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CHAPTER III 

Stability of Stratified Shear Flows 

3.1 Introduction 

 The mixing zone between two parallel streams, each of which has initially 

uniform velocity and density may be represented for the purpose of stability analysis 

by an inviscid shear layer. The general problem of stability of an inviscid fluid with 

continuously varying velocity and density distribution in a direction normal to the 

mean flow was first investigated by Taylor (1931) and Goldstein (1931). Employing 

the method of small disturbences, they obtained an equation of the Orr-Sommerfield  

type. While the equation is linear, its coefficients depend on the velocity and density 

distribution in the unperturbed shear layer. In order to render the problem 

mathematically tractable, they considered simple flows in which the velocity or 

velocity gradient is constant and the density is constant or vary exponentially. The 

properties of the more general layers were to be deduced from a superposition of the 

simple flows. But shear and density stratification affect the stability of fluid flows 

with respect to small disturbances. One of the most striking features of atmosphere 

and ocean flows is that they are stably stratified. The stratosphere, the mid 

troposphere and often the planetary boundary layers are stably stratified, Similarly in 

the ocean, upper oceanic layer develop unstable stratification,  

 Stratification supports internal gravity oscillations that pervade the atmosphere 

and the ocean. Hence much theoretical and observational work has been developed to 

understand the stability of stratified shear layers. Miles and Howard (1964) 

generalized Rayleigh (1880) problem, considered the stability of a shear layer within 

which both velocity and density vary  linearly and outside of which the velocity and 

density are constant. Theoretical work on the initial development of perturbations in 

shear flows (Farrel 1984, 1988) discussed the growth of forced disturbances that can 

lead to a full characterization of the stability properties of a shear flow. Farrel and 

Ioannou (1993) investigated transient development of perturbation in inviscid 

stratified shear flow by employing matrix variational method. 

 The above mentioned works are limited to linear velocity profile. Hence in 

this chapter we have made an attempt to find analytical expressions in the case of 
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arbitrary velocity profile by employing normal mode approach to small oscillations. 

This analysis is restricted to long wave approximations.  

3.2 Flow Description and Governing Equations 

 We consider an inviscid unsteady Boussinesq fluid of variable density ρ. The 

Boussinesq fluid is assumed to be stratified with density    ztzx m 0,,  

 tzx ,,'  where m  is the mean,  z0 is the space variable of the background 

density that is confined to vary only in the vertical coordinate z and ρ’ is the density 

fluctuation. The fluid is in a state of plane parallel flow characterized by a horizontal 

shear layer confined between two infinite horizontal rigid planes at z= z1, z2.  

 

 Stratified Shear Flows 

In the present work, the following assumptions are made: 

 Flow of a Newtonian fluid is considered, which is unsteady, inviscid and 

laminar in nature. 

 Flow is between two horizontal rigid boundaries. 

 No slip boundary conditions are imposed at the boundaries. 

 Boussinesq approximation is applied in the momentum equation. 

 All fluid properties are assumed constant except that the density is 

considered to vary with vertical co-ordinate z in the application of 

Boussinesq approximation. 

 The effects of dissipation and diffusion are neglected 
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 Only two dimensional disturbances are considered. 

 The basic flow is assumed as eq


   0,0,zU  

The governing equations for the motion of an inviscid, stratified fluid confined 

between two infinite horizontal rigid planes is given by 

q

   =  0                                                                                                              (3.1) 

 






q

t


 0                                                                                                  (3.2) 

  












qq

t

q 


 kgp ˆ                                                                             (3.3) 

where q


, ρ, p, g denote the velocity vector, density, pressure and acceleration due to 

gravity respectively. 

 Consider the basic flow given by eq


   0,0,zU  , the steady state pressure 

and density are related by 

z

p



 0    zg m 0                                  (3.4) 

Introducing the non-dimensional quantities for time, length, velocity, pressure 

and density represented by 

/
~
tt  , /0UL  , quq

 ~
0 , pup m

~' 2

0  and   ~/,' 2

00 gNUm  

where  
dz

d
gN m

02 /


  is the Brunt-Vaisala frequency and N0 is a typical value of 

this frequency in the domain of the flow and Ri denote Richardson number and taking 

the perturbed variables as,   wvuzUq ,,


,      zzz m   0 ,  zppp  0 ,
                 

after dropping tildes, the non dimensional linearized perturbed equations for normal 

modes of the form  txi  exp ,we get 

 

 



Stratified shear flows Page 38 
 




 )()())((
2

2
2 iRi

z
zui

z
zUi 

















              (3.5) 

 i
N

N
zUi

2

0

2

))((                                                      (3.6) 

In the above equations, the divergenceless perturbation velocity field is 

expressed in terms of a stream function    as    xzwu  ,,  . 

