Acknowledgement

ACKNOWLEDGEMENT

First and foremost, I wish to thank '**The Almighty God**' who bestowed me with blessings, all the favorable circumstances and enabled me to complete my research work. Secondly, my profound gratitude goes to my Father **Mr. N. Sikamani** and Mother **Ms. S. Rajamani**, for their sacred blessings, which has always been a source of inspiration in accomplishing this task, I dedicate this work to them.

I take this opportunity to express my sincere gratitude to the Management and **Dr. N. Yesodha Devi,** Secretary, PSGR Krishnammal College for Women, for granting me permission to take up the research work in the Department of Chemistry.

I wish to express my deepest sense of gratitude to **Dr. S. Nirmala, MBA., M.Phil., Ph.D.,** Principal, PSGR Krishnammal College for Women, for support and encouragement.

I heartily owe my sincere thanks to **Dr. A. Shamitha Begum, M.Sc., M.Phil., Ph.D.,** Dean, Academic Affairs and **Dr. K. Parameswari, M.Sc., M.Phil., Ph.D**., Controller of Examinations, PSGR Krishnammal College for Women, for their valuable support and guidance.

I profusely thank **Dr. Subramanian Chitra, M.Sc., M.Phil., Ph.D.,** Associate Professor and Head, Department of Chemistry, PSGR Krishnammal College for Women, for the constant support and affirmative suggestions.

It gives me immense pleasure to place on record my deep sense of gratitude and respect to my supervisor, **Dr. N. Muthulakshmi Andal**, Assistant Professor, Department of Chemistry, PSGR Krishnammal College for Women, for her invaluable guidance in making the concepts clear, insightful suggestions, encouragement and providing the appropriate contents during my research work. Under her supervision, I developed the curiosity to explore new things. Without her constant support, this dissertation would have been a distant dream.

I extend my thanks to **Mr. N. S. Chakravarthy**, CEO, Visaka Paints and Chemicals, Kariyampalayam, Coimbatore for the permission to collect the industrial effluents and execute field level analysis.

My sincere thanks to **Teaching Faculty** of the Chemistry Department, PSGR Krishnammal College for Women, for their encouragement during my research.

I owe my sincere thanks to **Ms. N. Shyamala Devi**, Assistant Professor, Department of Chemistry, PSGR Krishnammal College for Women, **Ms. K. S. Thangamani**, Assistant Professor, Department of Chemistry, Dr. NGP Institute of Technology, **Dr. S. Charulatha**, Assistant Professor, Department of Chemistry, PSGR Krishnammal College for Women, for the timely help rendered during the research period.

I express my deep sense of gratitude and thanks to Ms. J. Anuradha/ Ms. K. Vivithabharathi, with whom I shared a good environment in the work place and I admire their valuable support, meticulous care and encouragement. I am indebted to Ms. G. Preethi/ Ms. J. Reshma Angelin and my fellow researchers in the Chemistry Department, PSGR Krishnammal College for Women, for their moral support.

My thanks to non-teaching staff members of Chemistry Department, PSGR Krishnammal College for Women, for their help and laboratory assistance.

I acknowledge the services provided by **IISc Banglore, Cochin, Karunya University, PSG Institute of Advanced Studies, Government College of Technology, Coimbatore** and **Department of Physics,** PSGR Krishnammal College for Women, in recording the characterization studies.

I thank **Mr. S. Sivaselvam**, Research Scholar, Department of Nanoscience and Technology, Bharathiar University and **Mr. Leggins Abraham**, Research Scholar, Department of Nanoscience, Sri Ramakrishna Engineering College, for their support in recording characterization studies.

I express my gratitude to my dear sister **Ms. S. Hemalatha**, for her untiring support, tolerance and fortifying words during my research work. Words will never equate the endurances and encouragement given by my husband **Mr. V. Dinesh** and my in laws for their affection, prayers and good wishes.

