IN THE NAME OF GOD, THE MOST BENEFICIAL AND THE MOST MERCIFUL...

I acknowledge my sincere thanks to the management and the Principal, **Dr. (Mrs) S. Nirmala,** MBA, M.Phil., Ph.D., for permitting and providing me necessary facilities to carry out my research in this esteemed institution.

I express my heartfelt, sincere and deepest gratitude to my guide Dr. (Mrs.) Subramanian Chitra, M.Sc., M.Phil., Ph.D., Associate professor and Head, Department of Chemistry, PSGR Krishnammal college for women, Coimbatore for her invaluable guidance, constant encouragement, affectionate attitude, understanding and parental care throughout the course of my study. Her own zeal for perfection, passion, unflinching courage and conviction has always inspired me to do more. Her technical suggestions and constructive advice has made me to proceed in a right track. Most importantly, I thank her for the belief she had on me which made me to develop research ideas and skills. Certainly, her expertise supervision has laid a foundation for future success with a new dimension for research. Without her continual inspiration and support, it would not have been possible to make this distant dream true.

I take this opportunity to thank the entire **Teaching faculty members** of the department of chemistry, PSGR Krishnammal college for women, Coimbatore for their support rendered during the period of my study.

I gratefully acknowledge the financial assistance provided by GRG trust under **GRG major project** which has undoubtedly helped me a lot to go ahead.

I extend my thanks to **Dr. S. Selvasekarapandian**, Director, Materials Research Centre, Coimbatore for providing me well equipped laboratory with a platform of suggestions and ideas.

A word of special thanks to **Mrs. G. Nirmala Devi,** M.Sc., M.Phil., Assistant professor, Department of Chemistry, SNS college of arts and science, Coimbatore for her moral support and encouragement.

I am much pleased to thank my research colleagues **Dr. P. Sounthari, Dr. J. Saranya, Dr. N. Anusuya, Ms. D. Mahalakshmi** and **Mrs. R. Anitha** who helped me in difficult times and lended their hands in framing this thesis.

I specially thank all the **Research scholars** of the department of chemistry for their kind co-operation and timely help.

I would like to convey my thanks to the **non-teaching staffs** of the department of Chemistry, who has helped me in all the stages of work.

Finally, I acknowledge the people who mean a lot to me, **my parents** and **my in-laws** for showing faith in me and giving liberty to choose what I desire. I always bow my head for their selfless love, pain and sacrifice they did to shape my life.

I owe my thanks to a very special person, my husband, **Mr. N. Mithun** for his continued unfailing support and understanding during my pursuit of Ph.D. degree. His moral support at all times has helped me to make things perspective. I greatly value his contribution and deeply appreciate his belief on me. I appreciate my son, **M. Nihal** for abiding my ignorance and the patience he showed during this journey. I am always grateful to both of them.

Last but not the least, I would like to thank all the good hearted persons whom I came across in my research carrier to develop me as what I am today.

C. NUSRATH UNNISA

ABSTRACT

The present thesis aims at describing the corrosion behaviour of metal samples under the influence of acid and its possible protective strategy. Corrosion, an unavoidable process accompanied with huge economical loss has paved a platform to identify suitable research problem.

To commence with, a series of linear aliphatic and aromatic polyesters were synthesised and structurally characterised by FT-IR, ¹H-NMR and ¹³C-NMR studies. TGA and DSC techniques were adopted to study its thermal response followed by its evaluation in protecting the mild steel in 0.5 M H₂SO₄. Moderate inhibition efficiency of aliphatic polyesters was enhanced by adopting a green approach, where nano metal oxides were dispersed using Persia Americana. Selected inhibitors were tested for their inhibitive action in 1 M HCl and 0.3 M H₃PO₄ in addition to 0.5 M H₂SO₄ and the results were compared. Inhibition under chloride induced medium was investigated using selected inhibitors in presence of simulated concrete pore solution. Studies adopted to protect the metals was assessed by mass loss method, electrochemical impedance spectroscopy and potentiodynamic polarisation technique. Methods used were in good agreement with each other with an end result of mitigating corrosion. To strengthen the results, morphological studies were carried out using XRD, SEM, EDS, AFM and XPS analysis. Additionally, the degradation behaviour of Ti-6Al-4V alloy in simulated body fluid medium was also monitored using electrochemical techniques along with surface studies. Attempts made and discussed in the above mentioned areas are elaborated in Part-A of this thesis.

