
ABSTRACT 

Shear instabilities, a common feature in nature are detected in planetary 

atmospheres and in large scale astrophysical objects. The geostropic wind must have 

vertical wind shear in the presence of a horizontal temperature gradient. The process 

of cyclogenesis is regarded as a manifestation of the amplification of an infinitesimal 

perturbation superposed on a basic state current which contains vertical shear. 

Hence the analysis of this thesis is motivated by the desire to understand the 

effect of various parameters like rotation number, wave number, magnetic Reynolds 

number and Richardson number on the stability of parallel and non parallel shear 

layers. This thesis comprises of an introductory chapter, review of literature and six 

main chapters. 

Chapter III demonstrates the effect of Richardson number on the stability of 

inviscid stratified shear layers in  the case of arbitrary velocity profile by employing 

normal mode approach to small oscillations. This analysis is restricted to long wave 

approximations. We have found that Richardson number plays a very significant role 

in determining the stability of such problems. 

In Chapter IV, the work of Padmini and Subbiah (1995) is extended to 

examine the effect of uniform horizontal magnetic field.  

In Chapter V, the onset of shear instability in an inviscid Boussinesq stratified 

fluid which is rotating about a vertical axis with the angular velocity    is for 

asymptotically small wave numbers. In this study viscous friction is neglected and the 

mathematical efforts are focused on a basic flow which is linear. 

Chapter VI deals with linear stability problem of nonparallel shear flows of an 

inviscid, incompressible fluid and examine the effect of rotation on the stability of 

shear flows. We have found analytical expressions to calculate the growth rate of 

three dimensional disturbances using perturbation techniques. The analysis is 

restricted to long wave approximations. The analytical expressions derived involve 

arbitrary velocity profile of the basic flow. 

Chapter VII aims at understanding  the effect of three-dimensional disturbances on 

the stability of basic non parallel flows of inviscid homogeneous fluid rotating about the z-



axis with a general velocity profile (U(z), V(z), 0). Expanding all the physical quantities in 

terms of the parameter α and assuming that the disturbances are small, asymptotic formulas 

are obtained for determination of the stability characteristics up to order α
2
. We have 

illustrated the use of small α formulas to give quantitative numerical results with an example. 

Since we find only few published analytical works considering the stability of 

the base flow in long inclined cavities with axial temperature gradient, in chapter VIII 

we have investigated the stability of buoyancy driven shear flows in inclined long 

cavities with end wall temperature difference. Analytical expressions are found for the 

growth rate and stream function as a function of wave number and the stability of the 

flow is discussed for different angle of inclinations and a wide range of Prandtl 

number. 

The main purpose of the thesis is to give some formulas and techniques by 

which the instability characteristics of parallel and non parallel shear flows can be 

determined analytically in the case of more or less arbitrary velocity profile and to 

discuss qualitatively the nature of the instabilities of such flows. At the end of each 

chapter, the use of the formulas is illustrated with examples to quantitative numerical 

results. Mathematical efforts are focused on the linear velocity profile and tanh z 

profile. 
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CHAPTER I 

Introduction 

1.1 Motivation 

 In some meteorological services of the world, there is a rule that when tropical 

cyclonic storm(wind speed > 34 kts) is known to exist within its area of jurisdiction,  

the chief forecaster has to stay in office, on duty, all the twenty-four hours till the 

system weakens below the limit of intensity. There are historical reasons for this 

stringent rule. Observations keep coming in the forecasting office and the chief 

forecaster has to assess the situation continuously about the change in intensity of the 

system, change in its expected track and about the locations which have to be exactly 

on the warning list at a time. Over-warning may create a ridiculous situation for the 

meteorological services where people may come to disbelieve what the meteorologist 

says, under- warning may cost thousands of lives. Some tropical cyclones have cost 

more than 3,00,000 human lives within a few hours. A cyclone may leave behind it, 

thousands of human beings and cattle dead, the local wells near the shore filled with 

saline sea water, railroads shattered, telegraph and telephone wires snapped, the 

hutments erased and the survivors slowly dying of disease and hunger. It can cause 

almost as much human misery as an atomic bomb. The Fig 1.1 shows the devastating 

effects of hurricanes and Table 1.1, taken from Anthes (1982) shows the hurricanes 

during the period 1901-1979 with human death toll of more than 1000. 