(N. S. Gayathri)

Contents

CONTENTS

CHAPTER NO.	TITLE	PAGE NO.
Ι	Introduction	1
	1.1 Importance of Water	1
	1.2 Water Quality Parameters/ Assessment	2
	1.3 Water Pollution	2
	1.4 Heavy Metal Pollution	5
	1.5 Heavy Metals Causing Pollution	7
	1.6 Treatment Strategies for Heavy Metal Ion Removal	11
	1.7 Review of Literature	18
II	Aim and Scope	23
III	Experimental Section	25
	3.1 Selection of Plant/ Animal Based Raw Materials	25
	3.2 Collection and Categorization of Raw Materials	25
	3.3 Choice of Heavy Metals	27
	3.4 Pilot Studies	27
	3.5 Modifications of the Adsorbents	27
	3.6 Characterization Studies	28
	3.7 Characterization Methods	31
	3.8 Preparation of Adsorbate Solutions	33
	3.9 Batch Mode Adsorption Studies	33
	3.10 SPSS Software Analysis	35
	3.11 Column Experiments	35
	3.12 Effluent Analysis	36
	3.13 Adsorption Isotherms	37
	3.14 Adsorption Kinetics	39
	3.15 Activation Parameters	42

CHAPTER NO.	TITLE	PAGE NO.
IV	Adsorption Studies using TPJB	43
	4.1 Microscopic Studies	43
	4.2 BET and BJH Analyses	43
	4.3 TPJB – Characterization	45
	4.4 SEM and EDAX Analyses	47
	4.5 FTIR Spectral Studies	49
	4.6 Batch Equilibration Experiments	50
	4.7 Adsorption Isotherms	57
	4.8 Adsorption Kinetics	61
	4.9 Adsorption Dynamics	66
	4.10 Effect of TPJB on Industrial Effluents	67
V	Adsorption Studies using TTIH	68
	5.1 Microscopic, BET and BJH Analyses	68
	5.2 TTIH – Characterization	69
	5.3 SEM and EDAX Analyses	70
	5.4 FTIR Spectral Studies	72
	5.5 Batch Equilibration Experiments	73
	5.6 Adsorption Isotherms	78
	5.7 Adsorption Kinetics	83
	5.8 Adsorption Dynamics	87
	5.9 Effect of TTIH on Industrial Effluents	88
VI	Adsorption Studies using TGH	90
	6.1 TGH- Characterization	90
	6.2 SEM and EDAX Analyses	92
	6.3 FTIR Spectral Studies	94
	6.4 Batch Equilibration Experiments	95

CHAPTER NO.	TITLE	PAGE NO.
	6.5 Adsorption Isotherms	99
	6.6 Adsorption Kinetics	103
	6.7 Adsorption Dynamics	108
	6.8 Effect of TGH on Industrial Effluents	109
	6.9 SPSS Software Analysis	109
VII	Comparison of Sorption Ability and Preferential Order of Adsorption	113
VIII	Adsorption Studies using Nano/ Magnetic Nanocomposites	115
	8.1 Preparation of Nanomaterials	115
	8.2 TG/ DTA Analyses	116
	8.3 Batch Studies of NTPJB and NTGH	117
	8.4 Synthesis of Magnetic Nanocomposites	118
	8.5 Characterization of TGH - C1, C2 and C3	120
	8.6 Batch Studies using TGH - C1, C2 and C3	124
IX	Column Experiments	128
	9.1 Packing of Fixed Bed Columns	128
	9.2 Short Term Analysis	129
	9.3 Long Term Analysis	129
	9.4 Column Scale-up Experiment	132
	9.5 Field Study: Pre-Scaling setup	132
	9.6 Implementation of FRP Column at Industry	133
	9.7 Application of Pb(II) Enriched TGH as Fertilizer	135
	9.8 Metal Bio-accumulation Studies	138
Χ	Conclusion	139
	Bibliography	
	Appendix	
	Publications	

