ACKNOWLEDGEMENT

I whole heartedly surrender my sincere thanks to the 'Almighty' who gave blessings for completing this work.

Considering this achievement of my dissertation work, for the award of Degree of Doctorate of Philosophy. I gratefully acknowledge to **Sri G. Rangaswamy**, Managing Trustee and **Smt. R. Nandini**, Chair Person P.S.G.R. Krishnammal College for Women for providing me with all the facilities to carry out my project successfully.

I thankfully acknowledge and express my gratitude to **Dr. (Mrs). N. Yesodha Devi, M.Com, Ph.D.,** our Secretary, for her continuous support in all my endeavours.

I am extremely indebted to convey my bouquets of thanks to **Dr.(Mrs.) S. Nirmala, M.B.A., M.Phil, Ph.D.** for her encouragement throughout the successful course of this investigation.

I am most grateful to **Mrs. S. Vasandha, M.Sc, M.Phill**, Dean-Student Affairs, P.S.G.R. Krishnammal College for Women, for her encouragement and blessings during the period of my project work.

I am extremely thankful to **Dr. (Mrs). R.S. Meerabai, M.Sc, M.Phil, B.Ed, Ph.D, PGDCA,** Head, Department of Botany, P.S.G.R. Krishnammal College for Women, for her support and help rendered during the period of my study.

I pay my obeisance to God for having bestowed with an opportunity and privilege of being guided by **Dr.V.Sashi, M.Sc, M.Phil, Ph.D,** Former, Head, Department of Botany, P.S.G.R Krishanammal College for Women. I am indebted to her for suggesting the problem, for the continuous guidance and encouragement given throughout the course of this investigation.

I owe my tribute to **Dr. N.S. Malathy, M.Sc, Ph.D,** Former, Head of the Department of Microbial Biotechnology, P.S.G.R. Krishnammal College for Women and **Dr. K. Mani, M.Sc, Ph.D** Associate Professor(Retd.), Department of Botany, PSG College of Arts and Science, for their blessings and guidance.

I express my deep hearted thanks to **Dr.W.Suganya**, Assistant Professor, LRG Govt Arts College for Women, Tirpur for her encouragement and help rendered to carry out my project successfully.

I am also thankful to DRDO Department, Bharathiar University and SITRA, Coimbatore for granting permission to do testing work in their laboratory.

I express my deep hearted thanks to **Mr. D. Jegadeesh kumar**, Chromopark Research centre, Nammakal, for permitting me to carry out a part of my work and for his valuable guidance.

I express my gratitude to all the **Teaching faculty**, Department of Botany, P.S.G.R.Krishnammal College for Women, for their encouragement.

My sincere thanks to due to all the **non-teaching staff members**, Department of Botany, P.S.G.R.Krishnammal College for Women, for their assistance rendered.

I gratefully acknowledge the University Grants Commission (UGC), for giving me the Financial Assistance during the tenure of this investigation.

I am greatly thankful to all my **well-wishers**, **friends**, **class mates** for their inspiration and help.

The whole credit of my achievements goes to my Father **Mr.R.Rathinsamy** and my beloved husband **Mr. G.Sivakumar** and my sisters **Miss.S.Sivaranjini** and **Miss.S.Radhika** for their kind encouragement.

My sincere and special thanks are due to my father-in-law, Mr. A.Gopalakrishnan and My mother-in-law, Mrs. G.Kamala, for their co-operation.

I express my most heartfelt thanks to my loving daughter **S.U.Lakshika** who sacrificed her motherhood care at times and during the completion of this work.

CONTENTS

TITLE	Page No
LIST OF TABLES	
LIST OF FIGURES	
LIST OF PLATES	
LIST OF PUBLICATIONS	
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
3. MATERIALS AND METHODS	42
4. EXPERIMNETAL RESULTS	58
5. DISCUSSION	106
6. SUMMARY	115
BIBLIOGRAPHY	
PUBLICATIONS	