 

          

Figure 1.1: Photographs showing the devastating effects of the hurricanes during 1970 and 1977 in Bangladesh and 

AndhraPradesh, India 
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Table 1.1: Table showing the hurricanes during the period 1901-1979  

with human death toll of more than 1000 

YEAR DEATHS LOCATION 

08.09.1900 6000 Galveston, TX 

12-17.09.1928 4000 W. Indies, FL 

03.09.1930 2000 San Domingo 

15-16.10.1942 11000 Bengal, India 

25-27.09.1953 1300 Vietnam, Japan 

27.09.1954 1218 Japan 

17-19.09.1959 2000 Far East 

26-27.09.1959 4466 Honshu, Japan 

04-08.10.1963 6000 Cuba, Haiti 

13.11.1970 300000 Bangladesh 

19-20.09.1974 2000 Honduras 

19.11.1977 10000 Andhra Pradesh, India 

(Source: Anthes (1977)) 

 

 

 

Figure 1.2: Photographs showing the devastating impact of Superstorm Sandy 
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A number of meteorological departments had started functioning around 1875, 

some of these being in the tropical region. The chief forecasters in these tropical 

meteorological services saw fronts everywhere, even at the centers of tropical 

cyclones. Soon after the introduction of barometer in tropical latitudes, it was realized 

that daily pressure variations in tropical regions were quite different from those in 

extra – tropical regions, the barometric variations are essentially caused by the 

successive passages of extra tropical cyclones, their period being of the order of 5 

days and amplitude being of the order of 25 millibars (hPa). The meteorologists 

recognized that the large scale broad and extensive westerlies of extra tropical 

latitudes were baroclinically unstable and this baroclinic instability gave rise to 

intensification of an initially weak wave perturbation. Hence a detailed analysis of 

shear flow instability will throw light on various atmospheric phenomena. 

1.2 Shear Flows 

Variation of velocity in the direction normal to the direction of the velocity 

itself is called shear. The simplest example of a shear layer is the mixing layer 

separating two nearly parallel streams at different velocities. Another example of a 

layer with a strong shear is the boundary layer between a stream and a solid surface. 

Free shear layers are those not adjacent to a solid surface, the jet being an example. 

 Consider the stationary flow of a liquid located between two, infinitely, 

parallel planes, normal to the y direction separated by a distance ‘a’. One of the plates 

is kept fixed, while the other moves parallel to itself at a constant velocity V0 in the x 

direction. The fluid is ‘dragged’ along by the moving plate. Under stationary 

conditions (i.e. after a sufficiently long time has elapsed since the boundary wall was 

set in motion), we observe that the velocity of the fluid varies linearly from 0 to 0V   
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 The shear flow in the solid body is the gradient of a shear force through the 

body while in a fluid it is the flow induced by such a force gradient. Consider the 

following sketch. 

                                y 

 

 .P x 

 

Figure 1.3: Velocity profile in a simple shear flow 

The above sketch depicts the velocity profile in a simple shear flow. The fluid 

is moving to the right and the magnitude of the fluid velocity increase linearly with y. 

The velocity can be written as u = cy,    v = w= 0, where c is a constant determining 

the slope of the profile.  

A steady shear flow is the condition under which a fluid is sheared 

continuously in one direction during the duration of a rheometric experiment. A shear 

is the relative movement of parallel adjacent layers. In simple shear there is no change 

in the dimension normal to the plane of shear and the relative displacement of 

successive parallel layers of a material body are proportional to their distance from 

the reference layer. The type of flow used in most rheometric measurement of our 

fluids can be approximated by the simple shear.    

1.3 Examples of Shear Layers 

The simplest example of a shear layer is the mixing layer separating two 

nearly parallel streams at different velocities as seen in (Figure 1.4) 

 

 Fig 1.4: Mixing layer between parallel streams  
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 Another example of a layer with a strong shear is the boundary layer between 

a stream and a solid surface (Figure 1.5) which is the commonest type of shear layer. 

A jet (Figure 1.6) also has a large shear; so does the flow in a pipe (Figure 1.7) where 

the velocity is again zero at the solid surface.  

