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CHAPTER I 

INTRODUCTION 

1.1    Motivation and Introduction 

Fluid mechanics is the study of mechanics of fluids based on fundamental 

laws of motion. The large number of applications of fluid mechanics has made it one 

of the most vital and fundamental subjects in the field of almost all engineering and 

applied scientific studies. The flight of birds in the air, design of aeroplanes and ships, 

action of fishes in water are based on the theory of fluid mechanics. In most of the 

fluid mechanics problems, some approximations and simplified assumptions are taken 

regarding nature of the fluids and flow boundaries. When we make an attempt to 

study a realistic physical situation, the problem becomes more complicated and the 

mathematical tools available are insufficient to solve the problems in its original 

nature.  

Hence, it is necessary to make suitable assumptions and approximations which 

not only simplify the mathematical formulation of the problem, but also in agreement 

with the physical needs of the problem. The actual flow conditions or boundary 

conditions may be slightly different than those taken in the theoretical analysis. If 

these small changes lead to large deviation in the flow variables, the theoretically 

obtained flow cannot be realized physically. Further, due to some disturbances 

inherently present in the flow, we must analyze whether these disturbances grow or 

decay with time. To analyze this theoretically, the investigation of the stability of 

fluid flows becomes essential.  

During the past few decades, the study of electrically conducting fluid flows in 

the presence of magnetic or electric fields have become very important because of 

their wide applications. The motion of an electrically conducting fluid under a 

magnetic field gives rise to induced electric currents on which mechanical forces are 

exerted by the magnetic field. The flows of electrically conducting fluids in the 

presence of a magnetic field are called the hydromagnetic flows. Hydromagnetic 

flows are more complex than the hydrodynamic flows.  

Stratification and Rotation are the distinctive features in geophysical fluid 

dynamics. Stratified fluid is a fluid with density variations in the vertical direction. It 

consists of fluid particles of various densities. These fluid particles, due to density 
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variation will tend to arrange themselves under gravity. So, the higher density fluid 

particles are found below the fluid particles with lower density. This type of vertical 

layering introduces a gradient of properties in vertical directions, which affects the 

velocity field. Hence the vertical rigidity induced by the effect of rotation will be 

attenuated by the presence of stratification. Because of stratification, certain degree of 

decoupling is induced between various fluid masses (of different densities). Stratified 

systems typically contain more degrees of freedom than homogeneous systems and 

we anticipate that the presence of stratification permits the existence of additional 

types of fluid motions. One example is a system of two superimposed fluids in a 

channel with lighter fluid on the top. In this case, changes in density takes place with 

height, as illustrated in Figure. 1.1.  

 

Figure  1. 1. Density-height curve in a two fluid system 

In day to day life layered systems of stratified fluids occur in many instances. 

Some of the examples include warm water lying above cold water, fresh water above 

salt water, interface between air and water. In oceans and seas, variations in 

temperature of water and salinity at the surface and also below the surface govern 

stratification, due to advection and adiabatic processes.  

Stratification in water occurs when water masses with different properties 

like salinity (halocline), oxygenation (chemocline), density (pycnocline) and 
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temperature (thermocline) form layers that act as barriers to mixing of water. These 

layers are arranged according to density, which is a function of salinity and 

temperature. It also creates barrier to nutrient mixing between layers. This can affect 

the primary production in an area by limiting photosynthetic processes. The 

stratification is commonly referred as a two-layer structure that consists of an upper 

and a lower layer. A transitional middle layer exists between the upper and lower 

layers, which are known as halocline and thermocline, respectively (see Figure 1.2). 

 

Figure 1.2 Oceanic stratification 

Baltic Sea is a brackish sea located in northern Europe from 53◦ N to 66◦ N 

latitude and from 20◦ E to  26◦  E  longitude, connected  to  the  Atlantic  Ocean  via  

the  Danish  Straits.  The Baltic Ice Lake was born 13,000 years ago and its present 

brackish state emerged 7000 years ago. For 2000 years, the salinity has been close to 

the present level (mean salinity: 7 parts per thousand). The Baltic Sea is a shallow sea 

that consists of a series of basins interconnected through narrow sills (see Figure 1.3). 

