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CHAPTER VIII 

Stability of Thermally Driven Shear Flows in Long Inclined Cavities with End-

to-End Temperature Difference 

8.1 Introduction 

During the past decade, natural convection to shallow cavities driven by an 

end-to-end temperature difference have received much attention. Researchers 

concentrated increasingly on this problem due to its relevance in several technological 

and fundamental areas. In the literature most of the published works considered 

cavities placed horizontally (Daniels and Wang(1994)). Convection in long inclined 

cavities driven by a temperature gradient along their longest axis is also important for 

a variety of phenomena that occur in industry and nature. For instance in crystal 

growth for vapour phase, larger transport arises. Natural convection in tilted fluid 

layers is also found in many geophysical situations where the fluid is enclosed in long 

narrow slots arbitrarily inclined to gravity. An interesting application is the transport 

and rate of spread of passive contaminants (for instance, radioactive material) in long 

tilted liquid-filled rock fractures. 

In the inclined cavity of shown in the figure, the basic flow arises for any 

temperature difference and its intensity increases steeply with Rayleigh number as 

long as the isotherms are distorted by advection. The type of flow that arises is similar 

to that described by Woods and Linz [1996] in inclined liquid –filled rock fractures 

with vertical thermal gradient. Delgado –Buscalioni and Crespo del Arco (1999) 

studied the basic and secondary flow in an inclined cavity filled with an 

incompressible viscous fluid. A classical review of earlier works can be seen in the 

paper by Hart (1971) 

Although the effect of inclined boundaries on the flow stability has been 

treated in a variety of geometries as far as we know, there are no published works 

considering the stability of the base flow in long inclined cavities with axial 

temperature gradient. In this chapter we investigate the stability of buoyancy driven 

shear flows in inclined long cavities with end wall temperature difference. Analytical 

expressions are found for the growth rate and stream as a function of wave number 
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and the stability of the flow is discussed for different inclinations and a wide range of 

Prandtl number. 

8.2. Flow Description 

We consider the flow in the two dimensional thermally driven shear flow in 

axially heated inclined long cavities.  The cavity is filled with an incompressible 

viscous fluid and inclined   degrees with respect to gravity.  We have employed 

Boussinesq approximation and assume that a convective motion is established due to 

a temperature difference between the end walls. That is, it is assumed that in the 

inclined cavity under consideration, the basic flow arises for any temperature 

difference and its intensity increases steeply with the Rayleigh number as long as the 

isotherms are distorted by advection.  The geometry of the problem and the structure 

of the basic flow are shown below. 

 

 

 

 

 

 

Shear flow in long inclined cavities with  end to end temperature difference 

 

In the present work, the following assumptions are made: 

 Flow of a Newtonian fluid is considered, which is unsteady, viscous and  

laminar in nature. 

 The cavity is filled with an incompressible fluid and inclined   degrees with 

respect to gravity 

 The non slip boundary condition is used at the boundaries and the temperature 

in the walls x =   1 

 Boussinesq approximation is applied in the momentum equation. 

 The effects of dissipation and diffusion are neglected 

 Only two dimensional disturbances are considered. 
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The equations governing the motion are the Navier Stokes and heat transport 

equations with the Boussinesq approximation.  
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   =   k *2* T         (8.3) 

ρ
*
    =    ρo (  βρ*(T

* To))         (8.4) 

 

Introducing h
2
/ , h,  /h and  Th/L as scales for time, length, velocity and temperature 

respectively in equations (8.1) to (8.4), we get the nondimensinal equations as 

follows. 

 .     = 0          (8.5) 

    

  
                                          (8.6) 

  

  
                                (8.7) 

where 

                        , is the gravity vector. 

The Rayleigh number and Prandtl number are defined respectively as   

      

   
           .We impose the no-slip boundary conditions at all rigid 

boundaries and the temperature at the walls      satisfies the homogeneous heat 

conduction equation. 