       

       Fig 1.5: Boundary layer and wake of airfoil                                  Fig 1.6: Merging mixing layer in jet 

 

 

 Fig 1.7: Merging boundary layers in pipe flow 

 

1.4 Practical Examples of Shear Layers 

 There exists complicated shear layers too. Consider a vertical take-off aircraft 

near the ground, supported by the thrust of its jet engines. (Figure 1.8). There is a 

boundary layer on the inside circumference of each jet nozzle, and this boundary layer 

becomes an annular mixing layer as the exhaust leaves the nozzle. The mixing layer 

grows in thickness until it engulfs the whole cross section of the exhaust flow, which 

is therefore called a jet. When the jet hits the ground, it is sharply deflected and 

spreads out radically in a flow called a wall jet. If there is a wind blowing, the part of 

the wall jet that blows upwind will eventually separate from the ground and be blown 

backwards towards the aircraft. Reinjection of hot exhaust gas is undesirable for jet 
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engines, particularly, if dust particles have been sourced off the ground, so the aircraft 

designer is interested in that transport of heat and foreign matter by the shear layer. 

 The flow inside a jet engine or any other type of turbo machine is very 

complicated because each blade has two boundary layers which merge at the 

downstream end of the blade to from a wake. The wake of each blade then interacts 

with the flow over blades further downstream, boundary layers grow on the dust walls 

as well, further complicating the flow over the blades. Jet engines combustion 

chambers use jet flows to mix the reactants. Extremely complicated flow patterns 

result, and the amount of smoke and other pollutants emitted by the engine depends 

critically on the completeness of the mixture.  

Once the aircraft is moving fast enough to be supported by its wings, the 

behavior of the boundary layers on wings and fuselage determines the drag and limits 

the lift. The boundary layer can greatly affect the lift at given incidence, even at 

incidence well below the stall or condition of maximum lift. Figure (1.6) is only one 

example of the importance of shear layers in engineering. Examples in the 

environmental sciences, additional to the planetary boundary layer mentioned above, 

include jet streams in atmosphere and ocean, river flows and buoyant plumes.   

 

Fig 1.8:  Practical Example of shear layer 

1.5 Stability Principles 

 We are all familiar with the simple concept of stable, unstable and neutral 

equilibrium of bodies at rest. Steady state is a state of equilibrium. If a small 

perturbation given to the body has a tendency to grow in magnitude so as to take the 

body further and further away from its equilibrium state, we say that the equilibrium 
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of the body was unstable. If the small perturbation has a tendency to decrease in 

magnitude so as to bring the body back to its equilibrium state, then we say that the 

equilibrium of the body is stable. If the perturbation has tendency neither to grow nor 

to decrease in magnitude, then the equilibrium of the body is neutral. 

 In the case illustrated above, the kinetic energy of the perturbation grows, 

decays or remains constant. This kinetic energy of the perturbation must come from or 

go to the energy of the body in the equilibrium position. It can be shown that in stable 

equilibrium configuration, the body has a minimum of potential energy. Any 

displacement of the body from this configuration increases its potential energy; and 

the tendency of the body is to come back to its original configuration of minimum 

potential energy. 

 The idea of equilibrium stated above for a body at rest is also applicable to a 

body in motion. A cyclist cannot balance himself on a bicycle at rest for more than 

few seconds without his feet touching the ground. But with bicycle in motion, he can 

balance himself for hours together without his feet touching the ground. The motion 

gives some stability to the system.  

 The earth is revolving round the sun. Certainly, there are perturbations in this 

orbiting motion of the earth. But the system is in stable type of motion. Perturbations 

do not tend to grow.  

 The atmosphere as a whole is in a state of stable equilibrium, within a stable 

and robust climate which does not change appreciably with time, inspite of several 

perturbations. 

 In meteorology, two separate types of stability have come to be recognized: 

static stability and dynamic stability. Static stability is considered with respect to 

small vertical displacements and the play of buoyancy forces in the disturbed state in 

the presence of gravity. If a parcel of air which is displaced vertically upwards, dry 

adiabatically, finds itself to be heavier than its new environment, it tends to return 

back to its original position; equilibrium is stable. If, in the new position, the parcel 

finds itself to be lighter than its environment, it goes further upwards; the perturbation 

grows, the equilibrium is unstable. In neutral equilibrium the parcel in its new 

position has the same density as its environment and it has neither acceleration nor 
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declaration upwards. This reasoning about the static stability of the atmosphere with 

respect to dry adiabatic process is simplified if we bring in the concept of potential 

density or potential temperature (   . The equilibrium is stable if potentially colder 

(heavier) air is in the lower levels and potentially warmer (lighter) air is in the upper 

levels; in other words, potential temperature increases with height.  