 Based on the Squire’s theorem, namely, that for every unstable three 

dimensional disturbance there corresponds a more unstable two dimensional 

disturbances we study the instability problem only to two dimensional disturbances. 

Hence we get , 




 )()(''))((
2

2
2 iRi

z
zUi

z
zUi 

















                          (3.7) 

 i
N

N
zUi

2

0

2

))((                                                                               (3.8) 

Eliminating ρ between the above two equations we get  

z
zUizui

z
zUi











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


 ))(()())((

2

2
22

 

0)(
2

0

2
2  

N

N
iRi         (3.9) 

3.3 Analysis 

 Since we have restricted our analysis to long wave approximation ie., the wave 

number α is small, the growth rate is taken as σ= o(α) 

0))(()(''))((
2

0

2

2

2
22 

















 




N

N
Ri

z
zUiziU

z
zUi   (3.10) 

Expanding   ........................1

2

0    
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                      ........................1

2

0    

as a power series of  α, equation (3.10) becomes 

  .........)())((2))(( 1

2

02

2
2

0

2

1

2

0 



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






 
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zUiziU  

2
2 2 2

0 1 0 1 0 12

0

''( ) [ ( ) ] ( ) ( ...) 0
N

iU z iU z Ri
z N

        


       


  (3.11) 

The governing equation for ψ0 is given by, 

 
2

0

2
2

0 ))((
z

ziU






 0)]([)('' 02

0

2
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0 



 




N

N
Ri

z
zUiziU             (3.12) 

The boundary condition requires zero vertical velocity at horizontal 

boundaries. The value of σ0 can be obtained as an eigen value by solving (3.12) 

subject to the boundary condition ψ0( 1 ) = 0.     

The differential equation to find ψ1  is given by, 

12
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02
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By imposing the boundary conditions that  1(     , we get  

1  

dz
z

ziU
z

zUi

dzzUi

0
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









           

As a particular case, we consider a linear shear velocity profile   zzU  . 

Then equation (3.11) becomes, 

  .....)((.......)(2)( 1

2

02

2
2

1

2

0
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
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z
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......( 1

2
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0
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 
N

N
Ri  =  0                                                (3.14) 

The governing equation for ψ0  is given by  
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0
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2
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0 )( 
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
N

N
R

z
iz i




  =     0                                                           (3.15) 

The boundary condition requires zero vertical velocity at horizontal 

boundaries. The value of σ0 can be obtained as an eigen value by solving (3.15) 

subject to the boundary condition ψ0( 1 ) = 0.     

The differential equation to find ψ1  is given by 
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Solving these equations we get, 
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3.4 Results and Discussion 

 To get the physical insight of the problem, effect of various parameters such as 

Richardson number, Brunt-Vaisala frequency and wave number on the growth rate are 

calculated numerically. To get a clear picture, these flow properties are plotted in 

figures (3.1)-(3.18) as functions of various parameters. 

In order to determine a disturbance, the distribution of both the stream 

function  and the buoyancy  need to be specified. If the initial perturbation 

buoyancy is zero, one can say that the disturbance in the stratified flow is velocity 

forced, while if the initial velocity is zero, one can say that the flow is buoyancy 

forced. Unlike non-stratified flows, stratified flows have two degrees of freedom in 

the choice of initial conditions, reflecting the two forms of energy in stratified flows : 

potential and kinetic. 

From the analytical expressions derived in the above section, it can be seen 

easily that the Richardson number plays a very important role on the stability of 

stratified shear flows. The previous literature shows that the necessary condition for 

the presence of exponentially growing modes in inviscid stratified flows is that Ri < 

0.25 somewhere in the flow. From the analytical expressions derived in the previous 

section, we can identify that  
2

2

0

4 0i

N
R or or

N
    greatly influence the stability 

of the flow under consideration. 

