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CHAPTER VII 

Stability of Rotating Unbounded Non Parallel Shear Flows 

7.1 Introduction 

The problem of stability of a parallel flow of an inviscid fluid under the action of 

buoyancy forces is of much interest and importance in astrophysical and meteorological 

phenomena. Motion of bodies in the atmosphere of Jupiter provides an interesting example 

for these kinds of situations. The instability due only to the shearing motion of the fluid was 

found by Lord Rayleigh (1880) and investigated mathematically by Solberg (1936) who 

considered the stability of an axisymmetric baroclinic vortex. Menkes (1959) investigated the 

effects of density variation in the absence of gravity on the stability of a horizontal shear layer 

between two streams of uniform velocities. Drazin and Howard (1962) developed a method to 

approximate the stability characteristics of unbounded flow for small wave number and 

obtained formulas to determine the same. A sufficient condition for stability of a parallel 

shear flow in an inviscid homogeneous unbounded rotating fluid was obtained by Johnson 

(1963). Michalke (1964) integrated numerically the Rayleigh stability equation of inviscid 

linearized stability theory and evaluated eigenvalues and eigenfunctions. Brunsvold and Vest 

(1973) studied the stability of a layer of Newtonian fluid confined between two horizontal 

disks which rotate with different angular velocities. As Rayleigh (1880) noted the problem of 

the stability of azimuthal disturbances in a rotating fluid is similar to that of stability in a 

parallel flow, it is usual to consider the stability of parallel flows when discussing shear 

instability and this will be done here. Busse and Chen (1981b) found an analytical solution of 

the stability of a plane parallel shear flow with respect to one dimensional disturbance, for a 

particular velocity profile             . 

Our aim is to understand the effect of three-dimensional disturbances on the stability 

of basic non parallel flows of inviscid homogeneous fluid rotating about the z-axis with a 

general velocity profile(U(z), V(z, 0) in the x- direction. Expanding all the physical quantities 

in terms of the parameter α assuming the disturbances are small, asymptotic formulas are 

obtained for determination of the instability characteristics up to order α
2
. We have illustrated 

the use of small α formulas to give quantitative numerical results with an example. 

7.2 Flow Description and Governing Equations 

 We consider an inviscid unsteady unbounded Boussinesq fluid rotating about a 

vertical axis with angular velocity  . The fluid extending to infinity is assumed to be 

non parallel flow characterized by a shear layer. A Cartesian coordinate system is 
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introduced in such a way that basic flow is taken as (U(z), V(z), 0). The axis of 

rotation is considered to be in the z direction. 

 

Unbounded Rotating Shear layer 

In the present work, the following assumptions are made: 

 Flow of a Newtonian fluid is considered, which is unsteady, unbounded, 

inviscid and  laminar in nature. 

 Flow is assumed to be unbounded in both the directions. 

 Boussinesq approximation is applied in the momentum equation. The density 

variation is caused by a temperature variation and that the time scale of 

thermal diffusion  
  

 
    is small compared to     . 

 The basic flow is assumed as eq


   , ( ),0U z V z  

The governing equations for the motion of an inviscid, stratified fluid confined 

between two infinite horizontal rigid planes are given by 

q

   =  0             (7.1) 

 






q

t


 0                 (7.2) 

  2
q

q q k q
t


 

       
kgp ˆ        (7.3) 

where q


, ρ, p,    g denote, the velocity vector, density, pressure, angular velocity of 

rotation and acceleration due to gravity respectively. 
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 Consider the basic flow given by eq


   , ( ),0U z V z  , the steady state 

pressure and density are related by 

eqkp


 ˆ2 0   =   kgpp ee
ˆ

    
(7.4) 

For the flow to be in equilibrium, the torque of a baroclinic density distribution must 

be balanced by the torque caused by the Coriolis force. 

