Carbon (%)	61.43				
Hydrogen (%)	2.99				
Nitrogen (%)	1.00				
Sulphur (%)	Nil				
Oxygen (%)	39.78				
Fixed carbon (%)	68.1				
Yield (%)	73.6				
Surface acid groups					
Phenolic	0.84				
Carboxylic	1.18				
Lactonic	0.41				

 Table 4.1 Physico - Chemical Characterisation of PJBAC

Adsorbents	Ash (%)	Moisture (%)	Volatile Matter (%)	Fixed Carbon (%)
<i>Moringa oleifera</i> bark ¹²⁵	11.1	12.5	66.5	20.1
hazelnut husk ¹²⁶	0.47	3.88	18.44	78.21
Holm oak corn ¹²⁷	2.5	7.5	70.6	48.7
Waste printed circuit boards ¹²⁸	6.6	2.63	23.47	67.3
Cordia sebestena ¹²⁹	17.8	5.4	18.9	57.9
Mango seed ¹³⁰	2.33	15.47	26.79	55.41
Apple peel ¹³¹	7.43	12.27	72.8	7.4
Cashew nut shell ¹³²	2.75	9.83	65.4	22.21
Holm oak ¹³³	2.3	9.5	80.8	7.4

 Table 4.1a Characteristics Comparison with Reported Literature

4.3 Morphological Studies

4.3.1 SEM and EDAX Analyses

SEM images of raw material, activated carbon and loaded carbons are shown in figures 4.4-4.8. Porous morphology of activated carbon (Figure 4.5) against the precursor (Figure 4.4) supports the enhancement of the sorption characteristics of the former. Smoothening of unoccupied pores (Figures 4.6-4.8) and disappearances at certain points favour the adsorption of dyes and metal ion.

Appearance of new peaks at 2 and 8 keV correspond to uptake of Cu(II) by PJBAC (Figure 4.10), being absent in the activated carbon spectra (Figure 4.9).

Figure 4.4 SEM Image - Raw PJB

Figure 4.5 SEM Image -Unloaded PJBAC

Figure 4.6 SEM Image -DB2 Loaded PJBAC

Figure 4.7 SEM Image - RR152 Loaded PJBAC

Figure 4.8 SEM Image - Cu(II) Loaded PJBAC

Figure 4.9 EDAX Spectra -Unloaded PJBAC

Figure 4.10 EDAX Spectra - Cu(II) Loaded PJBAC

4.3.2 FTIR Spectral Studies

FTIR spectra of dyes/Cu(II) loaded PJBAC samples are presented in figure 4.11. The peak position at 3747 cm⁻¹ corresponding to 4.11a indicates that the stretching vibration of OH group and the one about 2322 cm⁻¹ shows the presence of alkyl group or tannin. The peaks at 1575 cm⁻¹, 1324 cm⁻¹ and 1162 cm⁻¹ corresponds to C-C bond in aromatic conjugation, C–N peptide bond and S,O interaction respectively¹³⁴. The shifts and respective changes in the peaks at 1324 cm⁻¹, 1167 cm⁻¹, 3714 cm⁻¹ and 1345 cm⁻¹ for the loaded counterparts imply the involvement of functional groups during adsorption process.

Figure 4.11 FT-IR Spectra of (a) Unloaded PJBAC, (b) DB2 Loaded PJBAC, (c) RR152 Loaded PJBAC and (d) Cu (II) Loaded PJBAC

4.3.3 TGA-DSC Analysis

Thermal decomposition curve of PJBAC (figure 4.12) indicates a significant weight loss at temperature $< 120^{\circ}$ C which may be due to the evaporation of moisture content. The stages corresponding to weight loss can be attributed to the factors of releasing volatiles and decomposing lignins from 600°C to 1000°C implied by gradual declination of the curve.

The DSC curve in figure 4.12 refer to a slight endothermic region between 26°C and 125°C corresponding to evaporation of water. A steep rise in the curve from 125°C to 400°C is indicates cellulose/hemicelluloses decomposition accompanied by release of heat. The maximized curve at 450°C may refer to vaporisation of certain organic compounds. A decline in the curve beyond 500°C shall suggest pyrolysis of lignin and degradation of carbonaceous structure upto 1000°C.

