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CHAPTER VIII 

STABILITY OF STRATIFIED ROTATING NONPARALLEL 

SHEAR FLOWS 

8.1 Introduction 

Shear flow instability of a stratified flow is one of the most pervading themes 

in the literature of fluid dynamics.  The additional influence of rotation is a key 

ingredient in the study of astrophysical and geophysical fluid motion. The linear 

stability of a stratified plane, parallel shear flow of an inviscid incompressible fluid 

has been studied extensively by many authors. Renardy (1985) focused on the role of 

stratification in the linear stability analysis of plane Couette flow of two layers of 

fluids at low Reynolds numbers. Small perturbations of plane Couette flow in 

stratified fluid were considered by Kuo (1963).  

Helmholtz (1868) discussed the stability of plane parallel flow of inviscid, 

homogeneous and incompressible fluid. Sumathi and Ragavachar (1993) analyzed the 

linear stability of plane parallel shear flow in a rotating system with respect to long 

wave disturbances using asymptotic approach. Salhi and Cambon (2010) made an 

analytical study on the stability of rotating stratified shear flows. 

However, we observed that only very few works are available in the study of 

stability of non parallel shear flows. Dunkerton (1997) studied a steady, non-parallel 

flow with vertical profiles of horizontal velocity and the static stability. Graham 

(1978) studied about non-parallel shear flows of an inviscid, incompressible, density 

stratified fluid and considered a stability analysis in terms of the possibility of 

complete mixing within a horizontal layer of thickness.  

In this chapter, the work of Farrell and Ioannou (1993) is extended by 

including the rotation effect for nonparallel flow. The system is assumed to be 

rotating with constant angular velocity Ω about a vertical axis which is taken as z-

axis. The layer is sheared between two rigid boundaries. The system is characterized 

by three dimensionless parameters: the Richardson number Ri, Brunt Vaisala 

frequency N
2
, Rotation parameter τ. Because of rotation, the flow disturbances are 

three dimensional. 
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8.2  Mathematical Formulation of the problem 

   We consider the stratified shear flow of an unsteady inviscid fluid rotating 

about a vertical axis with uniform angular velocity . The fluid is assumed to be 

nonparallel in nature characterized by a shear layer. The Boussinesq fluid of variable 

density is considered and assumed to be stratified with density 𝜌 𝑥, 𝑧, 𝑡 = 𝜌𝑚 +

𝜌0 𝑧 + 𝜌′(𝑥, 𝑧, 𝑡) where 𝜌𝑚  is the mean, 𝜌0 𝑧  is the space variation confined to 

vary only in the vertical coordinate z and  𝜌′  represents the density fluctuation. The 

stratified shear flow is confined between two rigid plates at z = L. The basic flow is 

taken as (U(z), V(z), 0).  

The assumptions made for the present problem are 

 Flow of unsteady, inviscid, incompressible Newtonian fluid is considered.  

 Stratified shear flow is taken into account 

 Fluid is flowing between two horizontal infinite rigid plates separated by a 

distance 2L. 

 The system is rotating about a vertical axis with constant angular velocity 

. 

 No slip boundary conditions are imposed at the boundaries. 

 Boussinesq approximation is taken into consideration. 

 The basic velocity profile is assumed as eq


   𝑈 𝑧 , 𝑉(𝑧), 0 . 

 Magnetic effect and viscous dissipation effects are neglected. 

Under the above mentioned assumptions the physical model of the problem is 

shown in Figure. 8.1.  

 

 

 

 

 

 

 

 

 

Figure. 8.1. Physical model and coordinate system 
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The governing equations for the motion of an inviscid, rotating Boussinesq 

stratified fluid confined between two horizontal infinite rigid planes situated at 

𝑧 = ±𝐿 are  

 𝛻. 𝑞                   = 0      (8.1) 

 𝜌  
𝜕𝑞  

𝜕𝑡
+  𝑞 . 𝛻 𝑞 + 2𝑘 × 𝑞  =  −𝛻𝑝 − 𝜌𝑔𝑘    (8.2) 

     
𝜕𝜌

𝜕𝑡
+   𝑞 . 𝛻 𝜌                  =  0      (8.3) 

where q  (u, v, w) , ρ, p, g represents the velocity vector, density, pressure and 

acceleration due to gravity respectively. 