As in the previous problem, it is assumed that the density variation is caused 

by a temperature variation and that the time scale of thermal diffusion  
  

 
    is small 

compared to      and hence buoyancy term has been neglected in perturbation 

equations. 

Introducing the following nondimensional quantities 

*q


 = qu


0 ;      
*r


 = rd


;     pupp 00

 
*t = t

u

d

0  

The governing equations in non dimensional form become 

  qkqq
t

q 





 ˆ.  = k
Fr

p ˆ
42

1


 





        

(7.5) 

q


.  = 0    

The important nondimensional numbers that govern the flow under consideration are  

rotation number and Froude number given by           and             

To study the stability of the problem, we have introduced small perturbation  

pq


=  kk ˆˆ   

of velocity where     and     are proportional to 

 exp i x i y t          (7.6) 

Taking z- component of curl and curl curl of equation of motion, we get the following 

equations for  and . 
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2
2 2 2

2
( ( ) ( ) ) ( )iU z i V z

z
     


    


       

( "( ) "( ))iU z i V z
z


  


  


     = 0   (7.7) 

 

( ( ) ( ) ) ( '( ) '( ))
d

iU z i V z iV z i U z
dz


           = 0      (7.8)

 

 

Elimination of   between (7.7) and (7.9) leads to the following equation for  . 

                                                

 + (                                       

                                 

 + (              -                             

                                              

                                      

                                     = 0 (7.9) 

We impose the following boundary conditions  

0    as  z     

7.3 Analysis 

 Since we have restricted our analysis to long wave approximation ie., the wave 

number α is small, the growth rate is taken as σ = o(α). We make the following 

assumptions. In this section we make the following assumption for           

approaches constant values as                                sufficiently 

rapidly and                exponentially at     

We normalize the constant values of           as      such that 

                      

Hence the asymptotic form of equation (7.9) becomes 

           
 
                             

 
        

(7.10) 
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Hence the asymptotic solutions are obtained of equation (7.10) is exp(           

as z    .  

where 

   
      

 
           

           
 
    

 
 

  

    
      

 
           

           
 
    

 
 

  

 It is understood that the values of    and    are choosen with non negative 

real part. Thus for fixed       We are looking for the solutions of equation (7.9) of 

the form 

                         
                                 

                                      
    (7.11) 

Substitution of the equation (7. 11) in (7. 9) yields the equation that determines      

as  

                                        

                                            
                 

          +                                                         

                                                  

             

 
 
 

 
                                    

                                  

                                    

                           
 
 

 
 

                   = 0 

(7.12) 

           

Equation for       can be determined from equation (7.12) by replacing           

by           respectively. 

We expand     ,      and   in powers of   as 

                            

                            

                                 

          (7.13) 

We normalize      and      as 

                             and                            
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                             and                                          

                             and                                                   (7.14) 

On inserting    (7.13) in equation        and equating powers of  , we obtain the 

following equations. 

        
  

    
         

                 

    
                

        
  

    
         

                 

    
              

                                                                                                  

(7.15) 

                   

   On solving the above equations, we get the following solutions for      and       

                    
 
          

                 

       

 

  

     

        
    

         
 
  

 

  

     
                 

       

 

  

      

 

                                          

 

  

   

 

  

                           

 

  

 

  

 

(7.16) 

where 
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     (7.17) 

 

The    ,   are  obtained from the (7.16)  on replacing           by          

Imposing the continuity condition          and       at     

We must have 

                         (7.18) 

and 

      
                  

               (7.19)                                                                        

where   and    are arbitrary constants. 

          On elimination of    and    from       and       , we get the following eigen 

value relation 

                                         (7.20) 

from which we can determine the values of    and    for any arbitrary non parallel 

basic velocity profile. 

