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2. COMMUNITY DETECTION IN SOCIAL NETWORK 

 
The modern networks like the social network can generally be modeled as a graph 

structure and the problems like link prediction, community detection in social network 

analysis and social network mining can be solved using graph theory techniques. One of the 

most relevant features of graphs representing real systems is community structure or cluster 

i.e. the organization of vertices, with many edges joining vertices of the same cluster and 

comparatively few edges joining vertices of different clusters. Such clusters, or communities, 

can be measured as fairly independent compartments of a graph, playing a similar role. 

Detecting communities is of great importance in disciplines where systems are often 

represented as graphs. This chapter presents the basic concepts of graph theory and 

theoretical background of community detection.  

 

2.1 GRAPH THEORY - DEFINITION AND TERMINOLOGY  

Most of the social networks are directed graphs which is a graph with a set of nodes 

connected by edges, where the edges have a direction associated with them. This section 

provides the basic terminology and graph theory background that is used throughout the 

research work.  

Graph  

A network is usually represented by a graph. A graph G = (V, E) consists of a set of 

nodes V and a set of edges E ⊆ V × V which connect pairs of nodes. The number of nodes in 

the graph is equal to n = |V | and the number of edges m = |E|. Table III gives a list of 

symbols used along with their definition. 

Table III Symbols and Definitions 

Symbol Definition 

G Directed network 

GU Undirected network 

GB = (Vh, Va, Eb) Bipartite network 

V, E  Set of nodes and edges for network G 

|V | = n, |E| = m Number of nodes and edges in the network 

e = (u, v) Edge e ∈ E from node u to node v 

AU, A  Adjacency matrix of an undirected and directed network 

respectively 

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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ku
in, ku

 out  In degree and Out 

Din, Dout  Diagonal In and Out 

Aij    Entry of matrix A  

AT  Transpose of matrix A 

λi  ith largest eigenvalue of a matrix 

ui  Eigenvector corresponds to i-th eigenvalue 

uij  i-th component of j-th eigenvector 

 

Nodes 

All graphs have fundamental building blocks. One major component of any graph is 

the set of nodes. In a graph representing friendship, these nodes represent people, and any 

couple of connected people denotes the friendship between them. Depending on the 

perspective, these nodes are called vertices or actors. For example, in a web graph, nodes 

represent websites, and the connections between nodes indicate web-links between them. In a 

social setting, these nodes are called actors. The mathematical representation for a set of 

nodes is V = {v1, v2,….vn} where V is the set of nodes and vi, 1 ≤ i ≤ n, is a single node. |V| = 

n is called the size of the graph. 

 

 

 

Fig. 2.1 A Sample Graph 

Edges  

Another important component of any graph is the set of edges. Edges connect nodes. 

In a social setting, where nodes represent social entities such as people, edges indicate inter-

node relationships and are therefore known as relationships or ties. The edge set is usually 
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represented as E, such that E = {e1,e2,… em} where ei, 1≤ i≤ m, is an edge and the size of the 

set is commonly shown as m = |E|. In Fig 2.1 lines connecting the nodes represent the edges. 

 

 

Fig. 2.2 A Directed Graph and an Undirected Graph 

Edges are also represented by their endpoints, so e (v1; v2) defines an edge e between nodes 

V1 and V2. Edges can contain directions, meaning one node is linked to another, but not vice 

versa. When edges are undirected, nodes are linked both ways. In Fig.2.2 (b), edges e (v1, v2) 

and e (v2, v1) are the same edges, because there is no direction stating how nodes get 

connected. These edges in this graph are called undirected edges and this kind of graph an 

undirected graph. Conversely, when edges include directions, e (v1, v2), is not the same as                  

e (v2, v1).  

A graph can be directed or undirected, unipartite or bipartite and the edges may 

contain weights or not. Graph shown in Fig. 2.2(a) is a graph with directed edges, an example 

of a directed graph. Directed edges are represented using arrows. In a directed graph, an edge 

e (vi, vj) is characterized using an arrow that starts at vi and ends at vj. Edges can begin and 

end at the same node; these edges are called loops or self-links and are represented as e (vi, 

vi). For any node vi, in an undirected graph, the set of nodes connected to via an edge is 

called its neighborhood and is represented as neighborhood N(vi). In Fig 2.1, N (Jade) = 

{Jeff, Juan}. In directed graphs, node vi has arriving neighbors Nin (vi) (nodes that connect to 

vi) and outgoing neighbors Nout(vi). In Fig 2.2(a), Nin (v2) = {v3} and Nout(v2) = {v1, v3}. 