The Baltic Sea is highly stratified by strong vertical salinity and temperature 

gradients. 
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Figure  1.3 Baltic Sea and its nature 

Frequently, however, density varies continuously, as in the oceans and 

atmosphere. Density variations profoundly affect the motion of water and air. Wave 

phenomena in air flow over mountains and the occurrence of Smog (Figure 1.4) are 

examples of stratification effects in the atmosphere.   

 

Figure  1.4. Smog over Los Angeles - brown haze covering the basin and making the skyscrapers of 

downtown Los Angeles barely visible.  

Shear flows of magnetized plasmas are routinely observed in the solar 

atmosphere, in interplanetary space and in planetary magnetospheres. They are also 

ubiquitous models of remote astrophysical objects like the interacting stellar winds in 

binary stellar systems. Studying stability of such flows is paramount for 
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understanding physical processes in space. The simplest shear flow is a tangential 

MHD discontinuity. Mixing is a very common nature in the environmentally 

prevalent flows with both vertical velocity and density variation. Examples of mixing 

include the thermocline, the lutocline, planetary boundary layers, river mouths, etc.  

One of the classical astrophysical problem involving shear instability is the 

problem of Sun’s magnetic field. In solar magneto hydrodynamics interaction 

between magnetic fields and solar instabilities, stratification, compressibility, effects 

due to the buoyancy and magnetic buoyancy are all important.  

1.2   Shear flows 

Shear occurs whenever adjacent fluid layers move parallel to one another, with 

different speeds. In fluid mechanics, shear flow refers to a type of fluid flow which is 

caused by forces, relatively than to the forces themselves.  

  

a) The fluid is moving to the right and the 

magnitude of the fluid velocity increases linearly 

with y 

(b) Fluid is moving with velocity at point P 

Figure 1.5. Sketch depicting the velocity profile of a simple shear flow 

Shear flows are ubiquitous in nature and can occur on any scale. Flows 

pumped through pipes by some pressure gradient along the pipe (called Poiseuille 

flows) are present everywhere in natural or engineered systems. Examples include 

blood flow through the body, from small capillaries to arteries, fluid flows through 

underground river systems, magma flows and pyroclastic flows through volcano 

chimneys, water owing through a hose, a kitchen faucet, oil in a car engine, in a 

pipeline, etc. Many astrophysical and geophysical phenomena that are found in the 

ocean, in the atmospheric wind patterns, in the surface and subsurface flows of the 

https://en.wikipedia.org/wiki/Fluid_mechanics
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Sun, giant planets, other stars and in the orbital motion of gas in accretion disks can 

be explained by the study of shear flows driven by differential pressure gradient. 

1.3   Practical examples of shear layers 

Wind shear defines a change in the speed of wind and/or direction over a short 

distance. It can occur either horizontally or vertically and is most often associated 

with strong temperature conversions or density gradients. Wind shear occurs at high 

as well as at low altitudes.  

Figure 1.6 Low-altitude wind shear 

The effects of stratification are critical to the occurrence of many 

environmental phenomena. It is well known, for example, that stratified flows past 

long mountain ranges may be blocked and thus may lead to serious air pollution 

problems.  

   

Figure  1.7. Some examples of stratified shear layers 
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Kelvin-Helmholtz instability is a hydrodynamic instability in which 

inviscid and incompressible fluids are in relative and irrotational motion. Here, 

the density and velocity profiles in each fluid layer are uniform, but 

discontinuity arises at the (plane) interface between the two fluids. This 

tangential discontinuity in the velocity induces vorticity at the interface and at 

last the interface becomes an unstable vortex sheet that rolls up into a spiral. The 

heavier fluid parcels from lower denser fluid are lifted up and the lighter fluid 

parcels from lighter upper fluid are pushed down so overall potential energy is 

increased. KHI in the atmosphere is shown in Figure. 1.8 

   