  Except in very thin layers, particularly near hot ground in the day time, the 

atmosphere is in stable equilibrium with respect to dry adiabatic vertical 

displacements. Due to this static stability, we have the well -known Brunt -Vaisala 

oscillations and gravity waves in the atmosphere. 

 The real atmosphere has horizontal as well as vertical wind shears. Natural 

forces operating in the atmosphere tend to create these horizontal and vertical wind 

shears. It is, however, seen that when these wind shears exceed certain critical values, 

then the equilibrium configuration of the atmosphere in motion breaks down; the 

same natural forces which took the atmosphere to a state of critical wind shears and 

hence on the verge of dynamic instability, and actually right into the state of dynamic 

instability, tend to bring the atmosphere back into a configuration of stability, by 

reducing the wind shears. The same natural forces push the atmosphere into instability 

and the same natural forces restore the atmosphere to a state of stability. This play 

goes on and the atmosphere manifests corresponding changes in winds and weather 

on different scales of space and time. 

 When the unstable wind shears are essentially in the horizontal, the instability 

process is called barotropic instability; when the unstable wind shears are essentially 

in the vertical and associated vertical motions are dry -adiabatic, then the instability 

process is called baroclinic instability. Combination of horizontal and vertical shears 

gives what is known as “ Combined barotropic –baroclinic instability “. 

 Dynamic instability of fluids in motion, called hydrodynamic instability, is of 

great importance and has interested many eminent Mathematicians and Physicists 

during the last 200 years. Hydro dynamic instability of the atmosphere is  little more 

difficult to handle than the hydrodynamic instability of classical homogeneous 

incompressible fluid. Although a number of eminent scholars investigated the 

hydrodynamic instability of the atmosphere towards the end of 19
th

 century and also 

later on. When heavier fluid lies on the top of lighter fluid gravitational forces will 
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tend to cause instability. Related to this is the instability at the interface between a 

liquid and a gas, when there is an acceleration in the direction going from the liquid to 

the gas.  

 

Fig 1.9: Photos showing Kelvin-Helmholtz instability (upper) and Holmboe’s instability (Lower)  

Figure 1.9 on the above shows two photos of different fluid instability - the upper one 

is often called Kelvin-Helmholtz instability; the lower one is called Holmboe's 

instability. These types of instability occur in both the ocean and atmosphere, where 

they are an important source of turbulence and mixing.  Kelvin-Helmholtz instability 

can occur when velocity shear is present within/ between two fluids. 

                               

Fig 1. 10: A KH instability rendered visible by clouds            Fig 1. 11: A KH instability on the planet Saturn, formed at the  

over Mount Duval in Australia                               interaction of two bands of the planet's atmosphere 

                             

Fige 1. 12: Kelvin–Helmholtz instability clouds in                                             Fig 1.13: Complicated shear layer 

                        San Francisco                                                                

 

 

http://en.wikipedia.org/wiki/File:Wavecloudsduval.jpg
http://en.wikipedia.org/wiki/File:Kelvin_Helmholz_wave_clouds.jpg
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1.6 Some Important Results 

Here we state without proof some important results for the stability of inviscid flows. 

Squire’s Theorem 

If a growing 3D disturbance can be found at a given Reynolds number, then a 

growing 2D disturbance exists at a lower Reynolds number.  

Rayleigh’s Inflexion Point Theorem  

Suppose that Bu and BDu are continuous in 21 yyy  . Rayleigh’s inflexion point 

theorem then states that a necessary (though not sufficient) condition for inviscid 

instability is that the base state possesses an inflexion point 02 BuD somewhere in 

the domain 21 yyy  . If a base state lacks an inflexion point, therefore, we can 

conclude it to be stable, for inviscid fluids. 

From this theorem we can conclude that 

 a necessary condition for inviscid instability is the presence of an inflexion 

point; 

 the absence of an inflexion point necessarily confers (inviscid) stability. 

Fjortoft’s Theorem   

A necessary condition for instability is that  

          0)( 
cBB uuu  somewhere in the fluid 

Where cu is the flow speed at the inflexion point (i.e., )0)()(  cBcBc yuwithyuu . 