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
	Introduction	
1.1	Significant Anthropogenic Sources of Heavy Metal Pollution	7
1.2	Permissible Limits of Various Toxic Heavy Metals	10
	Experimental Section	
3.1	Sorption of Heavy Metal Ions by Raw Materials	27
3.2	Composition of Synthetic Solutions [Cd(II) and Ni(II)]	36
	Adsorption Studies using TPJB	
4.1	Physicochemical Characterization	46
4.1 a	Characteristics Comparison with Reported Literature	47
4.2	Effect of Particle Size	51
4.3	Effect of Initial Concentration and Agitation Time	52
4.4	Effect of pH	54
4.5	Effect of Cations, Anions and Co-ions	55
4.6	Effect of Temperature	55
4.7	Desorption	56
4.8	Equilibrium Concentrations	57
4.9	Isothermal Constants	58
4.10	Equilibrium Parameter (R _L)	59
4.11	Pseudo – First- Order/ Pseudo- Second - Order Kinetics	62
4.12	Comparison of Pseudo First/ Pseudo Second order Kinetics Constants	62
4.13	Elovich Constants	64
4.14	Intraparticle Diffusion Constants	65
4.15	Thermodynamic Constants	66
	Adsorption Studies using TTIH	
5.1	Physiochemical Characterization	70

TABLE NO.	TITLE	PAGE NO.
5.2	Effect of Particle Size	74
5.3	Effect of Cations, Anions and Co-ions	76
5.4	Effect of Temperature	77
5.5	Equilibrium Concentrations	78
5.6	Isothermal Constants	79
5.7	Equilibrium Parameters (RL)	81
5.8	Pseudo-First-Order/ Pseudo- Second –Order Kinetics	83
5.9	Comparison of Pseudo- First order/ Pseudo-Second-Order Kinetic Constants	84
5.10	Elovich Constants	86
5.11	Intraparticle Diffusion Constants	87
5.12	Thermodynamic Constants	88
	Adsorption Studies using TGH	
6.1	Physiochemical Characterization	92
6.2	Effect of Particle Size	95
6.3	Effect of Initial Concentration and Agitation Time	96
6.4	Effect of Cations, Anions and Co-ions	98
6.5	Effect of Temperature	98
6.6	Equilibrium Concentrations	99
6.7	Isothermal Constants	100
6.8	Equilibrium Parameter (R _L)	102
6.9	Pseudo- First-Order/ Pseudo- Second-Order Kinetics	104
6.10	Comparison of Pseudo- First-Order/ Pseudo-Second Order Kinetic Constants	104
6.11	Elovich Constants	107
6.12	Intraparticle Diffusion Constants	108
6.13	Thermodynamic Constants	109
6.14(a)	Statistical Analyses – TPJB	110

TABLE NO.	TITLE	PAGE NO.
6.14(b)	Statistical Analyses – TTIH	111
6.14(c)	Statistical Analyses – TTIH	112
VII	Comparison of Sorption Ability and Preferential Order of Adsorption	
7.1	Comparison of Parameters and Constants Values	113
7.2	Hydration and Diffusion Coefficient Values	114
VIII	Adsorption Studies using Nano/ Magnetic Nanocomposites	
8.1	Effect of NTPJB/ NTGH on Aqueous Solutions	117
8.2	Effect of NTPJB/ NTGH on Effluent/ Synthetic Solutions	118
8.3	VSM Measurements	120
8.4	Effect of Magnetic Nanocomposites - Aqueous Solutions	125
8.5	Effect of Magnetic Nanocomposites - Effluent/Synthetic Solutions	126
IX	Column Experiments	
9.1	Desorption/ Regeneration Studies – Long Term Analyses	131