Figure 1.8: Kelvin–Helmholtz instability in atmosphere rendered visible by clouds, known as 

fluctus, over Mount Duval in Australia 

1.4    Stability Analysis 

Every system in nature is subject to small perturbations. The system is given 

small disturbances (perturbations) and reactions of the system of these perturbations 

are studied. If the disturbances gradually die down, the system is said to be stable. If 

the perturbations grow with time i.e. the system never reverts to its initial position, it 

is said to be unstable. If the system neither departs from its disturbed state nor tends to 

return to its initial position, the system is said to be in neutral equilibrium. Further if 

at the onset of instability, there is an oscillatory motion with growing amplitude, the 

instability is termed as over stability. Instability of the system even for a single mode 

of disturbance will qualify the system to be unstable whereas the system cannot be 

termed as stable unless it is stable with respect to every possible disturbance to which 

it is subjected. 

https://en.wikipedia.org/wiki/Mount_Duval_%28New_South_Wales%29
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Stability can also be defined as the ability of a dynamical system to be 

immune to small disturbances. The concept of stability in the mathematical study of a 

physical system has had a long and fruitful history. Real situations show that for the 

practical use of many technical systems, stability properties can be a decisive 

criterion. Some examples where stability properties are important include: 

engineering structures (bridges, plates, shells structures under pressure loading or 

unloading by flowing fluids), vehicles moving at high speed, truck-trailer 

combinations, railway trains and hydrodynamics problems. Over the past decades, 

engineers have approached many of their stability problems using linearized stability 

analysis. 

The hydrodynamic stability of fluid flows is important in different fields, such 

as aerodynamics, astrophysics, mechanics, atmospheric sciences, oceanography and 

biology. The central issue of the stability analysis is to understand the underlying 

reasons for the breakdown of laminar flow and its subsequent transition to turbulence.  

1.5   Origin and Development of linear stability analysis 

The linear stability analysis in fluid dynamics probably dates back to 19
th

 

century. Researchers like Rayleigh, Taylor, and later, Chandrasekhar and many others 

carried out stability analysis with one-dimensional base flow. 

In the 1980s, increased power of computer led to the possibility of calculating 

two-dimensional base flows numerically. The corresponding eigenvectors are two-

dimensional and homogeneous or trigonometric in the third direction. At around the 

same time, techniques were developed for approximating certain two-dimensional 

base flows, called weakly non-parallel, as a sequence of one-dimensional flows, each 

located at different stations, then studying the stability of each one dimensional flows 

separately and assembling and interpreting the results, leading to classifications such 

as absolute and convective, local and global. The weakly non-parallel approach led to 

important advances in understanding, but is not applicable to strongly two-

dimensional or three dimensional flows. 

In local stability analysis, cross-stream slice through a flow evolving slowly in 

the stream-wise direction is taken and the velocity and density profiles of that slice are 

calculated.  
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Global linear instability analysis is concerned with the temporal or spatial 

development of small-amplitude perturbations superposed upon laminar steady or 

time-periodic three-dimensional flows, which are inhomogeneous in two (and 

periodic in one) or all three spatial directions. Global instabilities are found in the fuel 

injectors of rocket engines and aircraft gas turbines. 

Absolute-convective linear stability analysis investigates about the stability of 

the flow, where infinitesimal perturbations grow both in time and space.  

During 21
st
 century, the numerical computation of three-dimensional base 

states and of their stability became attainable. At around the same time, some 

researchers in the weakly non-parallel community turned to the full and exact 

computation of two- or three-dimensional base states and their stability. These 

researchers used the term “global" to differentiate this from the weakly non-parallel 

approach. This leads to number of problems. 

 It leads to historical inaccuracy. New researchers often date the advent of two 

or three dimensional analysis of stability to the time at which the term “global" 

began to be used and mistakenly attribute its development to the authors who 

initiated the use of this term. 