Tollmien’s Result  

For a symmetrical profile in a channel, or for a boundary layer, the existence of an 

inflexion point 0)( 
cB yu is not only necessary but also a sufficient condition for 

instability. The inviscid flow sketched as follows is thus linearly unstable.  
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Howard’s Semi-circle Theorem  

All unstable waves have ir iccc  satisfying  

         2
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                          )(minmin yuu B          

Thus, all unstable modes lie in the shaded semi-circle, centered on 

0,)(
2

1
minmax  ir cuuc  and of radius )(

2

1
minmax uu 

 

1.7 Formal Approach and Techniques to Stability Theory 

The equations of fluid dynamics viz., the equations of mass conservation, 

momentum, energy and state, despite their complexity, allow some simple patterns of 

flows as stationary solutions. However, the problem, though conceptually very 

simple, is not very easy mathematically. The resulting differential equations even in 

case of simplest possible flows are of higher order; therefore, the discussion of the 

stability of the flows has been confined mainly to simple problems only. Either of the 

three methods, namely perturbation method, normal mode method and the energy 

method is generally adopted to examine the stability or instability of a system. 

 

1.7.1 Perturbation Method 

This is a very suitable and appropriate method for investigating stability 

problems. In this method, the system is imagined to undergo a specific small 

displacement. Additional forces so developed, if tend to increase the displacement 

thereby increasing the deformation of the system still further, the system is said to be 

unstable. 

In linear stability theory we take the perturbations to be arbitrarily small and 

so we neglect those terms in the governing equations, which are the products of the 

perturbations and for their derivatives, as compared to linear terms. Thus we get a 

system of homogeneous linear differential equations with homogeneous boundary 

conditions. Therefore in linear stability theory, the perturbations either grow 
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exponentially or decay exponentially or the magnitude of the perturbations remains 

constants, if the perturbations grow exponentially then the system is said to be 

unstable and if these decay exponentially then the system is said to be stable, and if 

there magnitude remains constant then the system is said to be in marginal state. 

 

1.7.2 Energy Method 

Here we closely examine the change of sign in the potential energy of the 

system with respect to all disturbances. If we observe a negative sign then the 

potential energy characterizing the system decreases for some disturbance and the 

kinetic energy is available for motion to depart away from the equilibrium state and 

the system becomes unstable. This method gives the condition of stability but not the 

dispersion relation, by which growth rate of instability can be obtained. Therefore, it 

is not useful in dissipative systems such as finitely conducting or viscous systems etc. 

This method presents a global outlook and unlike the normal mode approach, takes 

non-linearity of the system into consideration. 

 

In this method, we calculate the variation of energy of disturbances with time 

and the conclusions depend on whether the energy decreases or increase as time goes 

on. The theory admits an arbitrary form of the superimposed motion and demands 

only, that it should be compatible with the equation of continuity. Since the pattern of 

disturbances changes in course of time, the energy could momentarily increase and 

subsequently die away. Thus unless a flow is unstable or stable with all disturbances, 

no conclusive answer can be expected. 

 

This method is global in nature as we calculate the kinetic energy of whole of 

the system and thus is restricted in applications. In a viscous fluid it can hardly be 

expected that the motions at very small length scales be not damped out. 

Consequently, this method gives a surest limit for the stability of the flow, but it is 

crude in giving the unstable limits and also it gives very little information about the 

local behavior of the perturbations. 

 

For a better physical understanding of the instability of a given flow, it is still 

important to examine the mechanism of energy balance. The key mechanism is 

shifted in the shape of two components of the velocity of oscillations by viscous 
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forces at the solid boundary. In this process the Reynold stress converts energy from 

the basic flow to the disturbances. 

 

Energy is converted from the basic  f low to the disturbances by the action of 

Reynolds stress and dissipated into heat by viscosity. To maintain a sustained 

oscillation, the Reynolds stress, again must have proper sign. Energy relations have 

been used very often for the study of fully developed turbulence, and the discussions 

are obviously applicable to finite disturbances of fairly general type. 

 

The energy principle technique generally depends upon a variational 

formulation of the equation of motion. Rayleigh first used it in the calculation of the 

frequencies of vibrating systems. Its advantages lies in the fact that if one seeks solely 

to determine stability, and not growth rates or oscillation frequencies, it is necessary 

only to discover whether there is any perturbation which decreases the potential 

energy from its equilibrium value. 

 

1.7.3 Normal Mode Analysis 

For determining the stability of a hydro dynamical system by normal mode 

analysis, the linearized perturbation equations are set up first in a single perturbation 

variable by eliminating the remaining variables from the linear equations derived 

from the equations of conservation of mass, momentum and energy, retaining only the 

linear terms in perturbed quantities. These equations are then solved either 

analytically or with the help of vibrational procedure or through an integral equation 

under a set of appropriate boundary conditions. This leads to the dispersion relation in 

the parameters determining the stability of a system. The dispersion relation thus 

obtained is quite complex and an analytical interpretation is not always possible. 