Figure 4.12 TGA- DSC Curve - PJBAC

4.4 Effect of Initial Concentration and Contact Time

The amounts of dyes and divalent ion adsorbed by PJBAC are tabulated in tables 4.2-4.4 and the corresponding curves are represented in figures 4.13- 4.15 respectively. Rapid uptake of dyes and Cu(II) ion had occurred initially upto 10 minutes then slowed down and attained an equilibrium at 60 minutes, 30 minutes and 18 minutes for DB2, RR152 and Cu(II) respectively. This trend could be due to the easy availability of free active sites at the beginning of the adsorption process, whereas after a specific period of time active sites will be gradually occupied slowing down the adsorption process¹³⁵ as evident from the smooth dynamic equilibrium curves.

The experimental results reveal that the removal percentage of DB2, RR152 and Cu(II) diminish with increase in concentration, whereas the actual amount of adsorption of DB2, RR152 and Cu(II) per unit mass of adsorbent increases. This may be due to an increase in the driving force of concentration gradient to overcome the mass transfer resistance of the adsorbate between solution and solid phases by increase in concentration of the adsorbate molecule¹³⁶.

System	Time	Amount Adsorbed (mg/g)							
System	(min)	25mg/L	50 mg/L	75 mg/L	100 mg/L	125 mg/L	150 mg/L		
	10	9.4	18.1	26.1	36.1	40.5	46.45		
	20	9.7	18.7	27.7	37.6	43.8	48.3		
	30	10.4	19.9	28.9	39.8	45.4	50.4		
DB2- PJBAC	40	10.8	20.8	30.4	42.1	46.6	54.6		
	50	11.3	22.3	32.4	46.2	49.4	58.3		
	60	11.9	23.5	34.5	49.2	60.0	66.4		
	90	11.9	23.5	34.5	49.3	60.2	66.4		

 Table 4.2 Effect of Initial Concentration and Contact Time - DB2

Adsorbent dose 100 mg; Agitation time: 60 min; pH: 6; Temperature: 303K.

	Table 4.3	Effect of	f Initial	Concentration	and Contact	Time - RR152
--	-----------	-----------	-----------	---------------	-------------	---------------------

System	Time	Amount Adsorbed (mg/g)						
	(min)	25mg/L	50 mg/L	75 mg/L	100 mg/L	125 mg/L	150 mg/L	
	10	5.2	11.2	16.6	21.5	26.3	30.1	
	20	5.8	11.8	17.2	22.3	26.7	31.5	
RR152-	30	6.0	12.1	17.9	23.5	28.9	33.3	
PJBAC	40	6.1	12	16.5	22.6	28.2	32.2	
	50	6.2	11.8	16.8	23.1	27.0	32.1	
	60	6.0	11.8	15.7	23.6	27.9	33.0	

Adsorbent dose 150 mg; Agitation time: 30 min; pH: 6; Temperature: 303K.

System	Time	Amount Adsorbed (mg/g)							
	(min)	4 mg/L	8 mg/L	12 mg/L	16 mg/L	20 mg/L			
	3	1.92	4.29	7.86	10.33	14.86			
	6	2.06	4.40	8.08	10.62	15.72			
	9	2.58	5.21	8.42	11.68	15.89			
Cu(II)-	12	3.02	5.92	8.97	11.94	16.24			
РЈВАС	15	3.29	6.43	9.34	12.23	16.90			
	18	3.31	6.42	9.42	12.90	17.10			
	21	3.31	6.57	9.74	12.72	17.10			
	24	3.31	6.56	9.73	12.70	17.10			

Table 4.4 Effect of Initial Concentration and Contact Time - Cu(II)

Adsorbent dose 60 mg; Agitation time: 18 min; pH: 6; Temperature: 303K.

Figure 4.13 Effect of Initial Concentration and Contact Time - DB2

Figure 4.14 Effect of Initial Concentration and Contact Time – RR152

Figure 4.15 Effect of Initial Concentration and Contact Time - Cu(II)

4.5 Effect of Dosage

Figures 4.16, 4.17 and 4.18 shows that influence of the carbon dose on the removal of where the removal of toxic dyes and Cu(II) ion. Approximately 95% removal of DB2, RR152 and Cu(II) is achieved at dosages of 100,150 and 60 mg respectively, is calculated from the smooth, continuous curves. The corresponding values are listed in tables 4.5-4.7. The rate of adsorption was insignificant with further increase in dosage,

due to the overcrowding of carbon particles, available for sorbate species being termed as solid concentration effect.

Contact	Percentage of Adsorption								
Time (min)	50 mg 100 mg 15		150 mg	200 mg					
10	55.4	67.8	65.8	60.8					
20	59.4	72.1	71.2	70.1					
30	61.6	75.2	73.1	65.2					
40	63.8	82.6	72.4	69.6					
50	65.1	88.1	75.5	79.1					
60	68.1 96.7		88.4	83.4					
90	68.2	96.4	85.2	83.0					

Table 4.5 Effect of Dosage - DB2

Dye concentration: 100 mg/L; Agitation time: 60 min; pH: 6; Temperature: 303K.