The relevant boundary condition is  𝑞   ±𝐿 = 0    (8.4) 

The basic flow is given by𝑞𝑒     = (𝑈 𝑧 , 𝑉 𝑧 , 0), 𝜌0 =  𝜌0 𝑧 , 𝑝0 =  𝑝0 𝑧 . Hence at 

the equilibrium state, the pressure and density are related by 

−2 𝜌0𝑘 × 𝑞𝑒 = −
𝜕𝑝0

𝜕𝑧
− 𝑔 𝜌𝑚 + 𝜌0 𝑧      (8.5) 

Introduce the following dimensionless quantities for time, length, velocity, pressure 

and density   

 𝑡 =
𝐿𝑡∗

𝑈0
 , 𝑞 = 𝑈0𝑞 

∗  𝑝 = 𝜌0 𝑈0
2𝑝∗, 𝜌 =  

𝜌0𝑈0
2𝑁0

2

𝐿𝑔
𝜌∗  

and (x,y,z) = L(x*,y*,z*),       (8.6) 

where 𝑁2 = −
𝑔

𝜌0
 
𝑑𝜌

𝑑𝑧
   is the Brunt-Vaisala frequency which is assumed to be 

positive for static stability and N0 is a typical value of Brunt-Vaisala frequency in the 

flow domain, L is the characteristic length and U0 is the characteristic velocity.  

We then transform the above governing equations (8.1), (8.2) and (8.3) into 

their dimensionless form (after removing asterisks) 

𝛻. 𝑞                = 0      (8.7) 

 
𝜕𝑞  

𝜕𝑡
+  𝑞 . 𝛻 𝑞 + 𝜏𝑘 × 𝑞  =  −𝛻𝑝 −  𝑅𝑖 𝑔𝑧     (8.8) 

  
𝜕𝜌

𝜕𝑡
+   𝑞 .𝛻 𝜌   =  0           (8.9) 

where         𝑅𝑖 =  
gβL2

ρ0U0
2 ,          Richardson number 

                    𝜏 =
2Ω𝐿

𝑈0
               Rotation parameter 

The appropriate boundary conditions are written as 

        𝑞   ±1 = 0        (8.10) 
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For the stability analysis, the flow is decomposed into the mean flow and disturbance 

as below    

 𝑞 =  𝑈 𝑧 + 𝑢, 𝑉 𝑧 + 𝑣, 𝑤 , 𝜌 𝑧 = 𝜌𝑚 + 𝜌0 𝑧 + 𝜌′(𝑧), 

 𝑝 = 𝑝0 𝑧 + 𝑝′(𝑧) 

Substituting in equations (8.7), (8.8) and (8.9), the linearized perturbation equations 

are obtained as         

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
     = 0   (8.11) 

 
𝜕𝑢

𝜕𝑡
+ 𝑈 𝑧 

𝜕𝑢

𝜕𝑥
+ 𝑉 𝑧 

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑈(𝑧)

𝜕𝑧
− 𝜏𝑣         = −

𝜕𝑝 ′

𝜕𝑥
                        (8.12) 

 
𝜕𝑣

𝜕𝑡
+ 𝑈 𝑧 

𝜕𝑣

𝜕𝑥
+ 𝑉 𝑧 

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑉(𝑧)

𝜕𝑧
+ 𝜏𝑢         = −

𝜕𝑝 ′

𝜕𝑦
                        (8.13) 