Therefore, in order to determine the effect of a particular physical parameter on the 

growth rates, we analyze the change by varying that parameter while keeping the 

other parameters fixed. An increase in growth rate implies the destabilizing influence 

of that particular parameter and a decrease in growth rate shows stabilizing influence 

of the parameter. 

For the investigations in any stability analysis to be complete, it is assumed 

that the perturbations can be resolved into dynamically independent wave-like 

components, each component satisfying the linearized equations of motion and the 
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boundary conditions separately. The essential point here is that the disturbances, in all 

cases, must be expanded in all possible forms of time function constituting the time 

behavior of the quantities in the system, i.e. in terms of some suitable sets of normal 

modes which must be complete for such an expansion to be possible. Thus if A’(x, y, 

z, t) is a typical wave component describing a disturbance, we expand it in the 

manner, 

A’ (x, y, z, t) = A (z) exp [i (αx + βy + ct)], 

where k= [α
2
 + β

2
]
1/2

 is the real wave number of the disturbance and c is a constant to 

be determined and in general, is complex. It is to be remembered that the real parts are 

to be taken to get physical quantities, this being permissible for the linear problems.      

Further, since the perturbation equations are linear, the reaction of the system to a 

general disturbance can be determined if we know the reaction of the system to 

disturbances of all assigned wave numbers. In particular, the stability of the system 

will depend on its stability to disturbances of all wave numbers and instability will 

follow from the instability with respect to even one wave number. 

 

The assumption that a disturbance can be represented by wave components, 

according to the method of normal modes, serves to separate the variables and reduces 

the linearized equations of motion from partial to ordinary differential equations. The 

final process consists of solving the set of coupled, homogeneous, ordinary linearized 

differential equations governing the amplitude A(z), subject to appropriate boundary 

conditions of the problem under investigation. Indeed, the requirement that the 

equation allows a non-trivial solution satisfying the various boundary conditions leads 

directly to a characteristic value problem for c. In general, the characteristic value for 

c will be complex, whose real and imaginary parts will apart from various modes, 

depend on the physically significant parameters involved in the system. 

 

  Now, if the subscript k is attached to c in order to emphasize the fact that 

different values of c correspond to various modes appropriate to a particular problem 

(distinguished by k) we have, 

(i) Ck
(r)

< 0 for all k => stability 

(ii) Ck
(r)

> 0 for at least one k => instability 

(iii) Ck
(r) 

(R1, R2, R3, …………, Rj ) = 0 => the marginal state with 

respect to disturbance belonging to k. 
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Condition (iii) provides a locus in (R1, R2, …………, Rj) space, which 

separates states which are stable from those, which are unstable with respect to the 

disturbance belonging to the particular mode k. Also if Ck
(r)

 = 0 implies Ck
(i)

 =0 for 

every k, then the Principle of Exchange of Stabilities (PES) validate the marginal state 

and the instability sets in through stationary cellular convection. But if Ck
(r)

 = 0 

implies Ck
(i)

 ≠ 0 even for at least one k, then the PES is not valid at the marginal state 

and we have the case of over stability. 

 

1.8 Nondimensional Parameters 

In analyzing and discussing the results of the linear stability theory, it is often 

convenient to combine the various parameters into certain nondimensional 

combination of numbers.  

Some of the important nondimesional numbers are given below.  

 

1.8.1 Reynolds Number Re  

In fluid mechanics, the Reynolds number Re is a dimensionless number that 

gives a measure of the ratio of inertial forces to viscous forces and consequently 

quantifies the relative importance of these two types of forces for given flow 

conditions. 

 They are used to characterize different flow regimes, such as laminar 

or turbulent flow: laminar flow occurs at low Reynolds numbers, where viscous 

forces are dominant, and is characterized by smooth, constant fluid motion, while 

turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, 

which tend to produce random eddies, vortices and other flow instabilities. 