Contact	Percentage of Adsorption								
Time (min)	50 mg	100 mg	150 mg	200 mg	250 mg				
10	60.5	71.1	83.3	82.6	75.2				
20	62.7	75.7	91.0	87.5	76.5				
30	68.0	76.0	94.4	89.5	82.5				
40	67.4	74.0	93.1	89.5	79.8				
50	68.0	75.0	94.4	87.9	78.5				

Table 4.6 Effect of Dosage -RR152

Dye concentration: 100 mg/L; Agitation time: 30 min; pH: 6; Temperature: 303K.

Contact	Percentage of Adsorption							
Time (min)	20 mg	40 mg	60 mg	80 mg	100 mg			
3	22.58	42.30	64.84	62.86	60.61			
6	32.62	48.49	76.11	70.35	63.35			
9	35.00	55.38	83.22	77.5	71.75			
12	43.76	63.39	85.32	81.76	75.76			
15	44.72	69.16	89.32	82.84	77.84			
18	51.96	74.26	94.18	87.14	74.14			
21	51.96	74.31	94.18	86.13	74.01			
24	51.82	74.10	94.12	86.4	74.12			

Table 4.7 Effect of Dosage - Cu(II)

Metal ion concentration: 20 mg/L; Agitation time: 18 min; pH: 6; Temperature: 303K.

Figure 4.16 Effect of Dosage -DB2

Figure 4.17 Effect of Dosage - RR152

Figure 4.18 Effect of Dosage - Cu(II)

4.6 Effect of pH

The influence of pH on the removal of DB2 and RR152 from aqueous solutions is depicted in figure 4.19, where the maximum removal of dyes (98.6% -DB2 and 99.6% - RR152) had occurred at pH 2.The percentage removal of the dyes decreased slowly with rise in the initial pH of the solution from 4-10 (Table-4.8). It is obvious that at lower pH values, higher sorption had occurred, the reason probably being the positive charge of the sorbent surface, due to the protonation of functional groups present in the

activated carbon, favouring the adsorption. Another assumption could be the impulsive electrostatic attraction between the dye anions and sorption sites at acidic pH. In turn, at higher pH, greater is the availability of negatively charged sites, due to the electrostatic repulsion between dye anions and PJBAC, reflecting in the diminishing nature of sorption. Also, in alkaline pH, the number of OH⁻ ions on the adsorbent surface significantly competes with dye molecules thereby getting sorbed on carbon surface prior to the latter^{137, 138}. A similar trend was observed in the adsorption of dyes onto activated carbon derived from peanut shell¹³⁹ and papaya seeds¹⁴⁰.

The Cu(II)-PJBAC system registered higher adsorption with rise in pH upto pH 6, followed by a decline beyond, indicative of inverted parabola (Figure 4.20). Acidic solution (low pH) inhibits metal uptake because of the high concentration of H⁺ ions competing with Cu(II) ions due to the protonation of various functional groups (carboxylic and phenolic) present on the PJBAC surface.

System	Contact	Adsorbent	Percentage of adsorption					
5ystem	Time (min)	ne (min) Dose (mg) pH	pH 2	pH 4	pH 6	pH 8	pH 10	
DB2-PJBAC	60	100	98.6	97.2	96.4	76.2	62.8	
RR152-PJBAC	30	200	99.6	95.7	94.4	80.3	55.8	
Cu(II)-PJBAC	18	60	29.6	77.8	94.2	47.9	21.6	

Table 4.8 Effect of pH

Concentration: 100mg/L (DB2); 100mg/L (RR152); 20mg/L: Cu(II); Temperature: 303K.

Figure 4.19 Effect of pH - DB2&RR152

Figure 4.20 Effect of pH - Cu(II)

4.7 Effect of Temperature

A plot of three sorption systems at variable temperature environments is shown in figure 4.21. An inverse relation between the % removal and temperatures is evident from the dripping lines favoured by the listed values (Table 4.9) ranging from 96.6% to 87.9% for temperatures 303K to 333K respectively. This may be attributed to the weakening of the bonds between the dye molecules and the active sites of PJBAC at higher

temperatures¹⁴¹. Also, the increase in kinetic energy of sorbate species at higher temperatures may cause the former to unbind themselves from solid surface into the prepared aqueous solutions. The above statement is supported by Raji et.al., and Anirudhan et.al., for Hg(II) removal using saw dust¹⁴² and coconut coir pith¹⁴³. The observations made suggest that removal of DB2, RR152 and Cu(II) by PJBAC is a kinetically controlled process in an exothermic fashion.