                  (8.7)                  

 
  

  
                         (8.8) 

 

At equilibrium, we have assumed the basic velocity and temperature profiles as 

follows 
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eq


=(uo, 0, wo)   and         (8.9) 

T o=   ηz + b + θo(x)         (8.10) 

 

Substituting these solutions into equations (8.3) –(8.4) and eliminating p by 

cross differentiation, the following system of ordinary differential equations, the 

following system of ordinary differential equations for  w0 (x)  and θo (x) is obtained. 

R 
1

rP η sin α  =  )(xwo
 + R 

1

rP  cos α )(0 x           (8.11) 

1

rP )(xvo
    ηwo(x)    = 0         (8.12) 

With wo(± 1)  = 0v (± 1)  = 0          (8.13) 

 

Solving we get  

      
     

  
 
                     

    
        (8.14) 

        
    

 
 
                     

    
         (8.15) 

where  

                              (8.16) 

and 

                     (8.17) 

 

In order to study the stability of the basic flow, we proceed in the usual form. The 

flow variables are written as the sum of the mean flow quantity and a small 

perturbation.  

The stream function of the perturbation flow satisfies   
  

  
      

  

  
 . 

We ascribe to the stream function and temperature perturbation    

 

    λ

 









 2

2

2

k
dx

d

 

= 

2

2

2

2









 k

dx

d
  ik




























)(2

2

2

 oo wk
x

w             

        )cossin(1   ikPR r     (8.18) 

                     λθ   = 
1

rP 







 2

2

2

k
dx

d
 ik    

oo w    (8.19) 

 



 

 

 

 Stability of shear flows in long inclined cavities  Page 157 

 

Boundary conditions are  (±1) =  (±1) = 0,        (±1) = 0  (8.20) 

 

 Equations (8.18)-(8.20) have non trivial solutions only for certain values of the 

frequency parameter λ (eigen values). The boundary value problem is not self adjoint. 

Hence in general the frequency of the disturbances λ will admit complex values which 

will determine the stability of the problem.  

8.3 Analysis 

In this section we analyse the behavior of the disturbances for long waves i.e., 

k is assumed to be small. We attempt to find analytical expressions for the growth rate 

and stream using regular perturbation method.  

Assuming  

 λ  = λo  + k
2
 λ1 +  ….. 

 θ  = To + kT1 + k
2
T2 + …… 

   =  o +k  1+ k
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2
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Collecting various order of k, the equations governing the velocity and temperature 

perturbations are given by 
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Boundary conditions o (±1) = 0,      o (±1) = 0, To (± 1)   = 0    (8.24) 

 

 

Solving we get 

o   =  cosh (x) + A1 cosh (R2x)  

 To   =  A2 cosh ( λ   x) + A3 sinh ( λ   x) + 


)(sinh 12
1

1

1 xR
RP

R

or 
 

  

)(sinh 22
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1

12 xR
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AR

or 

 

Applying the boundary conditions we get the eigenvalues and eigen functions as 

follows. 
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 R2 sinh (R1) cosh (R2)     R1 sinh(R2) cosh(R1)   = 0        

 R2 cosh (R1) sinh (R2)     R1 cosh(R2) sinh(R1)   = 0   (8.25) 

The above expressions do not give explicit values for 0. Hence  the values of 0 are 

obtained using the software Mathematica 8.0. 

 

1  =   A5cosh (R1x) + A6sinh (R1x) +A7 cosh (R2x) +A8sinh (R2x) 

 +A9λ1cosh (     x) 

+ A10 λ1 x sinh (R1x) 

+ A11 λ1 x sinh (R2x) 

+ A12 x cosh (R1x)+ A13 x cosh (R2x) 

+ A14sinh ((r+R1)x) + A15sinh ((r-R1)x) 

 +A16sinh ((r+R2)x) + A17sinh ((r-R2)x) 

+ A18 sin ((r+iR1)x) + A19 sin((r-iR1)x) 

+A20sinh ((r+iR2)x) + A21sinh ((r-iR2)x) 

+A22 sinh((r+     )x) + A23 sinh((r-     )x) 

+ A24 sinh((r-i     )x)+A25 sinh((r+i     )x)    (8.26) 

 

For brevity, the constants are given in Appendix B. 

