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CHAPTER VII 

EFFECT OF ROTATION ON THE LINEAR STABILITY OF 

PARALLEL STRATIFIED SHEAR FLOWS 

7.1  Introduction 

Shear flows subjected to system rotation, where the rotation axis is parallel 

have many interesting features. The Coriolis force has a strong effect on the flow field 

even at low rotational speeds. Various natural phenomena and technological situations 

are directly governed by the action of Coriolis force.  

The rotational instability of an inviscid homogeneous fluid was first studied by 

Rayleigh (1917). He developed the general linear stability theory for inviscid parallel 

flows and showed that a necessary condition for instability is the velocity profile with 

no point of inflection. Synge (1933) examined the stability of a steady rotation of 

heterogeneous fluids with the action of body force. The rotational instability of a 

stratified rotating fluid by means of linearised perturbation equations assuming the 

basic horizontal flow was studied by Ken Sasaki (1971). He also assumed that 

horizontal layer is confined in a thin layer.  

Mobbs and Darby (1989) obtained a general method to test the stability of a 

stratified, parallel shear flow. The observation of shear flow instability in a rotating 

system with a soap membrane was analyzed by Couder (1981). The primary 

instability of an azimuthal jet in a rotating annulus with rigid upper lid and a sloping 

bottom was studied experimentally by Solomon et al (1993). An asymptotic approach 

to examine the linear stability of plane parallel shear flow in a rotating system with 

respect to long wave disturbances was developed by Sumathi and Ragavachar (1993). 

Paul Matthews and Stephen Cox (1997) analyzed the convective stability in a rotating 

shear flow.  

The linear stability of a rotating stratified inviscid horizontal plane Couette 

flow in a channel was studied in the limit of strong rotation and stratification by 

Vanneste and Yavneh (2007). Kloosterziel et al (2007) obtained the saturation of 

inertial instability in rotating planar shear flows. Arobone and Sarkar (2012) 

investigated the instability mechanisms for a horizontal shear layer with uniform 

stable stratification rotating about a vertical axis. The linear instability of rotating, 

stably stratified, vertical shear flows U (z) with Boussinesq approximation was 
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studied by Wang et. al (2014). Three-dimensional rotating Couette flow using the 

generalized quasilinear approximation was analyzed by Tobias and Marston (2017). 

Facchini et. al (2018) presented the stability analysis of plane Couette flow which is 

stably stratified in the vertical direction, orthogonal to the horizontal shear. 

Motivated by the astrophysical applications, in this chapter, the work of 

Sumathi and Ragavachar (1993) is extended to stratified shear layer by assuming the 

basic velocity profile as linear. The mathematical treatment includes the linearized 

equations of motion for infinitesimal disturbances to an unsteady stratified parallel 

shear flow of an inviscid, incompressible rotating flow. The effect of rotation on the 

linear stability of parallel stratified shear flow between two rigid plates at z = ± L is 

analyzed for asymptotically small wave numbers.   

7.2 Mathematical formulation 

Consider the three dimensional shear flow of an inviscid, incompressible 

Boussinesq fluid with constant Brunt-Vaisala frequency N
2
. Assume that the domain 

rotates around z-axis, it is unbounded in the x and y-directions, and bounded in the z-

direction by two rigid walls separated by a distance 2L. The fluid is assumed to be 

nondiffusive and inviscid.  

The assumptions made for the present problem are: 

 Flow of unsteady, inviscid, stratified, Newtonian fluid is considered.  

 Fluid is flowing between two horizontal infinite rigid plates at a distance 

2L apart. 

 The fluid is assumed to be rotating about a vertical axis with angular 

velocity . 

 No slip boundary conditions are imposed at the boundaries. 

 Boussinesq approximation is applied in the momentum equation. 

 All the fluid properties are assumed constant except the density variation 

which takes place with vertical coordinate z due to stratification. 

 The  basic velocity profile is assumed as eq


   

 Magnetic effect and viscous dissipation effects are neglected. 

Based on the assumption taken the geometrical representation of the problem 

is given in Figure. 7.1. 
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Figure 7.1. Schematic diagram of stratified shear flow with velocity (U(z), 0, 0) 

Hence, the governing equations for the motion of an inviscid, incompressible 

rotating Boussinesq stratified fluid confined between two horizontal infinite rigid 

planes situated at  are 

                            (7.1) 

     (7.2) 

                                      (7.3) 

where  is the velocity vector, ρ is the density of the fluid, p is the pressure 

and g is the acceleration due to gravity respectively. 

The boundary conditions are 

  at z =      (7.4) 

The basic flow is given by . At the equilibrium state, the density and 

pressure are related by 

      (7.5) 

We use the following dimensionless variables  

  , (     

and  (x,y,z) = L(x*,y*,z*),       (7.6) 

where,    is the Brunt-Vaisala frequency which is assumed to be 

positive for static stability and N0 is a typical value of Brunt-Vaisala frequency in the 

flow domain, L is the characteristic length and U0 is the characteristic velocity.    

