
  
 

   

   

   

   

   

   

   

   

   

   

   

   

   

CCChhhaaapppttteeerrr   VVVIII   



 

Stability Analysis of Hydromagnetic Inviscid Stratified Parallel Linear Shear Flow   88 
 

CHAPTER VI 

STABILITY ANALYSIS OF HYDROMAGNETIC INVISCID 

STRATIFIED PARALLEL LINEAR SHEAR FLOW  

6.1 Introduction 

The linear stability of stratified shear flow of an inviscid, incompressible fluid 

has been broadly analysed by many authors. The classical method for obtaining 

stability criteria from the linearized equations for an inviscid incompressible fluid in a 

plane parallel flow is normal-mode technique, which leads to the Rayleigh stability 

equation Drazin and Reid (1981), Drazin and Howard (1966)). The normal-mode 

stability analysis of plane parallel flows of an inviscid, incompressible stratified fluid 

has been analyzed by Taylor (1931) and Goldstein (1931). 

Drazin (1960) examined the stability of parallel flow for small magnetic 

Reynolds numbers. Kent (1966, 1968) studied about the instability against small 

oscillations of symmetric laminar flow of an inviscid, incompressible perfectly 

conducting magnetofluid, in the presence of symmetric magnetic field parallel to the 

flow. Agarwal and Agarwal (1969) analyzed the stability of non-dissipative 

heterogeneous shear flow in the presence of uniform magnetic field in the streaming 

direction.  

Kochar and Jain (1979) investigated the hydromagnetic stability of stratified 

shear flows and obtained a semi-ellipse region for unstable modes in the complex 

plane. Rathy and Harikishan (1981) discussed the stability of the flow of an inviscid, 

incompressible fluid of variable density between two parallel plates in the presence of 

magnetic field. Small perturbations of parallel shear flow in an inviscid, 

incompressible stably stratified fluid are studied by Collyer (1970). 

The Kuo’s (1949) eigen value problem governs the normal mode stability of 

barotropic zonal flows of an inviscid, incompressible fluid on a  - plane. Barston 

(1991) introduced a new method in the linear stability analysis of plane parallel flows 

of inviscid, incompressible homogeneous fluid.  Stability of stratified shear flows in 

channels with variable cross section is studied in detail by Reddy and Subbiah (2015). 

Linear stability of inviscid, parallel and stably stratified shear flow under the 



 

Stability Analysis of Hydromagnetic Inviscid Stratified Parallel Linear Shear Flow   89 
 

assumption of smooth strictly monotonic profiles of shear flow and density is 

analyzed by Hirota and Morrison (2016). 

Keeping in mind the importance of Newtonian fluids in technology, industries, 

chemical engineering and owing to the importance of magnetic field in geophysics, 

astrophysics etc., we are motivated to study the linear stability of stratified shear fluid 

in the presence of uniform magnetic field in the present chapter. The work of Padmini 

and Subbiah (1995) is extended to study the effect of uniform magnetic field. The 

stability of stratified flow of an inviscid, incompressible fluid confined between two 

rigid planes at   under the influence of uniform magnetic field is considered. 

The analysis is restricted to linear velocity profile with long wavelength 

approximations. 

6.2 Formulation of the problem 

Consider an electrically conducting stratified inviscid Boussinesq fluid 

flowing between two horizontal plates. A uniform magnetic field is applied. We use 

Cartesian coordinates (x, y, z) taking the mid-point between two parallel plates as 

origin. The plates are considered at a distance 2L apart. The fluid is acted on by 

gravity force g(0, 0, -g). Under the above mentioned assumptions the schematic 

representation of the problem is given in Figure 6.1. 

 

           

                                      

 

 

               

Figure 6.1: Schematic representation of the problem 

With the Boussinesq’s approximation, the governing equations for the motion 

of an inviscid, incompressible, stratified shear fluid confined between two horizontal 

infinite rigid planes under horizontal magnetic field are 

             (6.1) 

        (6.2) 

x 

y 

  z = - L 

H0  g 

z 

z = + L 
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                  (6.3) 

            (6.4) 

             (6.5) 

where , , p, g, ,   and denote the velocity, density, pressure,  acceleration due 

to gravity, resistivity, magnetic permeability and the magnetic field  respectively.  

If the fluid is confined between two horizontal rigid planes at , the 

boundary conditions are 

                         (6.6)   

The equilibrium state is given by  

           (6.7) 

The dimensionless forms have been rendered for the quantities with respect to 

the characteristic length (L) and the characteristic velocity (U0) as the following:  

  ,  ,  

and (x,y,z) = L(x*,y*,z*)        (6.8) 

where   is the Brunt-Vaisala frequency which is assumed to be 

positive for static stability and is a typical value of Brunt-Vaisala frequency in the 

flow domain. Substitute the above dimensionless quantities in the governing 

equations, equations (6.1) - (6.5) reduce to (on removing asterisks) 

          (6.9) 

                  (6.10) 

                       (6.11) 

                 (6.12)  

                       (6.13) 

where ,     Magnetic Pressure Number 

         ,    Magnetic Reynolds Number  

         ,  Richardson Number 

The boundary condition in non-dimensional form is     

                        (6.14) 
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Decomposing the flow into basic state and disturbed as  

,  and , the basic state  are 

governed by the equations above.  