			F	Percentage (of adsorptio	n
System	Conc. of the solution (mg/L)	Adsorbent dose (mg)	303 K	313K	323K	333K
DB2-PJBAC	100	100	96.6	89.5	89.1	87.9
RR152-PJBAC	100	150	94.7	93.8	92.6	91.7
Cu(II)-PJBAC	20	60	94.9	93.5	92.0	89.7

 Table 4.9 Effect of Temperature

Contact time: 60 min (DB2); 30 min (RR152); Cu(II): 18 min; pH: 6

Figure 4.21 Effect of Temperature

4.8 Effect of Cations/ Anions/ Co-ions

The influences of various cations/anions/co-ions on the removal of Cu(II) from aqueous solutions listed in table 4.10. A marked inhibition in % removal is observed for Mg^{2+} cation (74.7% against 95.1%) at standardized initial concentration in preference to other ions, where only appreciable influence is registered. This can be explained in terms of ionic radii, Mg^{2+} (0.72 Å) being smaller than K⁺ (1.38Å) and Na⁺(1.02Å) has greater degree of hydration, thereby the hydrated ionic radii is in the order: $Mg^{2+}>Na^+>K^+$. The smaller hydrated ionic radii of a cation lead to decrease in the swelling pressure within the PJBAC matrix, in turn exposing to greater affinity of sorbent surface towards Mg^{2+} . Similarly, chloride anion is found to inhibit Cu(II) uptake which may be due to the preferential formation of chloro complex (CuCl₂) more than that of NO₃⁻ influence. The chosen co-ions [Cr(VI) and Zn(II)] registered minimal inhibition supporting the efficiency of PJBAC in trapping Cu(II) ions amidst these environments.

% removal of Cu ²⁺ in the absence of ions	Percentage o f adsorption								
	Conc	Cations			An	ions	Co-ions		
	(mg/L)	Mg ²⁺	Na ⁺	K ⁺	Cl-	NO ₃ ²⁻	Zn ²⁺	Cr ⁶⁺	
95.1	100	74.70	82.04	88.20	79.10	87.20	92.40	89.30	
	200	72.90	80.14	87.13	77.14	86.50	91.40	87.91	
	300	71.70	78.22	86.33	74.87	84.24	90.23	86.30	
	400	69.70	75.34	84.45	73.05	82.35	89.40	85.80	
	500	67.70	72.46	82.37	70.28	80.63	88.70	84.42	

Table 4.10 Effect of Cations/ Anions/ Co-ions - Cu(II)

Metal ion concentration: 20 mg/L; contact time: 18 min; pH:6; Temperature: 303K

4.9 Desorption and Regeneration studies

Desorption and regeneration values are represented through graph and bar charts respectively (Figure 4.22-4.25). Increase in concentration of desorbing medium reflected

in the decline of desorption in all the three cases, thus indicating 0.01M HCl registered a maximum of 90% recovery.

The adsorption/desorption cycles show the amounts of DB2 and RR152 adsorbed by PJBAC and their consecutive desorption, wherein a relative diminishing factor is established. But in the case of Cu(II), the amounts adsorbed are 17.13, 11.34 and 6.87 mg/g against the amounts desorbed, being 50.93, 36.53 and 29.37 mg/g, favouring better regenerating capacity of Cu(II)- PJBAC system.

Figure 4.22 Desorption plot

Figure 4.24 Regeneration - RR152

Figure 4.23 Regeneration - DB2

Figure 4.25 Regeneration - Cu(II)

4.10 Adsorption Isotherms

Adsorption isotherm is indicative of the distribution of adsorbate molecules among the solid and liquid phases at equilibrium conditions¹⁴⁴. The results of the experimental data verified for different isotherms are discussed.

The adsorption capacities and equilibrium concentration values for DB2, RR152 and Cu(II) systems as derived from batch experimental results and their corresponding data for Langmuir, Freundlich, Tempkin and DKR plots are listed in tables 4.11-4.13. It is invariably understood that the equilibrium concentrations are found to increase with initial concentrations of the sorbates in all systems.