The dimensionless form of the governing equations (7.1) – (7.3) are obtained as 

(0, 0, g) 

(0, 0, )  

+L 

y 

x 

z 

z = +L 

z = -L 

Rotating 

shear fluid 
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         (7.7) 

          (7.8) 

                                                                             (7.9) 

The asterisks that denote dimensional variables are dropped for their dimensionless 

counterparts.    

The dimensionless boundary conditions become 

             (7.10) 

Now perturb the basic state by considering the perturbed velocity components as 

(U(z)+u’, v’, w’), perturbed density as  and perturbed pressure as 

. Substituting these in the basic equations and linearizing, we obtain the 

following set of equations          

      (7.11)  

                                            (7.12) 

                            (7.13) 

                   (7.14) 

                (7.15) 

The flow is characterized by two non-dimensional parameters: the Richardson number 

and Rotation number .  

Employing normal mode approach we assume that all the variable quantities 

like velocity, density are proportional to , where k and l are wave 

numbers in the x and y direction respectively and  is the growth rate of the 

disturbance which is in general a complex constant. If k and l are real and 

, then the small disturbance is linearly unstable. On the other hand if all such small 

disturbances to a plane-parallel shear flow have , then the flow is linearly 

stable.  

Based on this, the above linearized equations (7.11) – (7.15) can be modified to the 

following form 

          (7.16)  
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        (7.17) 

               (7.18) 

          (7.19) 

          (7.20) 

Corresponding boundary conditions for the problem are    

    (7.21) 

7.3 Eigen values and eigen functions for long waves 

Consider the analysis for long wave approximation (i.e) k is assumed to be 

small. The flow is assumed to be bounded between two plates  The basic 

arbitrary velocity profile for the flow is taken as linear (U(z) = z). We apply the series 

expansion in terms of wave number k in the form  

        (7.22) 

where   represents either one of the disturbances .  

By applying equation (7.22) into equations (7.16) to (7.20) and boundary 

conditions (7.21) the zeroth order approximation is given by 

              

      

          

              

          (7.23) 

where  

with the corresponding boundary condition      

         (7.24) 

Eliminating the above equation (7.23) in terms of , we get   

           (7.25) 

The solution of equation (7.25) is given by      

  

where , λ = , A, B are arbitrary constants.  
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By imposing the boundary condition that the velocity should vanish at the 

boundaries. The value of  can be obtained by solving equation (7.25) subject to the 

boundary condition  ,  

       (7.26) 

The solution of equation (7.23) with the boundary condition (7.24) is given as 

       

       

        

        

      (7.27) 

The first order approximation is given by      

             

       

       

             

          (7.28) 

with the boundary condition   

                                            (7.29) 

Equation (7.28) is simplified in terms of  as     

       

       

The value of   can be obtained from the above equation by applying the boundary 

condition that         

              (7.31) 

The solution of equation (7.29) with the boundary condition (7.30) is given by 
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             (7.32) 

The second order approximation is given by 

             

    

       

           

         (7.33) 

with the boundary conditions  

                                          (7.34) 

Equation (7.33) is simplified in terms of  as     

         

                                

                                                                      (7.35)  

The value of   can be obtained from the above equation by applying the boundary 

condition that         

     (7.36) 
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For the sake of brevity the constants are given in Appendix V. 

7.4 Result and Discussion 

 We have considered an inviscid, incompressible, rotating stratified shear flow 

of variable density ρ. The fluid is in a state of plane parallel flow characterized by a 

horizontal shear layer confined between two horizontal infinite rigid planes . 

The fluid is assumed to be rotating with constant angular velocity . The influence of 

wave number (k), rotation number (τ) and Brunt Vaisala frequency (N
2
) on the 

stability characteristics of the flow are analyzed.  The real part of the frequency of 

disturbances as a function of these parameters is plotted in Figures (7.2) – (7.13). 

 Figure (7.2) portrays the influence of rotation number (τ) on the growth rate 

(σ) with increasing wave number (k). It is clear from the Figure that due to the 

increase in rotation number, the growth rate of the disturbances decreases thereby 

making the system unstable. Figure (7.3) presents the real part of the growth rate (σ) 

as a function of wave number for various values of l. This shows that the frequency of 

disturbances increases with increase in wave number k thereby increasing the region 

of instability. 

Figure (7.4) exhibits the behavior of growth rate (σ) due to the variation in n. 

It is concluded that, there exists infinite number of modes for the given stability 

problem. In Figures (7.5) and (7.6), the influence of Brunt Vaisala frequency (N
2
) and 

Richardson number (Ri) on the growth rate (σ) with increasing wave number is 

presented. It can be seen that, increase in Brunt Vaisala frequency (N
2
) decreases the 

growth rate. With the increase in wave number, the growth rate increases for smaller 

values of N
2
. As N

2
 increases, much change does not take place in the growth rate. 