Part-B of this thesis explores the application of synthesised polyester as electrolyte in energy storage device using solution casting technique with a base of poly vinyl alcohol and dopant. Surface and elemental composition of the synthesised electrolyte was revealed from scanning electron microscopy and energy dispersive x-ray spectroscopy. Conductivity of the electrolyte was measured using AC impedance analyser and its transference number was calculated to reveal the contribution of charged species within the polymer electrolyte. Detailed review made is documented in the respective chapters followed by the summary and conclusions in chapter - X.

ABBREVIATIONS AND SYMBOLS

θ	-	Surface coverage
CR	-	Corrosion rate
NMR	-	Nuclear magnetic resonance spectroscopy
DSC	-	Differential scanning calorimetry
Tg	-	Glass transition temperature
TGA	-	Thermo gravimetric analysis
C _{dl}	-	Double layer capacitance
R _{ct}	-	Charge transfer resistance
\mathbf{f}_{max}	-	Frequency maximum
ba, bc	-	Anodic and cathodic Tafel slopes
Ecorr	-	Corrosion potential
Icorr	-	Corrosion current
µF/cm ²	-	microfarads / cm ²
OCP	-	Open circuit potential
ppm	-	Parts per million
R	-	Gas constant
FT-IR	-	Fourier transform Infrared spectroscopy
SEM	-	Scanning electron microscopy
EDS	-	Energy dispersive X-ray spectroscopy
XRD	-	X-ray diffraction spectroscopy
AFM	-	Atomic force microscopy
XPS	-	X-ray photoelectron spectroscopy
Z'	-	Real part of impedance
Z''	-	Imaginary part of impedance
R _b	-	Bulk resistance
°*	-	Complex permittivity
M*	-	Complex electrical modulus
t+, tele,	-	Transference number of cation and anion
Ii, If	-	Initial and final current

Ν	-	Avogadro number
μ , μ ₊ and μ ₋	-	Total, cationic and anionic mobility
σ	-	Conductivity
D+, D-	-	Diffusion co-efficient of cation and anion
OCV	-	Open circuit voltage

Section	Contents	Page.no
	PART - I	
	CHAPTER – I	
	INTRODUCTION	
1.1	Corrosion – A metal dissolution	1
1.2	Need for corrosion prevention	3
1.3	Consequences of corrosion	4
1.4	Theories of corrosion	4
1.5	Principles of corrosion	5
1.6	Classification of corrosion	6
1.7	Types of corrosion	7
	1.7.1 Forms of corrosion	8
1.8	Mechanism of corrosion	16
1.9	Factors affecting the rate of corrosion	17
1.10	Methods to control corrosion	21
1.11	Adsorption process	30
1.12	Adsorption isotherm	31
1.13	Techniques used to evaluate corrosion	33
	1.13.1 Non-electrochemical techniques	33
	1.13.2 Electrochemical measurements	34
	1.13.3 Non-destructive techniques (NDT)	39
1.14	References	44
	CHAPTER - II	
	SYNTHESIS AND CHARACTERISATION OF POLYESTERS	
2.1	Introduction	48
	2.1.1 Aliphatic to aromatic polyesters- A systematic approach	49
	2.1.2 Review of literature	50
2.2	Experimental methods	54
	2.2.1 Materials	54
2.2.2	Synthesis	54
	2.2.2.1 Synthesis of aliphatic polyesters (I _{a-h})	54

	2.2.2.2 Synthesis of aromatic (cardo) polyesters (II _{a-h})	55
2.2.3	Characterisation techniques	59
	2.2.3.1 Fourier transform Infra-red spectroscopy (FT-IR)	59
	2.2.3.2 ¹ H and ¹³ C Nuclear magnetic resonance spectroscopy (NMR)	59
	2.2.3.3 Differential scanning calorimetry (DSC)	59
	2.2.3.4 Thermo gravimetric analysis (TGA)	60
2.3	Results and discussion	60
	2.3.1 Fourier transform Infra- red spectroscopy (FT-IR)	60
	2.3.2 ¹ H and ¹³ C Nuclear magnetic resonance spectroscopy	61
	2.3.3 Differential scanning calorimetry (DSC)	61
	2.3.4 Thermogravimetric analysis (TGA)	62
2.4	Conclusions	63
2.5	References	64
	CHAPTER - III	
LINE	AR ALIPHATIC POLYESTERS AS CORROSION MITIGATOR	S FOR
	MILD STEEL IN 0.5 M H ₂ SO ₄	
3.1	Introduction	67
	3.1.1 Review of literature	68
3.2	Experimental methods	72
	3.2.1 Inhibitors	72
	3.2.2 Material preparation	72
	3.2.3 Corrodent solution	73
	3.2.4 Corrosion monitoring techniques	73
	3.2.5 Morphological analysis	75
3.3	Results and discussion	77
3.3.1	Corrosion monitoring techniques	77
	3.3.1.1 Gravimetric measurements	77
	3.3.1.2 Electrochemical techniques	82
	3.3.1.3 Morphological evaluation	85
	3.3.1.4 Mechanism of corrosion inhibition	88
	3.3.1.5 Evaluation of the inhibitors	89
3.4	Conclusions	90