 
𝜕𝑤

𝜕𝑡
+ 𝑈 𝑧 

𝜕𝑤

𝜕𝑥
+ 𝑉 𝑧 

𝜕𝑤

𝜕𝑦
                       = −

𝜕𝑝 ′

𝜕𝑧
− 𝑅𝑖𝜌′             (8.14) 

 
𝜕𝜌 ′

𝜕𝑡
+ 𝑈 𝑧 

𝜕𝜌 ′

𝜕𝑥
+ 𝑉 𝑧 

𝜕𝜌 ′

𝜕𝑦
−

N2

N0
2 𝑤                   = 0                              (8.15) 

Assuming normal modes of the form 𝑓(𝑧)𝑒𝑖𝑘 𝑥+𝑙𝑦−𝜍𝑡  , where f(z) is a function 

of z only, k and l are wave numbers in the x and y direction respectively and  is the 

growth rate of the disturbance which is in general a complex constant. Hence, the 

modified form of the above linearized equations (8.11) – (8.15) is given as   

 𝑖𝑘𝑢 + 𝑖𝑘𝑙𝑣 +
𝜕𝑤

𝜕𝑧
       = 0    (8.16) 

 𝑖𝑘 −𝜍 + 𝑈 + 𝑙𝑉 𝑢 + 𝑤
𝜕𝑈(𝑧)

𝜕𝑧
− 𝜏𝑣    = −𝑖𝑘𝑝′       (8.17) 

 𝑖𝑘 −𝜍 + 𝑈 + 𝑙𝑉 𝑣 + 𝑤
𝜕𝑉(𝑧)

𝜕𝑧
+ 𝜏𝑢    = −𝑖𝑘𝑙𝑝′    (8.18) 

 𝑖𝑘 −𝜍 + 𝑈 + 𝑙𝑉 𝑤   = −
𝜕𝑝 ′

𝜕𝑧
− 𝑅𝑖 𝜌′        (8.19) 

 𝑖𝑘 −𝜍 + 𝑈 + 𝑙𝑉 𝜌′ −
𝑁2

𝑁0
2 𝑤      = 0    (8.20) 

Corresponding boundary conditions for the problem are    

 𝑢(𝑧) = 𝑣(𝑧) = 𝑤(𝑧) = 0               𝑎𝑡 𝑧 = ±1   (8.21) 

8.3 Eigen values and eigen functions for long waves 

Consider the analysis for long wave approximation (i.e) k is assumed to be 

small. The flow is assumed to be bounded between two plates 𝑧 =  1. The basic 

linear velocity profile for the flow is taken as U(z) = V(z) = z. We apply the series 

expansion in terms of wave number k in the form  

  𝑓 = 𝑓0 + 𝑘𝑓1 + 𝑘2𝑓2 + ⋯       (8.22) 

where 𝑓  represents the disturbances 𝑢, 𝑣, 𝑤, 𝜍,  𝜌′  or 𝑝′ .  
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By applying equation (8.22) into equations (8.16) to (8.20) and boundary 

conditions (8.21) the zeroth order approximation is given by 

 𝑖𝑢0 + 𝑖𝑙𝑣0 +
𝜕𝑤0

𝜕𝑧
  = 0           

 𝑖𝑇(𝑧)𝑢0 + 𝑤0    = −𝑖𝑝0  

 𝑖𝑇(𝑧)𝑣0  = −𝑖𝑙𝑝0      

 −
𝜕𝑝0

𝜕𝑧
− 𝑅𝑖 𝜌0    = 0          

 𝑖𝑇(𝑧)𝜌0 −
𝑁2

𝑁0
2 𝑤0     = 0      (8.23) 

where 𝑇 𝑧 =  1 + 𝑙 𝑧 − 𝜍0 

with the corresponding boundary condition      

 𝑢0 ±1 = 𝑣0 ±1 = 𝑤0 ±1 = 0        (8.24) 

Eliminating the above equation (8.23) in terms of 𝑤0, we get   

 𝑇(𝑧)2 𝜕2𝑤0

𝜕𝑧2 +
𝑅𝑖  𝑁2

 𝑁0
2  1 + 𝑙2 𝑤0 = 0          (8.25) 