 It leads to confusion. New researchers often believe that “global stability 

analysis" comprises a specialized theory, rather than referring merely to the 

numerical solution of equations. 

 It prefers the weakly non-parallel approach, describing full and exact analysis 

as a special or competing technique. It is as though the WKB approach to 

solving differential equations was treated as fundamental, and other non-WKB 

techniques were given a special name.  

It unnecessarily overloads the word “global", which already has other uses in 

fluid dynamics. For example, it is used to describe a type of bifurcation that does not 

involve eigenvalue crossing as well as an oceanographic circulation. 

1.6   Formal approach and Stability techniques  

    The hydrodynamic equations i.e., the equations of mass conservation, 

momentum, energy and state, inspite of their complexity, allows some simple patterns 

of flow as basic solutions. However, the problem of discussing the stability of a 

hydrodynamic system may not be tractable mathematically. Even in the case of 
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simplest possible flows, the resulting differential equations are of higher order, often 

having variable coefficients and sometimes singular as well. Therefore, the discussion 

of stability of the flows has been concerned mainly to simple problems only, for 

example, static fluid layer, flow between parallel plates, couette and spiral flow 

between coaxial cylinders etc. Here we have briefly given the energy method and 

method of normal mode approach which are most widely used in the existing 

literature.  

(i) Energy Method 

To analyze the stability of a flow by this method, the kinetic energy of the 

perturbations is calculated. The perturbations in Kinetic energy increases with time, 

the flow becomes unstable and if it decays with time, then the flow becomes stable. 

This method is global in nature and thus restricted in applications since the kinetic 

energy of the whole system is calculated. To investigate the stability of the flow by 

this method, (i.e.,) when the fluid is confined within rigid boundaries, sometimes the 

vorticity of the perturbations is considered rather than their kinetic energy. So 

𝑤 =   𝑀2 + 𝑁2 + 𝑂2 𝑑𝑣,  

where (M, N, O) are the vorticity components of perturbations, and the 

integration is taken over whole of the flow domain. The basic flow is stable or 

unstable accordingly 
𝑑𝑤

𝑑𝑡
 is negative or positive. Now the perturbations must vanish at 

the boundaries as these are taken to be rigid. But there cannot be a non-trivial 

irrotational flow which vanishes at the boundary. Therefore, the velocity components 

of the perturbations must also tend to zero. Hence the flow is stable. 

This method is used mostly in the non-dissipative systems. Now a days, 

researchers use this technique for dissipative systems also. This method is more useful 

to do the non-linear stability analysis. 

(ii) Normal Mode Technique 

It is the most important technique that is used so far widely to determine the 

linear stability of a system, because its applications are wider. In this method, the 

perturbations are assumed to be small in magnitude and the nonlinear terms in the 

perturbation variables and (or) their derivatives are neglected as compared to the 

linear terms in the governing equations of the system. 
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In this technique, the perturbation terms are assumed as the regular functions 

of space variables and hence the Fourier analysis is possible. Thus in this method, the 

perturbation terms are expressed into Fourier components, called normal modes, and 

analysis will be considered about these modes which decay or grow with time. When 

all the modes decay with time, the flow becomes unstable because once in a while this 

mode will influence over the whole flow. 

In the theory of linear stability, the exponential dependence of the function ‘f’ 

on ‘t’ is considered. Then 

 𝑓 𝑥, 𝑦, 𝑧, 𝑡 =  𝜙 𝑦, 𝑘𝑋 , 𝑘𝑍 , 𝑛 𝑒𝑖 𝑘𝑋 𝑥+𝑘𝑍𝑧+𝑛𝑡   

where 𝑘   𝑘𝑋 , 0, 𝑘𝑍   is called the wave number vector, 𝑘 =  𝑘   , the wave number and 

the summation is taken over all 𝑘𝑋  and 𝑘𝑍, n is complex wave velocity. If the real part 

of n is positive, then the perturbations grow exponentially with time and the flow will 

be unstable in this case. If the real part of n is negative, then the perturbations decay 

exponentially with time and the flow will be stable.  