List of Figures

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
	Introduction	
1.1	Point Source	5
1.2	Non- Point Source	5
1.3	Adsorption Mechanism	15
	Experimental Section	
3.1	Atomic Absorption Spectrophotometer	34
	Adsorption Studies using TPJB	
4.1	Microscopic View	43
4.2	BET Plot	44
4.3	BJH Plot	44
4.4	Adsorption/ Desorption Plot	44
4.5	SEM: PJB	48
4.6	SEM: TPJB	48
4.7	SEM: Pb(II) –TPJB	48
4.8	SEM: Cd(II) –TPJB	48
4.9	SEM: Ni(II) – TPJB	48
4.10	EDAX: TPJB	49
4.11	EDAX: Pb(II) – TPJB	49
4.12	EDAX: Cd(II) –TPJB	49
4.13	EDAX: Ni(II) – TPJB	49
4.14	FTIR Spectra	50
4.15	Effect of Particle Size	51
4.16	Effect of Initial Concentration and Agitation Time- Pb(II)	53
4.17	Effect of Initial Concentration and Agitation Time- Cd(II)	53
4.18	Effect of Initial Concentration and Agitation Time- Ni(II)	53
4.19	Effect of Adsorbent Dose	54

FIGURE NO.	TITLE	PAGE NO.
4.20	Regeneration – TPJB	56
4.21	Langmuir Isotherm Model	59
4.22	Freundlich Isotherm Model	60
4.23	Tempkin Isotherm Model	60
4.24	Dubinin-Kaganer-Radushkevich Isotherm Model	61
4.25	Pseudo- First- Order Kinetics	63
4.26	Pseudo-Second- Order Kinetics	63
4.27	Elovich Model	64
4.28	Intraparticle Diffusion Model	65
4.29	Vant Hoff's Plot	66
4.30	Effect of TPJB on Effluent/ Synthetic Solutions	67
	Adsorption Studies using TTIH	
5.1	Microscopic View	68
5.2	BET Plot	68
5.3	BJH Plot	69
5.4	Adsorption/ Desorption Plot	69
5.5	SEM: TIH	71
5.6	SEM: TTIH	71
5.7	SEM: Pb(II) – TTIH	71
5.8	SEM: Cd(II) - TTIH	71
5.9	SEM: Ni(II) – TTIH	71
5.10	EDAX: TPJB	72
5.11	EDAX: Pb(II) - TTIH	72
5.12	EDAX: Cd(II) - TTIH	72
5.13	EDAX: Ni(II) -TTIH	72
5.14	FTIR Spectra	73
5.15	Effect of Initial Concentration and Agitation Time- Pb(II)	74
5.16	Effect of Initial Concentration and Agitation Time- Cd(II)	74

FIGURE NO.	TITLE	PAGE NO.
5.17	Effect of Initial Concentration and Agitation Time- Ni(II)	75
5.18	Effect of Adsorbent Dose	75
5.19	Effect of pH	76
5.20	Desorption-TTIH	77
5.21	Regeneration - TTIH	78
5.22	Langmuir Isotherm Model	80
5.23	Freundlich Isotherm Model	81
5.24	Tempkin Isotherm Model	82
5.25	Dubinin-Kaganer-Radushkevich Isotherm Model	82
5.26	Pseudo- First- Order Kinetics	85
5.27	Pseudo -Second -Order Kinetics	85
5.28	Elovich Model	86
5.29	Intraparticle Diffusion Model	87
5.30	Vant Hoff's Plot	88
5.31	Effect of TTIH on Effluent/ Synthetic Solutions	89
	Adsorption Studies using TGH	
6.1	Microscopic View	90
6.2	BET Plot	91
6.3	BJH Plot	91
6.4	Adsorption/ Desorption Plot	91
6.5	SEM: GH	93
6.6	SEM: TGH	93
6.7	SEM: Pb(II) –TGH	93
6.8	SEM: Cd(II) – TGH	93
6.9	SEM: Ni(II) – TGH	93
6.10	EDAX: TGH	94
6.11	EDAX: Pb(II) – TGH	94
6.12	EDAX: Cd(II) - TGH	94