The solution of equation (8.25) is given by      

 𝑤0 =

 
 

 
A T z m1 + B T z m2 ,                                                            𝜆 > 0

𝑇(𝑧)
1

2 C + D log⁡(T(z) ,                                                          𝜆 = 0

𝑇(𝑧)
1

2  Ecos⁡ 𝑘𝑙𝑜𝑔 𝑇(𝑧)  + Fsin⁡ 𝑘𝑙𝑜𝑔 𝑇(𝑧)   ,        𝜆 < 0

  

where  𝑚1,2 =
1 𝜆

2
, λ = 1 − 4 𝑅𝑖

 𝑁2

𝑁0
2 (1 + 𝑙2), 𝑘 =

 −𝜆

2
, A, B, C, D, E and F are 

arbitrary constants.  

By imposing the boundary condition that the velocity must vanish at the boundaries 

(i.e) 𝑤0 = 0  𝑎𝑡 𝑧 =  1, we obtain the value of  𝜍0 as     

 𝜍0 =

 
 
 

 
 (1 + 𝑙)

1+𝑒
2𝑛𝜋𝑖

𝑚1−𝑚2

1−𝑒
2𝑛𝜋𝑖

𝑚1−𝑚2

,              𝜆 ≥ 0

(1 + 𝑙)
1+𝑒

𝑛𝜋
𝑘

1−𝑒
𝑛𝜋
𝑘

,                      𝜆 < 0

     (8.26) 

The solution of equation (8.23) with the boundary condition (8.24) is given as 

 𝑢0 =  
𝐹5𝑇(𝑧)𝑚1−1 + 𝐹6𝑇(𝑧)𝑚2−1,                                                               𝜆 ≥ 0

𝑇(𝑧)
1

2  𝐹34 𝑐𝑜𝑠  𝑘𝑙𝑜𝑔 𝑇 𝑧   + 𝐹35𝑠𝑖𝑛⁡ 𝑘𝑙𝑜𝑔 𝑇(𝑧)   ,                     𝜆 < 0
   

 𝑣0 =  
𝐹7𝑇(𝑧)𝑚1−1 + 𝐹8𝑇(𝑧)𝑚2−1 ,                                                                   𝜆 ≥ 0

𝑇(𝑧)
1

2  𝐹36 𝑐𝑜𝑠  𝑘𝑙𝑜𝑔 𝑇 𝑧   + 𝐹37𝑠𝑖𝑛⁡ 𝑘𝑙𝑜𝑔 𝑇(𝑧)   ,                     𝜆 < 0
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 𝑤0 =  
𝑇(𝑧)𝑚1 + 𝐵𝑇(𝑧)𝑚2 ,                                                                            𝜆 ≥ 0

𝑇(𝑧)
1

2  𝑐𝑜𝑠  𝑘𝑙𝑜𝑔 𝑇 𝑧   + 𝐵𝑠𝑖𝑛⁡ 𝑘𝑙𝑜𝑔 𝑇(𝑧)   ,                     𝜆 < 0
              

             𝜌0 =  
𝐹1𝑇(𝑧)𝑚1−1 + 𝐹2𝑇(𝑧)𝑚2−1,                                                                𝜆 ≥ 0

𝑇(𝑧)
−1

2  𝐹30 𝑐𝑜𝑠  𝑘𝑙𝑜𝑔 𝑇 𝑧   + 𝐹31𝑠𝑖𝑛⁡ 𝑘𝑙𝑜𝑔 𝑇(𝑧)   ,                𝜆 < 0
  

             𝑝0 =  
𝐹3𝑇(𝑧)𝑚1 + 𝐹4𝑇(𝑧)𝑚2 ,                                                                         𝜆 ≥ 0