 Reynolds number is defined as  

 
Re

VL VL QL

A



  
  

 

where: 

V - the mean fluid velocity (SI units: m/s)  

L - characteristic linear dimension, (traveled length of fluid, or hydraulic  

      radius when dealing with river systems) (m)  

μ -dynamic viscosity of the fluid (Pa·s or N·s/m² or kg/m·s)  
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ν - the kinematic viscosity (ν = μ / ρ) (m²/s) 

  - the density of the fluid (kg/m³)  

Q - the volumetric flow rate (m³/s)  

A -the pipe cross-sectional area (m²). 

Reynolds Number may also be defined as, 

Re =UL/  

where,  

L - is the dimension of the system  

U - is the measure of the velocities which prevail in the stationary flow.  

 -  is the kinematic Viscosity.  

 

1.8.2 Richardson Number Ri  

Richardson number denoted by Ri measures the ratio of buoyancy forces to the 

inertial force.  

Ri = 
dz

dg 




 

where,  

g  is the acceleration due to gravity.  

  is the density of the fluid. 

  

1.8.3 Magnetic Reynolds Number Rm  

The Magnetic Reynolds number Rm is given by 

 Rm =UL/  

where, 

L - is the dimension of the system  

U - is the measure of the velocities which prevail in the stationary flow.  

- is the Magnetic resistivity.  

The magnetic Reynolds number is the ratio of the fluid flux to the magnetic 

diffusivity and is one of the important parameters in Magneto Fluid Dynamics. The 

Magnetic Reynolds number determines the diffusion of the magnetic field along the 

streamlines similar to the ordinary Reynolds number, which determines the diffusion 

of vortices along the streamlines.  
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The magnetic Reynolds number is a measure of the effect of the flow on the 

magnetic field. If it is very small compared to unity, the magnetic field is not 

distorted. When it is very large, the magnetic field moves with the flow and is called 

frozen.  

1.8.4 Prandtl Number Pr 

 The Prandtl number Pr is a dimensionless number approximating the ratio of 

momentum diffusivity (kinematic viscosity) and thermal diffusivity. It is named after 

the German physicist Ludwig Prandtl. 

It is defined as:    

 
k

C

ratediffusionthermal

ratediffusionviscous p




Pr

 

where: 

ν - kinematic viscosity, ν = μ / ρ, (SI units : m
2
/s)  

α - thermal diffusivity, α = k / (ρcp), (SI units : m
2
/s)  

μ - dynamic viscosity, (SI units : Pa s)  

k- thermal conductivity, (SI units : W/(m K) )  

cp - specific heat, (SI units : J/(kg K) )  

ρ - density, (SI units : kg/m
3
 ). 

 Note that whereas the Reynolds number is subscripted with a length scale 

variable, Prandtl number contains no such length scale in its definition and is 

dependent only on the fluid and the fluid state. As such, Prandtl number is often found 

in property tables alongside other properties such as viscosity and thermal 

conductivity. 

Typical values for Pr are: 

around 0.7-0.8 for air and many other gases,  

around 0.16-0.7 for mixtures of noble gases or noble gases with hydrogen  

around 7 for water (At 20 degrees Celsius)  
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around 1 × 10
25

 for Earth's mantle  

between 100 and 40,000 for engine oil,  

between 4 and 5 for R-12 refrigerant  

around 0.015 for mercury. 

1.8.5 Magnetic Pressure Number S  

The Magnetic pressure number S is given by  

2

2

u

H
S o




  

where  

 µ - Magnetic permeability  

 H  - Magnetic field strength  

  - Density of fluid  

 u - Velocity of fluid  

Magnetic pressure number is the ratio of the magnetic pressure to the dynamic 

pressure and is a measure of the effect of magnetic field on the fluid. Only when S is 

the order of unity, will the flow be influenced noticeably by the magnetic field and if 

it is very small, all the magnetic effects can be disregarded.  

In engineering problems it is difficult to obtain Rm,>>1 because of the low 

electrical conductivity of the useful fluids whereas S can be easily varied from unity 

to 10. In astrophysical problem Rm is very large due to the characteristically great 

length. The electrical current is controlled by the magnetic field rather than by the 

electrical conductivity when the Rm is small.  

1.8.6 Brunt-Vaisala Frequency N 

 Brunt-Vaisala frequency or buoyancy frequency is the angular frequency at 

which a vertically displaced parcel will oscillate within a statically stable 

environment. It can be used as a measure of atmospheric stratification. 