FIGURE NO.	TITLE	PAGE NO.
6.13	EDAX: Ni(II) - TTIH	94
6.14	FTIR Spectra	95
6.15	Effect of Adsorbent Dose	97
6.16	Effect of pH	97
6.17	Regeneration - TGH	99
6.18	Langmuir Isotherm Model	101
6.19	Freundlich Isotherm Model	102
6.20	Tempkin Isotherm Model	103
6.21	Dubinin-Kaganer-Radushkevich Isotherm Model	103
6.22	Pseudo- First- Order Kinetics- Pb(II)	105
6.23	Pseudo-First -Order Kinetics- Cd(II) and Ni(II)	105
6.24	Pseudo –Second-Order Kinetics	106
6.25	Elovich Model-Pb(II)	106
6.26	Elovich Model- Cd(II) and Ni(II)	106
6.27	Intraparticle Diffusion Model – Pb(II)	107
6.28	Intraparticle Diffusion Model –Cu(II) and Ni(II)	107
6.29	Vant Hoff's Plot	108
6.30	Effect of TGH on Effluents/ Synthetic Solutions	109
	Adsorption Studies using Nano/ Magnetic Nanocomposites	
8.1	Planetary Ball Miller	115
8.2	Jar with Sorbent and Tungsten Carbide Balls	115
8.3	3-D Surface Topography of NTPJB	116
8.4	Histogram of NTPJB	116
8.5	3-D Surface Topography of NTGH	116
8.6	Histogram of NTGH	116
8.7	TGA/ DTA Curve – NTGH	117
8.8	VSM Analysis of Magnetic Nanocomposites	121
8.9	XRD Spectra of Magnetic Composites	122

FIGURE NO.	TITLE	PAGE NO.
8.10	SEM: TGH – C1	123
8.11	SEM: TGH – C2	123
8.12	SEM: TGH – C3	123
8.13	EDAX: TGH – C1	123
8.14	EDAX: TGH – C2	123
8.15	EDAX: TGH – C3	123
8.16	FTIR Spectra	124
8.17	Effect of Dosage – Aqueous Solutions	125
8.18	Effect of Dosage – Effluent/ Synthetic Solutions	125
8.19	Particle Size – TGH –C1	127
8.20	Particle Size – TGH –C2	127
8.21	Particle Size – TGH –C3	127
	Column Experiments	
9.1	Column Setup	128
9.2	Short Term Analysis	129
9.3	Long Term Analysis	130
9.4	Column Scale Set-up	132

List of Abbreviations and Notations

LIST OF ABBREVIATIONS AND NOTATIONS

- PJB *Prosopis juliflora* Bark
- TIH Tamarindus indica Hull
- GH Goat Hoofs
- SEM Scanning Electron Microscope
- BET Bruner Emmett Teller
- BJH Barrett Joyner Hammett
- FT-IR Fourier Transform Infra Red Spectrophotometer
- EDAX Energy Dispersive X-ray Spectrometer
- AFM Atomic Force Microscope
- AAS Atomic Absorption Spectrophotometer
- VSM Vibrating Sample Magnetometer
- M_s Saturation Magnetization
- XRD X-Ray Diffraction
- TGA Thermo Gravimetric Analysis
- DTA Differential Thermal Analysis
- ZPA Zeta- Potential Analyzer
- PSA Particle Size Analyzer
- Conc. Concentration
- pH_{zpc} pH at which the surface charge of the adsorbent is zero
 - qe Amount of metal ions adsorbed per gram of the adsorbent(mg/g)
 - C_i Initial metal ion concentration (mg/ L)
 - Ce Equilibrium metal ion concentration in solution (mg/L)
 - R² Correlation Coefficient