 It may be noted that even though this formulas were obtained by matching the 

eigen functions at z=0, are independent of the choice of origin. 
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7.4. Results and Discussion 

In the previous section we have considered an inviscid unsteady Boussinesq 

fluid rotating about a vertical axis with angular velocity  .  The flow is assumed to be 

non parallel and unbounded. A Cartesian coordinate system is introduced in such a 

way that basic flow is taken as (U(z), V(z), 0). The axis of rotation is considered to be 

in the z direction. We have derived the approximate formulas to calculate the growth 

rate of the perturbation. 

The formula derived in the above section is applicable for all the velocity 

profiles. In the case of U(z) = tanh z and V(z) = 0, these results reduce to the case of 

plane parallel unbounded shear flows. In this case we get the implicit result governing 

the zeroth order approximation of the growth rate    as follows. 

 

          

           
      

    

 
          

           
      

    

   

      (7.21) 

This is in agreement with the results obtained by Sumathi and Raghavachar 

(1993). 

 To perform the numerical calculations, we have assumed that U(z) = tanh(z) 

and V(z) = tanh (z).  .The expressions derived in the previous section are evaluated 

numerically using Mathematica 8.0. 

Figures (7.1)- (7.9) depict the behavior of the growth rate with respect to the 

flow parameters, horizontal wave number, longitudinal wave number and rotation 

number. We have found that the eigen value relation admits more than one root which 

in turn implies that we have more than one value for the growth rate corresponding to 

fixed values of the parameters      . 

We also observed that we have both stable and unstable modes. Increasing 

values of rotation number, longitudinal wave number and transverse wave numbers 

increase the real part of the frequency of the perturbation. Hence we can conclude that 
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increase in rotation number, longitudinal wave number and transverse wave numbers 

increase the growth rate of the disturbances thereby destabilizing the system. 

In the case of stable mode also we have observed that increase in       results 

in increase of the magnitude of the real part of the frequency which is negative. Hence 

it can be inferred that increase in longitudinal and transverse wave numbers and 

rotation number increase the region of stability. 

7.5 Conclusions 

This chapter deals with the stability of an unbounded, rotating non parallel 

shear layers. An asymptotic approach is developed for examining the linear stability 

of a plane parallel shear flow in a rotating system with respect to long wave 

approximation for a general velocity profile. Formulas for the determination of the 

instability characteristics are obtained and solved numerically in the case of 

hyperbolic tangent profile. Some of the important findings are the following. 

 Rotation number, longitudinal wave number and transverse wave number play 

a very significant role in determining the stability of an unbounded, 

nonparallel shear layer. 

 Increase in rotation number and wave numbers increase the growth rate of the 

disturbances due to which the flow becomes unstable. 
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Figure 7.1 Growth rate as a function of wave number (     )(unstable mode) 

  

0.00E+00 

5.00E+00 

1.00E+01 

1.50E+01 

2.00E+01 

2.50E+01 

3.00E+01 

3.50E+01 

4.00E+01 

4.50E+01 

0 0.5 1 1.5 2 2.5 

fr
e

q
u

e
n

cy
 

wave number 

Growth rate Vs wave number 

tow=0.q 

tow=0.5 

tow=1.0 

tow=2.0 



Stability of unbounded rotating nonparallel shear layers Page 145 

 

 

 

 

 

 

 

 

 

Figure 7.2  Growth rate as a function of wave number (  = 2.0) (unstable mode) 
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Figure 7.3  Growth rate variation with respect rotation number for varying wave 

number (     )  (unstable mode) 
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Figure 7.4  Growth rate variation with respect to rotation number (     ) 

(unstable mode) 
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Figure 7.5 Growth rate variation with respect to   (     ) 

(unstable mode) 
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Figure 7.6  Growth rate variation with respect to   (     ) 

(unstable mode) 
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Figure 7.7  Growth rate variation with respect to   (     ) 

(stable mode) 
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Figure 7.8  Growth rate variation with respect to   (     ) 

(stable mode) 
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Figure 7.9  Growth rate variation with respect to   (     ) 

(stable mode) 
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