8.4. Results and Discussion 

We consider the flow in the two dimensional thermally driven shear flow in 

axially heated inclined long cavities.  The cavity is filled with an incompressible 

viscous fluid and inclined   degrees with respect to gravity.  We have employed 

Boussinesq approximation and assume that a convective motion is established due to 

a temperature difference between the end walls. The effect of inclined boundaries on 

the stability of the basic flow in axially heated long inclined cavity is the main 

concern of this section. Hence we have found the value of the growth rate as a 

function of  Prandtl number, Rayleigh number and angle of inclination  numerically 

and plotted them in figures (8.1) –(8.6). 

It was found from these figures that Rayleigh number plays a significant role 

in enhancing the stability of the flow. We can see that the real part of the growth rate 

decreases due to increase in Rayleigh number. Angle of inclination and Prandtl 

number is found to increase the growth rate. 
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Figures (8.7) – (8.10) it can be seen that increase in angle of inclination, 

Prandtl number and the wave number are found to decrease the stream function of the 

disturbances. Hence we can infer that by increasing the angle of inclination we can 

stabilize the flow. 

Figures (8.11) –(8.18) it can be seen that temperature profile increases with the 

increase in the Rayleigh number, Prandtl number and wave number. Increase in the 

angle of inclination of the cavity decreases the temperature of the flow. 

8.5 Conclusions 

Since we find no published analytical works considering the stability of the 

base flow in long inclined cavities with axial temperature gradient, in this chapter we 

investigated the stability of buoyancy driven shear flows in inclined long cavities with 

end wall temperature difference. Analytical expressions are found for the growth rate 

and stream as a function of wave number and the stability of the flow is discussed for 

different inclinations and a wide range of Prandtl number. 

 Some of the important finding are 

 Rayleigh number plays a significant role in enhancing the stability of the flow. 

Real part of the growth rate decreases due to increase in Rayleigh number.  

 Angle of inclination and Prandtl number are found to increase the growth rate. 

 Increase in angle of inclination, Prandtl number and the wave number are 

found to decrease the stream function 

 Temperature profile increases with the increase in the Rayleigh number, 

Prandtl number and wave number. 

 Increase in the angle of inclination of the cavity decreases the temperature of 

the flow. 
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Figure 8.1 Growth rate as a function of wave number (Pr =0.7, R=10.0) 
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Figure 8.2  Growth rate as a function of wave number (alpha = pi/3.0, R=10.0) 
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Figure 8.3  Growth rate as a function of wave number (alpha = pi/6.0, Pr=0.7) 
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Figure 8.4  Growth rate variation with respect to Prandtl  number (alpha = 

pi/6.0,R=10.0) 
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Figure 8.5 Growth rate variation with respect to Angle of inclination 

(Pr=0.7,R=10.0) 
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Figure 8.6 Growth rate variation with respect to R (Pr=0.7,alpha=pi/3) 
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Figure 8.7 Stream function variation wrt x  (Pr=0.7, R=10.0) 
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Figure 8.8 Stream function variation wrt x  (alp=pi/3,R=10.0) 
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Figure 8.9 Stream function variation wrt x  (alp=pi/3,Pr= 0.7) 
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Figure 8.10 Stream function variation wrt x  (alp=pi/3,Pr=0.7, R=10.0) 
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Figure 8.11 Temperature distribution as a function of   x  (k=0.5,Pr=0.7, R=10.0) 
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Figure 8.12 Temperature distribution as a function of   x  (k=0.5,Pr=0.7, alp = pi/6) 
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Figure 8.13 Temperature distribution as a function of   x  (k=0.5,R=10.0, alp = pi/6) 
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Figure 8.14 Temperature distribution as a function of   x  (Pr=0.7, R=10.0, alp = 

pi/6) 
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Figure 8.15 Temperature distribution as a function of   Pr   

(k=0.4,R=10.0, alp = pi/6) 
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Figure 8.16 Temperature distribution as a function of   alpha  (k=0.4,R=10.0, 

Pr=0.71) 
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Figure 8.17 Stream function as a function of   Pr  (k=0.4,R=10.0, alp=pi/6.0) 
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Figure 8.18 Stream function as a function of   alpha  (k=0.4,R=10.0, Pr = 0.71) 
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