𝑇(𝑧)
1

2  𝐹32 𝑐𝑜𝑠  𝑘𝑙𝑜𝑔 𝑇 𝑧   + 𝐹33𝑠𝑖𝑛⁡ 𝑘𝑙𝑜𝑔 𝑇(𝑧)   ,                 𝜆 < 0
  

The first order approximation is given by 

 𝑖𝑢1 + 𝑖𝑙𝑣1 +
𝜕𝑤1

𝜕𝑧
   = 0         

 𝑖𝑇 𝑧 𝑢1 + 𝑤1 − 𝑖𝜍1𝑢0 − 𝜏𝑣0   = −𝑖𝑝1  

 𝑖𝑇 𝑧 𝑣1 + 𝑤1 − 𝑖𝜍1𝑣0 + 𝜏𝑢0   = −𝑖𝑙𝑝1     

 −
𝜕𝑝1

𝜕𝑧
− 𝑅𝑖 𝜌1      = 0        

 𝑖𝑇 𝑧 𝜌1 − 𝑖𝜍1𝜌0 −
𝑁2

𝑁0
2 𝑤1     = 0      (8.27) 

with the boundary condition   

 𝑢1 ±1 = 𝑣1 ±1 = 𝑤1 ±1 = 0                                          (8.28) 

By simplifying equation (8.27) in terms of 𝑤1 , we get     

 𝑇 𝑧 2 𝜕2𝑤1

𝜕𝑧2 +
𝑅𝑖  𝑁2

𝑁0
2  1 + 𝑙2 𝑤1 = 𝜍1  𝑇 𝑧 

𝜕2𝑤0

𝜕𝑧2  − 𝜏  
𝜕𝑣0

𝜕𝑧
− 𝑙

𝜕𝑢0

𝜕𝑧
 𝑇 𝑧  

           −𝑖𝑅𝑖𝜌0𝜍1  1 + 𝑙2      (8.29) 

The value of  σ1 can be obtained from the above equation by applying the boundary 

condition that 𝑤1 ±1 =  0                                                  

             𝜍1 =  

𝜏 𝐹29

 𝐹27−𝑅𝑖  𝐹28
,                                       𝜆 ≥ 0

𝜏𝐹70

𝐹71−𝑅𝑖𝐹72
,                                        𝜆 < 0

        (8.30) 

For the sake of brevity the constants are given in Appendix VI.                                                                                              

8.4  Result and Discussion 

 In the previous section we have considered an unsteady inviscid Boussinesq 

fluid rotating about a vertical axis with uniform angular velocity . The flow is 

assumed to be non parallel. Cartesian coordinate system is introduced in such a way 

that the basic flow is taken as (𝑈 𝑧 , 𝑉 𝑧 , 0). The numerical computations have been 

carried out for various values of rotation number (), wave number (k), transverse 

wave number (l), Brunt Vaisala frequency (N
2
) and Richardson number (Ri). In order 
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to illustrate the results graphically, the numerical values are plotted in Figures (8.2) – 

(8.14).  

 Figures (8.2) – (8.5) illustrate the influence of wave number (k) on the growth 

rate () for various Rotation number (), transverse wave number (l), Brunt Vaisala 

frequency (N
2
) and n when 𝜆 > 0. It is noted that the growth rate decreases with the 

increase of all the above mentioned parameters thereby making the system stable.  

 Figures (8.6) and (8.7) represent the growth rate ( ) as a function of Brunt- 

Vaisala frequency (N
2
) for various values of longitudinal wave number (k) and 

Rotation number ( ) when 𝜆 > 0. It is noticed from Figure (8.6) that with respect to 

N
2
 growth rate increases with increasing wave number (k) and making the system 

more unstable. Also it is found from Figure (8.7) that increase in Rotation number ( ) 

reduces the nature of growth rate. But with the increase in Brunt-Vaisala frequency 

(N
2
) the system becomes more stable. 