Hence, it can be inferred that, increase in Brunt Vaisala frequency (N
2
)
 
contributes 

more to the flow stability. 

Figure (7.7) shows the behavior of growth rate (σ) with the increase in Brunt 

Vaisala frequency (N
2
)
 
for various rotation number (τ). Initially, for smaller N

2
 the 

frequency of disturbances decreases with the increasing rotation number (τ). Hence, 

the flow becomes unstable. Figure (7.8) depicts the real part of growth rate (σ) vs 

Brunt Vaisala frequency for different values of l on the flow instability. It is shown 

that, initially transition occurs with the increase in l and becomes stable as Brunt 

Vaisala frequency (N
2
)
 
increases. 
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In Figure (7.9), the nature of growth rate (σ) for various Richardson number is 

exhibited. It is observed that, Richardson number (Ri) affects the stability of the flow 

field. On careful observation, we identified that increase in Richardson number (Ri) 

contributes to the flow stability with the increase in Brunt Vaisala frequency (N
2
). 

Figure (7.10) discusses about the real part of the growth rate (σ) for various rotation 

number (τ). This Figure shows that, the frequency of disturbances decreases with 

increasing rotation number (τ) for smaller values of Ri and becomes stable as 

Richardson number (Ri) increases. 

Figure (7.11) presents the behavior of growth rate (σ) due to variations in 

transverse wave number (l). Due to increase in l growth rate decreases for smaller 

Richardson number (Ri). As Ri increases, the growth rate becomes stable. Figure 

(7.12) portrays the behavior of the real part of growth rate (σ) for various wave 

number (k) with increasing Richardson number (Ri). It can be seen that, increase in 

wave number decreases the growth rate for the case of smaller Richardson number 

(Ri). It is inferred that, as Ri increases, the flow becomes unstable and contributes 

more to the instability. 

Figure (7.13) discusses about the nature of growth rate (σ) for increasing Brunt 

Vaisala frequency (N
2
). Due to the increase in N

2
, the frequency of disturbances 

increases till Ri = 0.02. Increase in Ri stabilizes the flow pattern whatever N
2 

may be. 

Figures (7.14) and (7.15) present the nature of the velocity due to the variations in 

rotation number (τ) and wave number (k). It is observed that, increase in these two 

parameters increases the velocity profile. 

7.5 Conclusion 

 In this chapter, the linear stability analysis of an inviscid, incompressible 

parallel stratified shear fluid is analyzed. The fluid is assumed to be rotating about a 

vertical axis with constant angular velocity . Rotation effect on a stratified shear 

layer is analyzed using series expansion method by assuming . Analytical 

expressions were found to calculate the growth rate (σ) for long waves. These 

expressions are evaluated numerically for linear base flow (i.e) . Significant 

conclusions drawn from the study are as follows. 

 Due to increase in rotation number (τ) and transverse wave number (k) growth 

rate decreases thereby making the flow stable. 
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 Increase in Brunt vaisala frequency (N
2
)
 

and Richardson number (Ri) 

decreases the growth rate thereby stabilizes the flow pattern. 

 Due to increase in rotation number (τ), transverse wave number (l) and 

Richardson number (Ri), the growth rate of disturbance decreases, thereby 

contributes more to the flow stability with the increase in Brunt-Vaisala 

frequency (N
2
).  

 The rotation number (τ), wave number (k and l) and Brunt- Vaisala frequency 

(N
2
) contributes more to the stability of the flow with increasing Richarson 

number (Ri). 

 Velocity profile increases with the increasing rotation number (τ) and 

transverse wave number (k). 
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Figure 7.2 Growth rate as a function of wave number for various τ 

 

 

 
 

Figure 7.3 Growth rate as a function of wave number for various l 
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 Figure 7.4 Growth rate as a function of wave number for various n 

 

 

 
 

 Figure 7.5 Growth rate as a function of wave number for various N2 
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Figure 7.6 Growth rate as a function of wave number for various Ri 

 

 

 
 

Figure 7.7 Growth rate as a function of Brunt – Vaisala frequency for various τ 
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Figure 7.8 Growth rate as a function of Brunt – Vaisala frequency for various l 

 

 

 
 

Figure 7.9 Growth rate as a function of  Brunt – Vaisala frequency for various Ri 
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Figure 7.10 Growth rate as a function of Richardson Number for various τ 

 

 

 

 
 

Figure 7.11 Growth rate as a function of Richardson Number for various l 
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Figure 7.12 Growth rate as a function of Richardson Number for various k 

 

 

 
 

Figure 7.13 Growth rate as a function of Richardson Number for various N2 
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 Figure 7.14 Effect of rotation number (τ ) on velocity profile   

   

 
 

Figure 7.15 Effet of small wave number (k) on velocity profile 
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