We have plotted the real part of the growth rate  as a function of wave 

number, for various values of Ri and 
2

2

0

N

N
 in figures (3.1) – (3.14). These figures show 

that the frequency of the disturbances increases with increasing wave number   

thereby increasing the region of instability. 

The real part of ψ decreases due to increase in Richardson number. We see 

that a unstable mode exists for Ri < 0.25. This has a qualitative agreement with the 

results obtained by Taylor (1931) and Farell and Ioannou (1993). It can be seen from 

these figures that the unsteady flow of inviscid shear layer is stable for infinitely small 

disturbances whenever Ri > 0.25. We can also see that increase in Brunt – Vaisala 

frequency decreases the frequency of the disturbances thereby stabilizing the flow.  
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Figures (3.15) – (3.18) exhibit the behavior of stream function due to 

variations in the wave number, Brunt-Vaisala frequency and Richardson number. 

When Ri =0.1, it can be seen that increase in wave number increases the magnitude of 

the stream functions. When Ri=0.01, the stream function decreases in the lower half 

of the flow and increases in the region z=0 to z=1 due to increase in the values of the 

wave number. 

3.5 Conclusions 

We have considered an inviscid  unsteady Boussinesq fluid of variable density 

ρ. The Boussinesq fluid is assumed to be stratified with density 

     tzxztzx m ,,',, 0    where m  is the mean,  z0 is the space variable 

of the background density that is confined to vary only in the vertical coordinate z and 

ρ’ is the density fluctuation. The fluid is in a state of plane parallel flow characterized 

by a horizontal shear layer confined between two infinite horizontal rigid plane at z= 

z1, z2. The basic flow is assumed as eq


   0,0,zU . 

Analytical expressions were found to calculate the growth rate σ of the 

disturbances for long waves. These expressions were evaluated numerically for a 

linear basic flow i.e., U(z) = z. The following conclusions were drawn from these 

results. 

 Richardson number plays a very important role on the stability of stratified 

shear flows. 

 The flow is unstable when 
2

2

0

4 0i

N
R

N
  which is in qualitative agreement 

with the results obtained by Taylor (1931), Howard (1961) and Farrell and 

Ioannou (1993) 

 increase in Brunt – Vaisala frequency decreases the frequency of the 

disturbances thereby stabilizing the flow 

 Frequency of the disturbances increases with increasing wave number a 

thereby increasing the region of instability. 
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Figure 3.1 Growth rate as a function of wave number  (n=3) 
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Figure 3.2 Growth rate as a function of wave number  (n=2) 
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Figure 3.3 Growth rate as a function of wave number (n=2) 
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Figure 3.4 Growth rate as a function of wave number (n=4) 
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Figure 3.5  Growth rate as a function of Ri (n=2) 
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Figure 3.6 Growth rate as a function of Ri (n=2) 
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Figure 3.7 Growth rate as a function of Ri (n=2) 
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Figure 3.8 Growth rate as a function of N
2
 (n=2) 
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Figure 3.9 Growth rate as a function of N
2
 (n=2) 
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 Figure 3.10 Growth rate as a function of N

2
 (n=2)  
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Figure 3.11 Growth rate as a function of N
2
 (n=2) 
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Figure 3.12 Growth rate as a function of N
2
 (n=2)  
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Figure 3.13 N
2
as a function of Growth rate (n=2) 
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Figure 3.14 N
2
as a function of Growth rate (n=3) 

 

 

  

 

-1.40E+04 

-1.20E+04 

-1.00E+04 

-8.00E+03 

-6.00E+03 

-4.00E+03 

-2.00E+03 

0.00E+00 

2.00E+03 

0 0.5 1 1.5 2 2.5 

R
e(


) 

N2 

Growth rate Vs N2, Ri=0.3 

α=1 

α=2 

α=3 

α=4 

α=5 



Stratified shear flows Page 60 
 

 

 

 

 

 

 

Figure 3.15 N
2
as a function of Growth rate (n=4) 
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Figure 3.16 Steam function ψ as a function of z (n=4) 
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Figure 3.17 Stream function Vs z for Ri= .05(n=2) 
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Figure 3.18 Stream function Vs z for Ri=.01(n=3) 
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 Fig 3.19. Stream function Vs z for (n=3) 
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