Conc. of dye Solutions (mg/L)	Ce	q e	Ce/q _e	log Ce	log q _e	lnCe	ln q _e	ε ² Χ10 ⁸
25	1.2	11.9	0.1008	0.0792	1.0755	0.1823	2.477	23.318
50	3.1	23.4	0.1325	0.4914	1.3692	1.1314	3.153	4.961
75	6.1	34.4	0.1773	0.7853	1.5366	1.8083	3.538	1.463
100	9.6	49.2	0.2124	0.9823	1.6551	2.2618	3.811	0.623
125	13.0	56.5	0.2301	1.1139	1.7520	2.5649	4.034	0.349
150	17.3	66.3	0.2609	1.2380	1.8215	2.8507	4.194	0.200

Table 4.11 Equilibrium/ Isothermal Data- DB2

Table 4.12 Equilibrium/Isothermal Data - RR152

Conc. of dye Solutions (mg/L)	Ce	q e	Ce/q _e	logCe	logqe	lnCe	lnq e	ε ² X10 ⁸
25	0.6	6.1	0.0984	-0.2218	0.7853	-0.5108	1.808	61.058
50	1.6	12.1	0.1321	0.2041	1.0832	0.4700	2.494	14.961
75	3.3	17.9	0.1841	0.5185	1.2535	1.1939	2.886	4.447
100	5.6	23.6	0.2374	0.7482	1.3727	1.7228	3.161	1.713
125	9.2	28.9	0.3179	0.9637	1.4615	2.2192	3.365	0.676
150	13.2	34.2	0.3858	1.1205	1.5341	2.5802	3.533	0.338

Conc. of Metal Solutions (mg/L)	Ce	q e	C _e /q _e	logCe	logqe	lnCe	lnq _e	ε ² X10 ⁸
4	0.033	3.3	0.0100	-1.4815	0.5193	-3.4112	1.196	652.6
8	0.126	6.4	0.0197	-0.8983	0.8078	-2.0683	1.860	403.6
12	0.326	9.4	0.0346	-0.4870	0.9740	-1.1215	2.243	225.0
16	0.524	12.9	0.0407	-0.2805	1.1103	-0.6459	2.556	72.3
20	1.154	17.1	0.0674	0.0621	1.2333	0.1430	2.840	24.7

 Table 4.13 Equilibrium/Isothermal Data - Cu(II)

4.10.1 Langmuir Isotherm

Langmuir plot (Ce/qe vs Ce) shown in figures 4.26 and 4.27 for dyes and Cu(II) respectively are found to be straight lines. Langmuir constants qm and b were calculated (as per the equation 11) from the slopes and intercepts of the obtained linear plots and these values listed in table 4.14 (DB2: 55.1 mg/g; RR152: 25.45 mg/g and Cu(II): 20.83 mg/g) reveal a saturated monolayer sorption. The calculated constants favour the better sorption nature of the current study than those reported for walnut and poplar woods activated carbons¹⁴⁵. The favourability of sorption characteristics for the experimentally verified systems is further supported by the calculated correlation coefficient values ($R^2 \simeq 0.99$) and separation factor $R_L(0 < R_L < 1)$.

Figure 4.26 Langmuir Plot - DB2 & RR152

Figure 4.27 Langmuir Plot - Cu(II)

4.10.2 Freundlich Isotherm

The Freundlich constants K_F and 1/n (from equation 14) corresponding sorption capacities and sorption intensities derived from the intercepts and slopes of the Freundlich plot (log q_e versus log C_e) (Figure 4.28) are given in table 4.14. Higher K_F and smaller 1/n values favour greater sorption capacity¹⁴⁶. Approximity in the R² values to unity and linearity favour lesser multilayer adsorption.

Figure 4.28 Freundlich Plot

4.10.3 Tempkin Isotherm

Tempkin isotherm takes into account the interactions between adsorbent and sorbate molecules and is based on the assumption that the free energy of sorption is a function of the surface coverage. The Tempkin constants A_T (equilibrium binding constant corresponding to the maximum binding energy) and b_T (Temkin isotherm constant) from equation (15) were derived from the intercepts and slopes of the linear plots (q_e vs ln C_e) illustrated in figure 4.29 and the calculated constants are listed in table 4.14. Correlation coefficient values pertaining the dyes and metal systems are calculated as 0.96 which indicates the applicability of this model for the systems.

Figure 4.29 Tempkin Plot

4.10.4 Dubinin–Kaganer-Radushkevich (DKR) Isotherm

Three plots (ϵ^2 vs lnq_e) are depicted in figures 4.30-4.32 based on ϵ^2 values. From the straight lines obtained, the DKR constants q_s (saturation sorption capacity), β_{DR} (constant related to mean free energy) and E (mean free energy) were calculated for the three systems using equations (16 and 17) and listed in Table 4.14. E < 10 (2.817, 4.56 and 5.36 KJ/mol) indicate the predominance of physisorption¹⁴⁷.