 Figures (8.8) – (8.12) deal with the effect of wave number (k) on growth rate 

() for various nondimensional parameters like Richardson number (Ri), transverse 

wave number (l), Rotation number ( ), Brunt Vaisala frequency (N
2
) and n when 𝜆 <

0 . It is seen from Figures (8.8) and (8.9) that the growth rate () is influenced 

considerably and increase when Richarson number (Ri) and transverse wave number 

(l) increases with increasing wave number (k). This makes the system more stable. 

 From Figure (8.10), we observe that when Rotation number () increases, 

growth rate () decreases and stabilizes the flow. Figure (8.11) displays the growth 

rate () for various n. There exist both stable and unstable modes for different values 

of n. It is seen from Figure (8.12) that the growth rate () is increased considerably 

with increasing Brunt – Vaisala frequency (N
2
) which destabilizes the flow pattern. 

 Figures (8.13) and (8.14) deal with the effect of longitudinal wave number (k) 

and Brunt – Vaisala frequency (N
2
) on the velocity. The velocity profile increases 

with the increase in k and N
2
.  

8.5  Conclusion 

 The purpose of this study is to bring out the influence of various 

dimensionless parameters on the inviscid, incompressible Boussinesq rotating fluid 
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over the nonparallel stratified shear flow. The rotation effect is exhibited through the 

non dimensional number  . The corresponding results for parallel flow without 

rotation can be obtained by setting  = 0 and l = 0. It is worth mentioning that these 

results qualitatively agree with Farrell and Ioannou (1993). 

The following conclusions are made from the results presented and discussed in the 

previous section. 

 The system becomes stable with the increase in Rotation number ( ), 

transverse wave number (l) and Brunt – Vaisala frequency (N
2
) for  > 0.  

 Increasing Brunt –Vaisala frequency (N
2
) stabilizes the flow.   

 Increase in Ri and l increases the growth rate and makes the system stable. 

Increase in N
2
 increases the growth rate and destabilizes the flow field 

(𝜆 < 0). 

 Growth rate increases with the increase in rotation number ( ) thereby 

stabilizes the flow field (𝜆 < 0). 

 Velocity profile increases with the increase in longitudinal wave number (k ) 

and rotation number () 
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Figure  8. 2. Growth rate as a function of wave number for various   𝜆 >  0  

 

 

Figure  8. 3. Growth rate as a function of wave number for various l  𝜆 >  0  
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Figure  8. 4. Growth rate as a function of wave number for various N2  𝜆 >  0  

 

 

Figure  8. 5. Growth rate as a function of wave number for various n  𝜆 >  0  
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Figure  8. 6. Growth rate as a function of Brunt vaisala frequency for various k  𝜆 >  0       

 

 

Figure  8. 7. Growth rate as a function of Brunt vaisala frequency for various   𝜆 >  0  
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Figure  8. 8. Growth rate as a function of  wave number for various Ri  𝜆 < 0  

 

 

Figure  8. 9. Growth rate as a function of wave number for various l  𝜆 < 0  
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Figure  8. 10. Growth rate as a function of wave number for various   𝜆 < 0  

 

 

Figure  8. 11. Growth rate as a function of  wave number for various n  𝜆 < 0  
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Figure  8. 12. Growth rate as a function of wave number for various N2  𝜆 < 0  

 

 

Figure  8. 13. Effect of small wave number (k) on velocity profile 

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

0 0.2 0.4 0.6 0.8 1 1.2

Im
a
g
( 


)

k

-4.00E-08

-3.00E-08

-2.00E-08

-1.00E-08

0.00E+00

1.00E-08

2.00E-08

3.00E-08

-1.5 -1 -0.5 0 0.5 1 1.5

w

z

k = 0.1

k = 0.2

k = 0.3

k = 0.4

              N
2
 = 0.2 

              N
2
 = 0.4 

              N
2
 = 0.7                 



Stability of Stratified Rotating Nonparallel Shear Flows  141 
 

 

Figure  8. 14. Effect of Rotation number (τ ) on velocity profile  
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