The linearized perturbation equations for infinitesimal normal modes of the 

form , (k, l and  are the horizontal, transverse wave number  and 

the complex wave velocity respectively) are obtained as 

        

      

       

     

                                                         

                                     

     

–     

                                                                            

  

  (6.15) 

The associated boundary conditions are 

u = v = w on     z =  1     (6.16) 

6.3  Eigen values and eigen functions for long waves 

 Here, we consider the analysis for long wave approximation (i.e) k is assumed 

to be small and the flow is assumed to be bounded between two plates  In 

order to get closed form solutions, we consider the linear velocity profile as the basic 

flow U(z) =  z.  

Hence equation (6.15) reduces to the form 
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–   

                                                                     

  

 (6.17) 

We assume the series expansions with respect to the wave number k in the form 

        (6.18) 

where   represents any one of the disturbances  

Substituting equation (6.18) into equation (6.17) and equating the coefficients 

of same degree terms and neglecting k
2
 we get the following set of differential 

equations: 

Zeroth order equations: 

             

     

        

              

         (6.19) 

           

                                

                                                       

      (6.20) 

where  
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First order equations: 

       

                  

          

       

          

        (6.21) 

      

       

         

      (6.22) 

The boundary conditions (6.16) reduce to 

         (6.23) 

By simplifying equation (6.19) in terms of  we get 

                                                    (6.24) 

The solution of equation (6.24) is given by 

 

where , λ = , , A, B, C, D, E and F are 

arbitrary constants.  

By applying the boundary conditions that the velocity should vanish at the boundaries 

(i.e)  , we obtain the value of   as 

     (6.25) 

The solution of equations (6.19) and (6.20) can be obtained as  
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Equation (6.21) is simplified interms of  as 

                                                          

                                                                (6.26)  

The value of  can be obtained from the above equation by applying the boundary 

condition that  

       (6.27) 

For the sake of brevity the constants are given in Appendix IV. 

6.4  Results and Discussion 

In this work, we have presented the numerical results concerning linear 

stability of an inviscid, incompressible hydromagnetic stratified shear flow by 

considering the basic state velocity profile as linear. To determine the effects of the 
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system parameters on the wave numbers, we plot the growth rate as a function of 

various dimensionless parameters. Figures (6.2) – (6.11) depict the growth rate as a 

function of wave number and Magnetic Reynolds number for various parameters 

when . 

Figure (6.2) shows the effect of Magnetic Reynolds number (Rm) on the 

growth rate. It shows that increase in Magnetic Reynolds number increases the growth 

rate with the increase in wave number thereby instability is triggered. Figure (6.3) 

shows the effect of Magnetic pressure number (S) on the growth rate. It is found that 

increasing magnetic pressure number leads to increase in the growth rate and have a 

destabilizing effect. The variation of growth rate with wave number is shown in 

Figure (6.4) for various values of l. It is seen from Figure (6.4) that increase in l 

increases the growth rate. It means that due to the increase in transverse wave number 

the flow becomes unstable.  

In Figure (6.5) the growth rate for various n is given. It shows that, there exists 

infinite number of modes for the given stability problem. In Figure (6.6) we present 

the variation of growth rate with respect to wave number for different values of Ri. 

The result indicates that growth rate increases with Ri for unstable disturbances and 

for small Richardson number the flow becomes stable and as Richardson number 

increases the flow becomes unstable. Figure (6.7) depicts the dependence of the 

growth rate on  Magnetic Reynolds number for various values of k when Ri = 0.1. 

From this, we conclude that with the increase in k the growth rate increases and leads 

to unstable disturbances. 

The variation of growth rate with Rm for different values of l is displayed in 

Figure (6.8). The result indicates that increase in l decreases the growth rate thereby 

destabilizes the flow field. Figure (6.9) shows the nature of growth rate with Rm for 

various values of Ri. It is understood from the figure that growth rate increases with 

the increase in Ri and results in unstable disturbances. Figure (6.10) shows the growth 

rates of the unstable modes for various Magnetic Reynolds number (Rm). Figure 

(6.11) portrays the growth rate as a function of Brunt-Vaisala frequency. It is noticed 

that increasing Brunt-Vaisala frequency stabilizes the system.  

Figures (6.12) – (6.20) give the idea about growth rate vs wave number, 

Magnetic Reynolds number and Magnetic pressure number when . The growth 



 

Stability Analysis of Hydromagnetic Inviscid Stratified Parallel Linear Shear Flow   96 
 

rate as a function of wave number is given in Figure (6.12) and Figure (6.13) for 

several values of Rm. We can see from both the figures that the disturbances are stable 

for small as well as large Magnetic Reynolds number. Figures (6.14) and (6.15) depict 

the growth rate as a function of wave number for small (S << 1) and large (S >> 1) 

Magnetic pressure number. It is observed from these figures that the flow becomes 

stable in both cases.  