3.5	References	91
	CHAPTER - IV	Ι
L	INEAR AROMATIC POLYESTERS AS EFFECTIVE CORROSI	ON
	MITIGATORS FOR MILD STEEL IN 0.5 M H ₂ SO ₄	
4.1	Introduction	95
	4.1.1 Review of literature	96
4.2	Experimental methods	100
	4.2.1 Inhibitors	100
	4.2.2 Material preparation	100
	4.2.3 Evaluation of anticorrosive performance	101
	4.2.4 Morphological examination	103
4.3	Results and discussion	104
	4.3.1 Gravimetric method	104
	4.3.2 Electrochemical measurements	108
	4.3.3 Morphological examination	111
	4.3.4 Mechanism of adsorption	114
	4.3.5 Evaluation of inhibitors	114
4.4	Conclusions	115
4.5	References	117
	CHAPTER - V	
BI	OSYNTHESISED NANO METAL OXIDE DISPERSED POLYES	TER
СОМРО	DSITES AS ENHANCED CORROSION MITIGATORS FOR MIL	D STEEL
	IN 0.5 M H ₂ SO ₄	
5.1	Introduction	120
	5.1.1 Persia Americana - A potential source	121
	5.1.2 Review of literature	121
5.2	Experimental methods	127
	5.2.1 Chemicals and metal substrate	127
	5.2.2 Synthesis	127
	5.2.3 Characterisation techniques	129
	5.2.4 Evaluation of corrosion inhibition activity	129
5.3	Results and discussion	130
	5.3.1 Characterisation techniques	130
		-

	5.3.2 Evaluation of corrosion inhibition activity	133
	5.3.3 Mechanism	136
5.4	Conclusions	137
5.5	References	139
	CHAPTER - VI	
INHIB	ITION EFFICIENCY OF SELECTED POLYESTERS UNDER VA	ARIOUS
	ACIDIC ENVIRONMENTS – A COMPARISON	
6.1	Introduction	143
6.2	Experimental methods	144
	6.2.1 Inhibitors	144
	6.2.2 Materials	145
	6.2.3 Evaluation of metal protecting ability	145
6.3	Results and discussion	145
6.3.1	Evaluation of metal protecting ability	145
	6.3.1.1 Mass loss method	145
	6.3.1.2 Electrochemical impedance spectroscopy (EIS)	146
	6.3.1.3 Potentiodynamic polarisation technique	147
	6.3.1.4 Comparison of inhibition efficiency	147
6.4	Conclusions	148
6.5	References	149
	CHAPTER - VII	I
ELEC	CTROCHEMCAL INVESTIGATIONS OF LINEAR POLYESTE	RS ON
RE	BAR CORROSION IN SIMULATED CONCRETE PORE SOLUT	TION
7.1	Introduction	151
	7.1.1 Nature of concrete	152
	7.1.2 Nature of steel	153
7.1.3	Reinforced corrosion	153
	7.1.3.1 Carbonation corrosion	154
	7.1.3.2 Chloride corrosion	155
7.1.4	Sequence of degradation	156
7.1.5	Review of literature	157
7.2	Experimental methods	160