LIST OF TABLES

TABLE	σται ε	PAGE
No	IIILE	No
2.1	Major enzymes involved in the biodegradation of	9
	heteroxylan	
2.2	Methods for pretreatment of lignocellulosic biomass	10
2.3	Carbohydrate compositions of various xylans	11
2.4	Xylan extraction from different authors	12
2.5	Comparative account of cell wall components in soft and	13
	hard wood	
2.6	List of xylanaolytic bacteria studied by various authors	17
2.7	List of xylanaolytic fungi studied by various authors	20
2.8	List showing cheaper agro residues as substrates for xylanase	23
	production	
2.9	Effect of carbon and nitrogen sources on xylanase production	31
	from various bacteria and fungi	
2.10	Characteristics of xylanases from different microorganisms	33
2.11	Applications of xylanase	38
2.12	Commercial xylanases and their industrial suppliers	41
4.1	Zone of inhibition	67
4.2	Xylanase production by Bacillus subtilis in xylanase	71
	production medium using different lignocellulosic biomasses	
4.3	Detection of carboxy methyl cellulose activity in the culture	75
	filtrate of Bacillus subtilis	
4.4	Effect of different concentration of the substrate on xylanase	76
	production by Bacillus subtilis	
4.5	Effect of pH on xylanase production by <i>Bacillus subtilis</i>	78

TABLE	TITLE	PAGE
No		No
4.6	Effect of temperature on xylanase production by Bacillus	79
	subtilis	12
4.7	Effect of incubation period on xylanase production by	81
	Bacillus subtilis	
4.8	Effect of agitation rate on xylanase production by Bacillus	82
	subtilis	
4.9	Effect of carbon sources on xylanase production by <i>Bacillus</i>	84
	subtilis	
4.10	Effect of nitrogen sources on xylanase production by	85
	Bacillus subtilis	
4.11	Effect of metal ions on xylanase production	87
4.12	Effect of bivalent ions on xylanase production by Bacillus	88
	subtilis	
4.13	Summary of purification of xylanase from Bacillus subtilis	90
4.14	Effect of pH on the stability of purified xylanase from	92
	Bacillus subtilis	
4.15	Effect of temperature on stability of the purified xylanase of	94
	Bacillus subtilis	
4.16	Effect of inhibitors on purified enzyme of Bacillus subtilis	95
4.17	Effect of metal ions on purified enzyme of Bacillus subtilis	96
4.18	Effect of enzyme charge on kappa number of waste paper	97
	pulp	
4.19	Physical analysis of dough and bread attributes	98
4.20	Determination of loaf volume and weight of the bread treated	98
	with xylanase	
4.21	Effect of crude xylanase of Bacillus subtilis and Effective	102
	Microrganisms (EM) on composting	

LIST OF FIGURES

FIGURE	TITLE	PAGE
No		No
4.1	Effect of different concentration of the substrate on xylanase	77
	production by Bacillus subtilis	
4.2	Effect of pH on xylanase production by Bacillus subtilis	78
4.3	Effect of Temperature on xylanase production by Bacillus	80
	subtilis	
4.4	Effect of incubation period on xylanase production by	81
	Bacillus subtilis	
4.5	Effect of Agitation rate on xylanase production by <i>Bacillus</i>	83
	subtilis	
4.6	Effect of carbon sources on xylanase production by <i>Bacillus</i>	84
	subtilis	
4.7	Effect of nitrogen sources on xylanase production by	86
	Bacillus subtilis	
4.8	Effect of metal ions on xylanase production by Bacillus	87
	subtilis	
4.9	Effect of bivalent ions on xylanase production by Bacillus	89
	subtilis	
4.10	Effect of pH on the stability of purified xylanase from	93
	Bacillus subtilis	
4.11	Effect of temperature on stability of the purified xylanase of	94
	Bacillus subtilis	
4.12	FTIR Analysis of treated and untreated fibers after 45 days	105
	of Bio-softening	

LIST OF PLATES

PLATE No	TITLE	PAGE No
Ι	The lignocellulosic biomasses used as substrates in the present study	60
II	Screening of Xylanase producing isolates	67
III	SEM analysis for the morphology of treated and untreated rice bran xylan	74
IV	Purification of xylanase enzyme from Bacillus subtilis	91
V	Effect of xylanase in bread making	99
VI	Crude xylanase of Bacillus subtilis as detergent	100
VII	Effect of crude xylanase in bio composting	103
VIII	Treated and untreated fibers after 45 days of Bio-softening	104