Chapter VII

Comparison of Sorption \mathcal{A} bility and
Preferential Order of Adsorption

An insightful comparison amongst the identified biomaterials to trap the divalent metal ions viz., $\mathrm{Pb}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$, along with the preferential order of chosen metal ions to get chelated are exemplified in this chapter.

Sorbent characteristics viz., surface area, mean pore diameter and constants viz., q_{e} (amount adsorbed), q_{m} (monolayer adsorption capacity) and $\Delta \mathrm{S}^{\circ}$ (change in entropy) for the nine systems are listed in table 7.1.

Table 7.1 Comparison of Parameters and Constants Values

Parameters	TPJB			TTIH			TGH		
Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	3.261			0.325			3.633		
Mean Pore Diameter (nm)	56.60			52.33			64.93		
Constants	Pb (II)	Cd (II)	Ni (II)	Pb (II)	Cd (II)	Ni (II)	Pb (II)	Cd (II)	Ni (II)
$\mathrm{qe}_{\mathrm{e}}(\mathrm{mg} / \mathrm{g})$	14.22	13.68	12.52	13.40	12.82	12.41	56.89	22.22	20.93
$\mathrm{q}_{\mathrm{m}}(\mathrm{mg} / \mathrm{g})$	14.78	13.92	13.63	14.10	12.87	12.34	56.02	21.34	18.82
$\Delta S^{\circ}(\mathrm{kJ} / \mathrm{mol} \mathrm{K})$	41.30	21.88	8.95	19.44	11.29	5.40	46.05	22.78	20.59

The highlighted values for $\mathrm{Pb}(\mathrm{II})$ - TGH system reveal the better sorption capacity and high order of randomness in preference to other sorbents/ sorbates. This suggests that TGH is best amongst the identified materials and $\mathrm{Pb}(\mathrm{II})$ is preferentially adsorbed over other divalent ions. This is supported by the retention capacity of TGH (5 cycles of adsorption/ desorption) against 3 cycles in case of TPJB and TTIH. Thence, the orders are: $\mathrm{TGH}>\mathrm{TPJB}>\mathrm{TTIH} ; \mathrm{Pb}(\mathrm{II})>\mathrm{Cd}(\mathrm{II})>\mathrm{Ni}($ II $)$ ions.

Pb (II) ion, being the better sorbed, is substantiated by the higher hydration enthalpy $\left(\Delta \mathrm{H}_{\mathrm{h}}{ }^{\circ}\right)^{169}$ and diffusion coefficient ${ }^{170}$ values (Table 7.2). Similar observations were reported by Muhammed H Al-Malack ${ }^{62}$ et al.

Table 7.2 Hydration Enthalpy and Diffusion Coefficient Values

Metal Ions	Hydration Enthalpy $\Delta \mathbf{H}_{\mathbf{h}}{ }^{\circ}$ $(\mathbf{K J} / \mathbf{m o l})$	Diffusion Coefficients $\left(\mathbf{x} \mathbf{1 0}^{-\mathbf{1 0}} \mathbf{m}^{\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}\right)$
$\mathrm{Pb}(\mathrm{II})$	$\mathbf{- 1 4 8 1}$	$\mathbf{9 . 4 5}$
$\mathrm{Cd}(\mathrm{II})$	-1807	7.20
$\mathrm{Ni}(\mathrm{II})$	-2105	7.14