	7.2.1 Inhibitor	160
	7.2.2 Preparation of the electrolyte	160
	7.2.3 Moulding of specimens	161
	7.2.4 Electrochemical measurements	161
	7.2.5 Study on morphology-Scanning electron microscopy analysis	162
	(SEM).	
7.3	Results and discussion	162
	7.3.1 Electrochemical impedance spectroscopy (EIS)	162
	7.3.2 Potentiodynamic polarisation technique	163
	7.3.3 Inhibition efficiency, surface coverage and adsorption	164
	isotherm	
	7.3.4 Study on morphology-Scanning electron microscopy analysis	164
	(SEM).	
	7.3.5 Mechanism	164
	7.3.6 Evaluation of the inhibitors	166
7.4	Conclusions	166
7.5	References	168
	CHAPTER - VIII	
INFL	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC	CE OF
INFL	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANO Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID	CE OF
INFL 8.1	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6Al-4V ALLOY IN SIMULATED BODY FLUID Introduction	CE OF 171
INFL 8.1	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6Al-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6Al-4V alloys	CE OF 171 171
INFL 8.1	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANO Ti-6Al-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6Al-4V alloys 8.1.2 Review of literature	CE OF 171 171 172
INFL 8.1 8.2	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6AI-4V alloys 8.1.2 Review of literature Experimental methods	CE OF 171 171 172 174
INFL 8.1 8.2	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANO Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6AI-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters	CE OF 171 171 172 174 174
INFL 8.1 8.2	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6AI-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters 8.2.2 Preparation of metal substrate	CE OF 171 171 172 174 174 174
INFL 8.1 8.2	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6AI-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters 8.2.2 Preparation of metal substrate 8.2.3 Preparation of simulated body fluid (SBF)	CE OF 171 171 172 174 174 174 174 174
INFL 8.1 8.2	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6Al-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6Al-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters 8.2.2 Preparation of metal substrate 8.2.3 Preparation of simulated body fluid (SBF) 8.2.4 Electrochemical measurements	CE OF 171 171 172 174 174 174 174 174 175
INFL 8.1 8.2	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6AI-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters 8.2.2 Preparation of metal substrate 8.2.3 Preparation of simulated body fluid (SBF) 8.2.4 Electrochemical measurements 8.2.5 Surface morphology – Scanning electron microscopy (SEM)	CE OF 171 171 172 174 174 174 174 175 175
INFL 8.1 8.2	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6AI-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters 8.2.2 Preparation of metal substrate 8.2.3 Preparation of simulated body fluid (SBF) 8.2.4 Electrochemical measurements 8.2.5 Surface morphology – Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS)	CE OF 171 171 171 172 174 174 174 175 175
INFL 8.1 8.2 8.3	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6AI-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters 8.2.2 Preparation of metal substrate 8.2.3 Preparation of simulated body fluid (SBF) 8.2.4 Electrochemical measurements 8.2.5 Surface morphology – Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) Results and discussion	CE OF 171 171 171 172 174 174 174 175 176
INFL 8.1 8.2 8.3	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6Al-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6Al-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters 8.2.2 Preparation of metal substrate 8.2.3 Preparation of simulated body fluid (SBF) 8.2.4 Electrochemical measurements 8.2.5 Surface morphology – Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) Results and discussion 8.3.1 Electrochemical impedance spectroscopy (EIS)	CE OF 171 171 171 172 174 174 174 175 176 176
INFL 8.1 8.2 8.3	CHAPTER - VIII UENCE OF POLYESTERS ON THE CORROSION RESISTANC Ti-6AI-4V ALLOY IN SIMULATED BODY FLUID Introduction 8.1.1 Ti-6AI-4V alloys 8.1.2 Review of literature Experimental methods 8.2.1 Synthesis of polyesters 8.2.2 Preparation of metal substrate 8.2.3 Preparation of simulated body fluid (SBF) 8.2.4 Electrochemical measurements 8.2.5 Surface morphology – Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) Results and discussion 8.3.1 Electrochemical impedance spectroscopy (EIS) 8.3.2 Potentiodynamic polarisation studies	171 171 171 171 172 174 174 174 174 175 176 177

	8.3.3 Surface morphology – Scanning electron microscopy (SEM)	178
	and energy dispersive x-ray spectroscopy (EDS)	
8.4	Conclusions	179
8.5	References	180
	PART - B	1
	CHAPTER - IX	
PR	OTON CONDUCTING STUDY OF POLY (GLYCEROL SUBER	ATE)
POLYES	STER (PGSU) - PVA BLEND POLYMER ELECTROLYTE WITI	H NH4SCN
	FOR ENERGY STORAGE DEVICES	
9.1	Introduction	182
	9.1.1 Criteria for a polymer electrolyte	184
	9.1.2 Applications of polymer electrolytes	184
	9.1.3 Criteria for formation of Polymer - Salt complex	185
	9.1.4 Review of literature	186
9.2	Experimental methods	192
	9.2.1 Materials	192
	9.2.2 Preparation of Electrolyte film	192
	9.2.3 Characterisation techniques	193
9.2.4	Conductivity measurements	193
	9.2.4.1 AC impedance analysis	193
	9.2.4.2 Transference number measurement	193
	9.2.4.3 Configuration of proton conducting battery	194
9.3	Results and discussion	194
	9.3.1 Characterisation techniques	194
9.3.2	Conductivity measurements	196
	9.3.2.1 AC impedance analysis	196
	9.3.2.2 Conductance spectra	198
	9.3.2.3 Dielectric spectra analysis	198
	9.3.2.4 Modulus analysis	199
	9.3.2.5 Transference number	199
	9.3.2.6 Configuration of proton conducting battery	201
9.4	Conclusions	202
9.5	References	203

CHAPTER – X SUMMARY AND CONCLUSIONS	207
CHAPTER – XI SCOPE FOR FUTURE WORK	209
LIST OF PUBLICATIONS	210