Figure 4.30 DKR Plot - DB2-PJBAC

Figure 4.31 DKR Plot - RR152-PJBAC

Figure 4.32 DKR Plot - Cu(II)-PJBAC

Isotherm Parameters	DB2	DB2 RR152							
L	Langmuir Isotherm								
q _m (mg / g)	55.1	25.45	20.83						
b (L/g)	0.0865	0.2222	3.6929						
\mathbf{R}^2	0.9987	0.9985	0.9964						
Freundlich Isotherm									
K _F (mg/g)	10.864	4.0045	16.44						
n	1.5674	1.0189	2.1459						
\mathbf{R}^2	0.9580	0.9880	0.9681						
ŋ	Fempkin Isotl	herm							
A _T (L / g)	1.8189	1.3106	1.1217						
b _T	126.2	279.09	657.1						
R ²	0.9487	0.9771	0.9473						
DKR Isotherm									
q _s (mg / g)	24.94	25.21	09.6						
E (kJ/mol)	2.817	4.561	5.364						
\mathbf{R}^2	0.874	0.845	0.987						

Table 4.14 Isothermal Constants

4.10.5 Comparison of Isotherm Models

Higher Isothermal constant values (q_m) exhibiting the better sorption capacity was observed in Langmuir model for the three chosen systems. The order of preference in comparison revealed Freundlich constant K_F followed by DKR constant q_s . Monolayer adsorption is also favoured by the A_T and b_T values (Tempkin Constants). This proved the better sorption capacity of PJBAC in trapping dyes/metal ion molecules where both monolayer sorption and heterogeneous surface conditions existed under the experimental conditions imbibing more than one mechanism¹⁴⁷.

4.11 Kinetic Studies

The mechanism of adsorption depends on the physical and chemical characteristics of the adsorbent as well as on the mass transfer process. The rate constants for the systems were calculated using pseudo-first-order and pseudo-second-order kinetic models suggested by Lagergren and Ho/McKay respectively and the rate controlling step was determined by intra-particle diffusion model.

4.11.1Pseudo-first-order model

The kinetic data for pseudo-first-order model are given in tables 4.15-4.17 and the corresponding linear plots are depicted in figures 4.33-4.35 for DB2, RR152 and Cu(II) systems. These plots of log (q_e-q_t) versus t resulted in a straight lines, where equilibrium adsorption capacities q_e and the first- order rate constants k_1 (from equation 18) were calculated (Table 4.18) from the intercepts and gradient of the lines, respectively¹⁴⁸.

4.11.2 Pseudo-second-order model

Tables 4.15 and 4.17 correspondingly lists out the experimental values for DB2, RR152 and Cu(II) systems. Linear plots of t/qt versus t (Figures 4.36-4.38) exhibited straight lines and q_e and k_2 (as per the equation 19) are calculated from gradient and intercepts of the lines respectively¹⁴⁹. The calculated kinetic parameters, the sum of squares of errors (SSE) (using equation 20) and the correlation coefficients are shown in table 4.18. A relatively higher value of correlation coefficients as from the plots and lower values of SSE reveal the best fit of kinetic models¹⁵⁰.

The increase in q_e with concentration may be due to the efficient utilization of sorbents due to greater driving force¹⁵¹. An increase in the initial concentration of sorbate species reduces the diffusion of them in the boundary layers, k_2 (Pseudo second order rate constant) is observed to decreases with increase in initial concentration^{152,153}. The above statements are in accordance with the research findings of Gupta¹⁵⁴ et al., and Ozgul Gercel¹⁵⁵ et al.

The correlation coefficients for pseudo-second-order model are relatively higher and the equilibrium sorption capacities determined using this model are in agreement with the experimentally determined equilibrium sorption capacities. The values of SSE are also less for pseudo-second-order model. Therefore, from the observations made the pseudo-second-order adsorption model is more suitable to describe the adsorption kinetics of the systems.

Time	50 (mg/L)		100 (m	g/L)	150 (mg/L)		
(min)	log (qe-qt)	t/qt	log (qe-qt)	t/qt	log (qe-qt)	t/qt	
10	1.504	0.313	1.820	0.151	2.015	0.097	
20	1.496	0.639	1.806	0.313	2.007	0.197	
30	1.479	0.995	1.795	0.481	1.998	0.301	
40	1.465	1.369	1.780	0.664	1.980	0.419	
50	1.443	1.801	1.763	0.863	1.963	0.545	
60	1.424	2.259	1.739	1.095	1.922	0.717	