q_{e}	Amount of metal ions adsorbed per gram of adsorbent at equilibrium (mg/g)
qt	Amount of metal ions adsorbed per gram of adsorbent at time 't' (mg/g)
$q_{\rm m}$	Maximum monolayer adsorption capacity (mg/g)
В	Langmuir Adsorption Constant
$K_{\rm F}$	Freundlich Adsorption Capacity (mg/g)
Ν	Freundlich Isotherm Constant
AT	Tempkin Equilibrium Binding Constant
bT	Tempkin Heat of Adsorption
R	Gas Constant (8.314 J/mol K)
β_{DR}	Mean free energy of sorption per mole of adsorbate (mol^2/J^2)
E	Polanyi Potential
3	Mean Free Energy (kJ/mol)
\mathbf{k}_1	Pseudo-First-Order Adsorption Rate Constant (min ⁻¹)
k2	Pseudo-Second-Order Adsorption Rate Constant (g/mg min)
SSE	Sum of Error Squares
α	Elovich Initial Adsorption Rate (mg/g min)
β	Elovich Adsorption Constant (g/mg)
Ki	Intraparticle Rate Constant (g/mg min ^{1/2})
ΔG°	Gibb's free energy change of adsorption (kJ/mol)
ΔH°	Enthalpy change of adsorption (kJ/mol)
ΔS°	Entropy change of adsorption (J/mol K)

List of Instruments / Equipments

LIST OF INSTRUMENTS / EQUIPMENTS USED FOR VARIOUS STUDIES

- 1. Atomic Absorption Spectrophotometer
- 2. Atomic Force Microscope
- 3. BET Surface Analyzer
- 4. CHNS Analyzer
- 5. Scanning Electron Microscope
- 6. Energy Dispersive X- ray Spectrometer
- 7. Fourier Transform Infrared Spectrophotometer
- 8. Muffle Furnace
- 9. Ocular Micrometer
- 10. X-ray Diffractometer
- 11. Vibrating Sample Magnetometer
- 12. Particle Size Analyzer
- 13. Zeta- Potential Analyzer
- 14. Thermo Gravimetric Differential Thermal Analyzer
- 15. Thermostat Controlled Mechanical Shaker
- 16. Digital pH Meter

ABSTRACT

Metal pollution of water and its sources has been receiving considerable attention in recent times due to the increasing amounts of industrial effluents discharged into the environment. Metals like lead, cadmium, nickel, copper, chromium and zinc in their common oxidation states are declared toxicants and reported to cause several physiological disorders while exceeding their permissible limits. Several reclamation technologies have been developed to reduce their concentrations. A number of low-cost and indigenous materials are identified as successful adsorbents, to remove metal ions through the process of adsorption. In this context, treated adsorbents prepared from Prosopis juliflora Bark (TPJB), Tamarindus indica Hull (TTIH) and Goat Hoofs (TGH) are employed to reduce the concentrations of three selected metal ions, since they pose better chelating nature than their respective bare ones. Adsorption of Pb(II), Cd(II), Ni(II) ions by TPJB, TTIH, TGH have been investigated through batch and column operations. The characteristics of treated materials are examined using Atomic Absorption Spectrophotometer (AAS) and the adsorption processes are confirmed by BET/ BJH, SEM, EDAX and FT-IR analyses. The optimum conditions for achieving maximum adsorption of metal ions are established. The factors which influence the reaction rates and the dynamics of adsorption are studied in order to verify the sorption behavior. The nature of adsorption and kinetic behaviour are explained by different isotherm and kinetic models. Nano materials and magnetic nanocomposites are synthesized, characterized using AFM, XRD, TG- DTA, VSM, Zeta-Potential and Particle size analyzer and tested for their sorption nature. An assessment of the comparative ability of the three adsorbents along with the order of preferential adsorption among the metal ions is made on the basis of the valid conclusions drawn from the experimental results. The exhausted material is used as fertilizer to grow seeds. The efficiencies of the adsorbents are scaled up to industrial effluents, treatment and extended to field levels through installation of a prototype device.