1.7    Dimensionless numbers 

The nondimensionalization of the governing equations of fluid flow is 

important for both theoretical and computational reasons. Nondimensional scaling 

provides a method for developing dimensionless groups that can provide physical 

insight into the importance of various terms in the system of governing equations. 

Dimensionless forms also allow us to present the solution in a compact way. Some of 

the important dimensionless numbers used in this thesis are given below. 

1. 7. 1   Richardson number 

Richardson number is the ratio of buoyancy force to the viscous force. It is 

defined as 

𝑅𝑖 =  
𝑔𝛽𝐿2

𝜌𝑈2
 

where   U is a typical velocity scale of the flow 

             g  represents the acceleration due to gravity 

   is the density of the fluid 

 L  is the typical length scale of the flow 
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If the Richardson number is less than unity, buoyancy is not important in the 

flow. If it is greater than unity, buoyancy is dominant (because of the insufficient 

kinetic energy to homogenize the fluids). 

1 . 7. 2   Magnetic pressure number 

Magnetic pressure number represents the ratio of the magnetic pressure to the 

dynamic pressure of the fluid. It is defined as 

𝑆 =  
𝜇𝑚𝐻0

2

𝜌𝑈2
 

where 𝜇𝑚  is the magnetic permeability 

           𝐻0  is the strength of the magnetic field  

               is the density of the fluid 

           U   is a typical velocity of the flow 

1. 7.  3   Brunt Vaisala frequency 

Brunt–Väisälä frequency, or buoyancy frequency, is the angular frequency at 

which a vertically displaced parcel will oscillate within a statically stable 

environment. It is the oscillation frequency of a parcel displaced vertically in an 

incompressible fluid and released. 

It is defined by  

    𝑁2 = −
𝑔

𝜌
 
𝑑𝜌

𝑑𝑧
  

where  g is the acceleration due to gravity 

             is the density of the fluid 

 when, 𝑁2 > 0, the system is stable 

                      𝑁2 = 0 represents the neutral stability 

                      𝑁2 < 0, the system is unstable 

1. 7. 4   Magnetic Reynolds number 

It provides an estimate of the relative effects of advection or induction of a 

magnetic field by the motion of a conducting medium. It is defined by 

  𝑅𝑚 =
𝑈𝐿

𝜂
 

where  U is a typical velocity scale of the flow  

            L is a characteristic length scale of the flow   

             is the magnetic diffusivity 

https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Advection
https://en.wikipedia.org/wiki/Induction_equation
https://en.wikipedia.org/wiki/Magnetic_diffusivity
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For Rm << 1, diffusion is relatively important, hence the magnetic field will 

tend to reduce in the direction of purely diffusive state, determined by the boundary 

conditions rather than the flow.  

For Rm >> 1, advection is relatively important on the length scale L.  Flux 

lines of the magnetic field are then transported with the fluid flow, where gradients 

are concentrated into regions of short length scale that diffusion can balance 

advection.  

1. 7. 5   Rotation number  

Rotation number is the ratio of Coriolis force to the bulk flow inertia force. 

The rotation number is defined by 

𝜏 =
Ω𝐿

𝑈0
 

where   is the angular velocity of rotation 

            L is the characteristic length 

           U0  is the characteristic velocity 

1. 7. 6  Hall current parameter 

The Hall parameter is defined as the ratio of cyclotron to collision frequencies.  

𝑀 =  
𝐻0

4𝜋𝑁𝑒𝜂
 

2

 

where    N is the electron number density 

             E is charge of an electron  

    H0 is the magnetic field strength 

The Hall Effect in ionized gas is significantly different from the Hall effect in solids 

(where the Hall parameter is always much less than unity) 

1. 7. 7  Hartmann number 

Hartmann number (Ha) is the ratio of electromagnetic force to the viscous 

force. It is defined as 

𝐻𝑎 = 𝐵 𝐿  
𝜍

𝜇
 

where B is the magnetic field 

          L is the characteristic length 

           is the electrical conductivity 
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           is the dynamic viscosity 

1.8   Brief Outline of the thesis 

The theme of this thesis is to study the linear stability of magneto 

hydrodynamic stratified shear flows of an inviscid, incompressible fluid under 

specified conditions. The work in the present thesis is divided into nine chapters.  