Table 4.15 Sorption Kinetics - DB2

Adsorbent dose: 100 mg; pH: 6; Temperature: 303K

Time	50 (mg/L)		100 (m	g/L)	150 (mg/L)		
(min)	log (q _e -q _t)	t/q _t	log (q _e -q _t)	t/q _t	log (q _e -q _t)	t/q _t	
10	1.613	1.108	1.909	0.531	2.085	0.352	
15	1.604	1.523	1.906	0.773	2.078	0.492	
20	1.592	1.827	1.899	0.963	2.072	0.624	
25	1.590	2.254	1.891	1.122	2.071	0.772	
30	1.579	2.477	1.883	1.272	2.064	0.877	

 Table 4.16 Sorption Kinetics - RR152

Adsorbent dose: 150 mg; pH: 6; Temperature: 303K

Time (min)	4 (mg/L)		12 (mş	g/L)	20 (mg/L)		
	log (q _e -q _t)	t/q _t	log (q _e -q _t)	t/qt	log (q _e -q _t)	t/q _t	
3	-0.056	0.961	0.437	0.324	0.961	0.276	
6	-0.074	1.900	0.420	0.640	0.862	0.472	
9	-0.086	2.831	0.412	0.956	0.786	0.648	
12	-0.109	3.724	0.385	1.254	0.760	0.843	
15	-0.146	4.566	0.373	1.556	0.707	1.007	
18	-0.159	5.445	0.356	1.850	0.633	1.146	
21	-0.160	6.349	0.355	2.157	0.635	1.339	

Table 4.17 Sorption kinetics - Cu(II)

Adsorbent dose: 60 mg; pH: 6; Temperature: 303K

Figure 4.33 First order kinetics - DB2

Figure 4.35 First order kinetics-Cu(II)

Figure 4.37 Second order kinetics - RR152

Figure 4.34 First order kinetics-RR152

Figure 4.36 Second order kinetics-DB2

Figure 4.38 Second order kinetics -Cu(II)

Conc. of Duo/		Pseu	do-first-o	order kin	etics	Pseudo-second-order kinetics				
Metal Ions (mg/L)	q _e exp. (mg/g)	q _e cal. (mg/g)	k ₁ ×10 ⁻³ (min ⁻¹)	R ²	SSE	q _e cal. (mg/g)	k ₂ ×10 ⁻⁴ (g/ mg min)	R ²	SSE	
DB2										
50	23.4	12.92	0.1785	0.9801	6.30	25.74	0.004	0.9947	2.98	
100	55.2	26.35	0.0875	0.9781	8.97	53.42	0.002	0.9913	4.72	
150	66.3	39.13	0.0589	0.8949	9.30	72.03	0.001	0.9875	7.32	
RR152										
50	12.11	7.521	0.3062	0.7062	5.17	14.49	0.011	0.9913	2.18	
100	23.59	15.94	0.144	0.9621	6.27	27.77	0.009	0.9893	4.42	
150	34.21	23.56	0.098	0.9347	11.13	38.46	0.006	0.9977	6.32	
				Cu(II)						
4	3.367	2.701	4.606	0.9221	1.61	3.306	0.824	0.9991	0.70	
12	9.901	4.602	6.429	0.9321	3.80	9.419	0.375	0.9990	2.04	
20	17.24	8.636	7.895	0.9143	6.27	17.11	0.029	0.9987	3.13	

Table 4.18 Comparison of Pseudo-first-order/ Pseudo-Second-order Kinetic Constants

4.11.3 Comparison of Kinetic Models

The calculated and experimentally determined q_e values are significantly different from each other for pseudo first order, therefore the values are beyond comparison. But in the case of pseudo second order kinetic model the equilibrium sorption capacities (q_e) are in good agreement with experimentally determined q_e values, hence are comparable. Thence, pseudo second order kinetic model describes the systems in a better fashion. Similar results were observed for the adsorption studies of direct dyes onto activated carbons derived from saw dust¹⁵⁶ and palm ash¹⁵⁷.

4.11.4 Elovich Model

Elovich plots between (qt and ln t) for the adsorption systems [DB2, RR152 and Cu(II)] at various initial concentrations are shown in figure 4.39. Elovich constants α and β corresponding to the initial adsorption rate and desorption constant were derived from the slopes and intercepts of the respective straight lines (Table 4.19 and 4.20). The adsorption rate (α) increases with initial dyes/metal ion concentrations from 25 to 150 mg/L and 4 to 20 mg/L respectively. Similarly, diminished β values at higher initial concentrations reveal the decline in the number of active sites available for the sorption process, thereby decline in the extent of surface coverage.