 N=  
    

    
 where θ is the potential temperature, g is the local acceleration of 

gravity and z is the geometric height. 
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1.8.7 Froude Number 

 It is a dimensionless quantity used to indicate the influence of gravity on fluid 

motion. It is generally expressed as Fr=v/(gd)
1/2

  in which d is the depth of the flow, g 

is the gravitational acceleration , v is the celerity of a small surface wave. When Fr is 

greater than 1, small surface waves can move downstream , when Fr is less than 1they 

will be carried upstream , and when Fr is equal to 1, the velocity of the flow is just 

equal to the velocity of surface waves. 

 

1.8.8 Rotation Number  

 It is a dimensional quantity which is the ratio of Coriolis force and inertial 

force and is defined by 

              

where 

       -  angular velocity of rotation 

 d - length scale 

    -  velocity of the flow 

 

1.9 Outline of the Thesis 

Given the wide range of applications of study of shear layers, the main 

objective of this dissertation is to study the stability of shear layers under specified 

conditions. 

The broad outline of the thesis is as follows 

 Introduction 

 Literature Review 

 Transient development of perturbations in inviscid stratified parallel 

shear flows 

 Effect of magnetic field on the stability of an electrically conducting, 

inviscid, stratified shear flows 

 Effect of rotation on the stability of an electrically conducting, 

inviscid, stratified shear flows 

 Effect of rotation on the linear stability of nonparallel shear flows 

 Linear stability of nonparallel rotating unbounded shear flows   
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 The stability of buoyancy driven shear flows in inclined long cavities 

with end wall temperature difference is investigated  

 Summary 

 

In Chapter I we have presented introductory aspects of the stability analysis 

and shear flows. In chapter II, significant earlier contributions related to the problems 

studied in the thesis are summarized. 

Chapter III extends the study of Farrell and Ioannou (1993) to a stratified flow 

through a channel with arbitrary shear velocity profile subject to long wave 

approximation. Analytical solutions were found for frequency and velocity stream 

functions. 

Chapter IV presents effect of uniform magnetic field on the stability of a 

stratified flow through an infinite channel with arbitrary shear velocity profile. 

Asymptotic solutions have been obtained for Velocity and growth rate using 

Perturbation techniques. The effect of various parameters such as Brunt Vaisala 

frequency, Magnetic parameter, wave number on the growth rate of the small 

disturbances is studied numerically. 

In Chapter V we have investigated the stability of inviscid, rotating stratified 

electrically conducting parallel shear flow. The fluid was considered to be in a state of 

non parallel flow with the basic velocity profile (U(z),0,0). The governing equations 

were derived. These equations reduce to those obtained by Farrell and Ioannou (1993) 

for vanishing rotation number.  

The stability of the flow was analyzed using normal mode approach and the 

analysis was restricted to a long wave approximation. 

In Chapters VI and VII an attempt is made to study the effect of rotation on 

the stability of inviscid, stratified electrically conducting non parallel bounded and 

free shear flows. The results obtained were validated with the results obtained by 

Padmini and Subbaiah (1995) for vanishing rotation number.  

In Chapter VIII we made an attempt to study the analytical solutions of 

stability of buoyancy driven shear flows in inclined long cavities with end to end wall 
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temperature difference. Growth rate is calculated numerically for different non-

dimensional numbers. 

In all the above mentioned problems, we specify the full system of nonlinear 

equations which includes equation of continuity, equation of motion and equation of 

state. The boundary conditions for the geometry are also specified. A basic laminar 

flow field and pressure field that form a time-independent solution of the nonlinear 

equations and boundary conditions is found. We then subject the base state to a small 

perturbation involving a control parameter λ. Then we try to find out answers for 

the following questions 

 For any value of the control parameter λ, is the basic laminar state 

linearly stable or unstable, i.e. do the perturbations decay or grow in 

time? 

 What is the threshold value of λ at which the laminar state first 

becomes unstable? 

 At the onset of instability, what is the spatial form of the unstable 

perturbations, and how fast do they grow? 

 

To answer these questions, we substitute the perturbed forms into the 

governing equations and expand these equations about the base state in increasing 

powers of the perturbation’s amplitude δ. Neglecting terms O(δ
2
) and higher, we then 

have a linearised equation set governing the dynamics of the perturbations. These 

linearised equations are usually studied via a normal mode analysis.  

Using normal mode approach, the eigen values and corresponding eigen 

functions are calculated. In general, the eigen values are complex. Closed form 

solutions are obtained wherever possible or solutions are found numerically using the 

software Mathematica 8.0. The numerical results of the flow characteristics are 

presented graphically. 