 Introduction 

 Literature Review 

 Hydromagnetic effect on the stability of plane couette flow of an  inviscid, 

incompressible, non-parallel stratified shear flow 

 Hall effect on linear stability of non-parallel stratified shear flow of inviscid 

incompressible fluid 

 Effect of varying magnetic field on linear stability of parallel stratified shear 

fluid  

 Hydromagnetic stability of plane Couette flow of a parallel stratified shear 

fluid  

 Effect of rotation on the linear stability of parallel stratified shear flows  

 Stability of stratified rotating non parallel shear flow 

 Summary 

Chapter I highlights the introductory concepts of the stability analysis and 

shear flows. Basic preliminaries relevant to the thesis are given. Chapter II is devoted 

to review existing literature relevant to the problems considered in this thesis. 

In Chapter III, we have extended the work of Padmini and Subbiah (1995) to 

study the effect of applied magnetic field on stratified nonparallel shear flows. The 

analysis is restricted to long wave approximations. A good qualitative agreement of 

the results obtained with those results obtained by Padmini and Subbaiah (1995) is 

found in the case of vanishing Hartmann number. 

In Chapter IV magnetic field is assumed to be strong enough to produce Hall 

current. Restricting the analysis to long wave approximations we have found 

analytical expressions to calculate growth rate and stream functions. The results 
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obtained were validated with the results obtained by Padmini and Subbaiah (1995) for 

vanishing Hall parameter. 

In Chapter V, the effect of varying magnetic field on a stratified shear flow 

through a channel is studied. The fluid is considered to be in a state of parallel flow 

with the basic velocity profile (U(y), 0, 0) and induced magnetic field (H(y), 0, 0). 

Analytical solutions are found for growth rate and velocity using regular perturbation 

technique. Effect of various parameters such as Brunt-Vaisala frequency, magnetic 

parameter and wave number on the growth rate of the small disturbances is studied 

numerically. 

The aim of Chapter VI is to investigate the effect of uniform magnetic field on 

the stability of a stratified flow through an infinite channel with linear shear velocity 

profiles. Asymptotic solutions have been obtained for velocity and growth rate using 

perturbation techniques.  

An effect of rotation on the linear stability of parallel stratified shear flows is 

investigated in Chapter VII. Governing equations for the flow are solved and 

numerical analysis is carried out to study the effect of various nondimensional 

parameters on growth rate and on velocity and the results are depicted graphically. 

In Chapter VIII the stability of inviscid, rotating stratified non parallel shear 

flow is investigated. The fluid was considered to be in a state of non parallel flow 

with the basic velocity profile (U(z), V(z), 0). The governing equations were derived. 

These equations reduce to those equations obtained by Farrell and Ioannou (1993) for 

vanishing rotation number. The stability of the flow was analyzed using normal mode 

approach and the analysis was restricted to long wave approximations. 

Chapter IX presents a brief summary of the findings obtained from the above 

mentioned works. 

In all the above mentioned problems, the set of nonlinear equations which 

includes equation of continuity, equation of motion, equation of state and Maxwell’s 

equations is considered. Appropriate boundary conditions for the geometry are also 

specified. The governing equations are solved using perturbation technique. 

Neglecting higher order terms of wave number, we obtain the linearized equations 

governing the dynamics of the perturbations. These linearized equations are studied 

via normal mode analysis. Analytical solutions are found for eigen functions and 
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eigen values using long wavelength approximations. In general, the eigen values are 

complex. Closed form solutions are obtained wherever possible or solutions are found 

numerically using the software Matlab 7.14. The numerical results of the flow 

characteristics are presented graphically. 

 