Conc. of Dye	D	B2 – PJBA	C	RR152 – PJBAC			
Solution (mg/L)	α	β	R ²	α	β	R ²	
25	5.936	1.354	0.8791	0.3582	1.8093	0.8708	
50	10.53	0.936	0.9688	2.6978	1.7027	0.9518	
75	14.98	0.410	0.9800	4.9519	1.6573	0.9475	
100	19.15	0.869	0.9672	8.1680	1.3765	0.9913	
125	22.40	0.213	0.8508	14.100	0.9741	0.8091	
150	22.75	0.797	0.8134	16.991	0.9586	0.9645	

Table 4.19 Elovich Constants - DB2 & RR152

 α : (mg/g min), β : (g/mg)

Table 4.20	Elovich	Constants -	Cu(II)
-------------------	----------------	--------------------	--------

Conc. of Metal	Cu(II)					
Solution (mg/L)	α	β	R ²			
4	2.985	1.103	0.921			
8	6.426	0.943	0.908			
12	8.935	0.756	0.946			
16	7.609	0.413	0.964			
20	8.343	0.419	0.983			

 α : (mg/g min), β : (g/mg)

Figure 4.39 Elovich Plot

4.11.5 Intraparticle Diffusion Method

Two distinct phases obvious from the intraparticle diffusion plots (q_t versus $t^{1/2}$) are depicted in figures 4.40-4.42 which corresponds to surface sorption followed by intraparticle diffusion¹⁵⁸. The first phase of the plot indicates a boundary layer diffusion effect while the second linear portion is due to the intraparticle or pore diffusion. The intraparticle diffusion parameter (K_i) and the boundary layer thickness (C) were calculated from the slopes and intercepts of the plots respectively (Table 4.21 and 4.22). The larger the intercept, the greater will be the contribution of the surface sorption towards the rate limiting step. The rate constants of intraparticle diffusion mechanism are found to increase with aqueous solutions concentrations.

Conc of Duo		DB2		RR152			
Solution mg/L	K _i (mg/g min ^{1/2})	С	R ²	K _i (mg/g min ^{1/2})	С	R ²	
25	8.807	0.101	0.9907	2.87	0.206	0.9741	
50	16.657	0.221	0.9864	7.64	0.296	0.9663	
75	24.220	0.329	0.9877	11.46	0.418	0.9632	
100	31.430	0.438	0.9859	16.00	0.496	0.9811	
125	37.350	0.547	0.8975	21.11	0.461	0.7063	
150	40.703	0.763	0.9150	26.09	0.540	0.9591	

 Table 4.21 Intraparticle Diffusion Constants - DB2 & RR152

Table 4.22 Intraparticle Diffusion Constants - Cu(II)

Come of Madel Low on off	Cu(II) – PJBAC			
Conc of Metal Ion mg/L	K _i (mg/g min ^{1/2})	С	R ²	
4	1.930	0.157	0.358	
8	4.029	0.296	0.312	
12	5.742	0.458	0.348	
16	6.052	0.734	0.544	
20	7.018	0.935	0.590	

Model - RR152

Figure 4.42 Intraparticle Diffusion Model -Cu(II)

4.12 Thermodynamic and Equilibrium Studies

Van't Hoff's plot (ln K_C vs. 1/T) as depicted in figure.4.43 furnish the thermodynamic constant values ΔH° and ΔS° from the slopes and intercepts. Free energy change (ΔG°) was calculated using equation (25). The positive values of ΔS° and negative values of ΔH° and ΔG° , evident from table 4.28 indicate the spontaneity, exothermicity and better feasibility of the systems. The negative values of ΔH° suggested the exothermic nature of the process and lower ΔH° values (<10kJ/mol) indicates physical adsorption to be a predominant mechanism in the adsorption process, favoured by the decrease in sorbate removal at higher temperatures¹⁵⁹. Similar trend was observed for the adsorption of Crystal Violet onto NaOH-modified rice husk¹⁶⁰.

Temp (K)	DB2			RR152			Cu(II)		
	-ΔG° x 10 ⁻³ kJ/mol	ΔH° kJ/mol	ΔS° kJ/mol	-ΔG° x 10 ⁻³ kJ/mol	ΔH° kJ/mol	ΔS° kJ/mol	-ΔG° x 10 ⁻³ kJ/mol	ΔH° kJ/mol	ΔS° kJ/mol
303	0.2890	- 0.968	1.785	0.3612	-1.422	3.239	0.6577	-6.115	17.61
313	0.3236			0.3494			0.4979		
323	0.3572			0.3100			0.3304		
333	0.3969			0.2839			0.2278		

Table 4.23	Thermody	namic	Constants
------------	----------	-------	-----------

Figure 4.43 Vant Hoff's Plot