The growth rate is shown in Figure (6.16) as a function of wave number. It is 

found from the figure that the flow field is stable for smaller values of Brunt-Vaisala 

frequency and becomes unstable for larger Brunt-Vaisala frequency. Figure (6.17) 

gives the growth rate as a function of wave number for different l. It is seen that the 

fluid becomes unstable with an increase in l. The growth rate as a function of wave 

number is shown through Figures (6.18) and (6.19) for n and Ri. It is found from 

Figure (6.18) that there exists infinite number of normal modes for the given system. 

From Figure. (6.19), it is evident that increase in Ri stabilizes the fluid flow. 

Figure (6.20) shows the variation of growth rate as a function of Rm for 

various k. It is observed that increase in k depreciates the growth rate thereby stabilize 

the system. Figure (6.21) depicts the growth rate interms of Magnetic pressure 

number for different k. It is noticed that increase in k declines the growth rate and 

therefore the system becomes stable. Figures (6.22) – (6.25) show the velocity profile 

for various non dimensional parameters. It is observed that the velocity profile 

increases with the increase in k and l when . Velocity profile decreases with the 

increase in k and increases with the increase in Ri when   

6.5  Conclusion 

We have analyzed in this work the effect of magnetic field on the linear 

stability of an idealized stratified shear flow using series expansion method. Here we 

have discussed different cases and estabilized the conditions for stability. Analysis is 

made using normal mode approach to study the stability of fluid flow and the analysis 

is restricted to long wave approximation. The effects of various nondimensional 

numbers like Magnetic pressure number, Magnetic Reynolds number, longitudinal 

wave number, transverse wave number, Brunt- Vaisala frequency and Richardson 

number on the stability of parallel shear flow confined between the plates at  

is studied.  
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From the results obtained, it is concluded that 

 Richardson number plays a significant role in the stability of parallel 

stratified shear flows.  

 Increase in wave number increases the growth rate for varying Magnetic 

Pressure number and Magnetic Reynolds number when thereby 

destabilizes the flow. 

 Increase in transverse wave number destabilizes the fluid flow.  

 With the increase in Richardson number the flow becomes unstable 

( ) 

 The flow becomes unstable with the increase in wave number as Magnetic 

Reynolds number increases.  

 As Magnetic Reynolds number increases, the flow is unstable for increase 

in Richardson number and Magnetic Pressure number. 

 As Brunt – Vaisala frequency increases, fluid flow becomes stable. 

 Increase in Magnetic Reynolds number, Magnetic Pressure number and 

Richardson number stabilize the fluid flow with the increase in wave 

number when  

 Increase in Brunt – Vaisala frequency and transverse wave number results 

in instability of the flow region. 

 Growth rate decreases for varying wave number and thereby stabilizes the 

flow with the increase in Magnetic Reynolds number and Magnetic 

Pressure number ( ).  
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Figure 6.2: Growth rate as a function of wave number for various Rm 

    

 
 

Figure 6.3: Growth rate as a function of wave number for various S 
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Figure 6.4: Growth rate as a function of wave number for various l 

 

 
 

Figure 6.5: Growth rate as a function of wave number for various n 
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Figure 6.6: Growth rate as a function of wave number for carious Ri 

 

 

Figure 6.7: Growth rate as a function of Magnetic Reynolds number for various k 
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Figure 6.8: Growth rate as a function of Magnetic Reynolds number for various l 

 

 
 

Figure 6.9: Growth rate as a function of Magnetic Reynolds number for various Ri 
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Figure 6.10: Growth rate as a function of Magnetic Reynolds number for various S 

 

 
 

Figure 6.11: Growth rate as a function of Brunt – Vaisala frequency N2 
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Figure 6.12: Growth rate as a function of wave number for various Rm 

 

 
 

Figure 6.13: Growth rate as a function of wave number for various Rm (Rm < 1) 
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Figure 6.14: Growth rate as a function of wave number for various S 

 

 
 

Figure 6.15: Growth rate as a function of wave number for various S (S < 1) 
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Figure 6.16: Growth rate as a function of wave number for various N2 

 

 
 

Figure 6.17: Growth rate as a function of wave number for various l 
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Figure 6.18: Growth rate as a function of wave number for various n 

 

 
Figure 6.19: Growth rate as a function of wave number for various Ri 
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Figure 6.20: Growth rate as a function of Magnetic Reynolds number for various k 

 

 
 

Figure 6.21: Growth rate as a function of Magnetic pressure number for various k 
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Figure 6.22: Effect of small wave number (k) on velocity profile  (  

 

 
 

Figure 6.23: Effect of transverse wave number (l) on velocity profile (  
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Figure 6.24: Effect of Richardson number (Ri) on velocity profile  (  

 

 
 

Figure 6.25:Effect of small wave number (k) on velocity profile  (  
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