 

The mathematical definitions are given below. 

Directed and Undirected Graph: In a directed graph G = (V, E), every edge (i, j) ∈ E links 

node i to node j. An undirected graph GU = (V, E) is a directed one where if edge (i, j) ∈ E, 

then edge (j, i) ∈ E.  
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Bipartite Graph: A graph GB = (Vh, Va, Eb) is called bipartite if the node set V can be 

partition into two dislodge sets Vh and Va, where V = Vh ∪ Va, such that every edge e ∈ Eb 

connects a node of Vh to a node of Va, i.e., e = (i, j) ∈ E ⇒ i ∈ Vh and j ∈ Va. In other words, 

there are no edges between nodes of the similar partition.  

Adjacency Matrix: Every graph G = (V, E) directed or undirected, weighted or unweighted 

can be represented by its adjacency matrix A. Matrix A has size |V | × |V | (or n × n), where 

the rows and columns represent the nodes of the graph and the entries indicate the existence 

of edges. 

The adjacency matrix A of a graph G = (V, E) is an |V | × |V | matrix, such that  

Aij  = {wij , if (i, j) ∈  E, ∀ i, j ∈  1, . . . , |V |                               (2.1) 

0, otherwise                   

This definition is suitable both for weighted and unweighted graphs. For the former case, 

each value wij represents the weight associated with the edge (i, j), while for the latter case of 

unweighted graphs the weight of each edge is equal to one (i.e., wij = 1, ∀ (i, j) ∈ E). If the 

graph is undirected, the adjacency matrix A is symmetric, i.e., A = AT, while for directed 

graphs the adjacency matrix is non-symmetric. 

Degree: A basic property of the nodes in a graph is their degree. In an undirected graph GU, 

nodes have degree k if it has k incident edges. In case of directed graphs, every node is 

associated with an in-degree and an out degree. The in-degree k in i of node i ∈ V is equal to 

the number of incoming edges, i.e., k in i = kj| (j, i) ∈ Ek, while the out-degree k out i of node 

i ∈ V equals to the number of outgoing edges, i.e., k out i = kj|(i, j) ∈ Ek. In undirected 

graphs, the in-degree is equal to the out-degree, i.e., ki = k in i = k out i, ∀i ∈ V. The degree 

matrix is defined as the diagonal n × n matrix D, with the degree of each node in the main 

diagonal. Similarly, in directed graphs the in-degree matrix Din and out-degree matrix Dout for 

the in- and out- degrees can be defined [61].  

 

Terminology 

Edge betweenness: The betweenness of an edge is the number of shortest paths between 

vertices that contain the edge. 

Random walks: It is a Markov chain which describes the sequence of nodes visited by a 

random walker. Random walk is used to calculate the dissimilarity between two nodes in 

order to identify community. 

Centrality: It is a measure indicating the importance of node in the network. 
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Degree Centrality: It is defined as the ratio of the number of neighbours of a vertex with the 

total number of neighbours possible. 

In Degree: This represents the number of edges incoming to a vertex.  

Out degree:  This represents the number of edges outgoing from a vertex.  

Clique: A clique is a maximum complete sub graph in which all nodes are adjacent to each 

other. 

Maximum clique: A maximum clique is the largest clique in a graph, a subset in which all 

vertices are pair-wise connected by an edge. 

Complete mutuality: It is a measure of tie strength inside the subgroup. 

Reachability:  It is a low diameter, facilitating fast communication between the group 

members. 

k-clique: It is a maximal sub graph in which the largest geodesic distance between any two 

nodes is no greater than k. 

k-core: The k-core is defined as the largest sub graph in which each node has at least k 

edges. The k-core graph was used to find the maximal sub graph with minimum degree k. k-

core is a substructure that each node connects to at least k members within the group. 

k-plex: k-plex of a graph is a maximal subgraph in which each vertex of the induced 

subgraph is connected to at least n-k other vertices, where n is the number of vertices in the 

induced subgraph. 

Modularity: Modularity measures the excellence of community partitions formed by an 

algorithm. It is the dissimilarity between the actual density of intra-community edges and the 

corresponding connections in a random network possessing the same degree distribution as 

that of the actual network. 

Overlapping: Overlapping communities are possible if a node is a member of more than one 

community. 

 

2.2 COMMUNITY AND ITS TYPES 

A community is a set of entities where each entity is closer to other entities within the 

community than to the entities outside it. One of the widely-used definitions of communities 

is based on the number of edges within a group compared to the number of edges between 

different groups. A community is thought of as a group of nodes that has more well-

connected edges between its members than the remainder of the network. A community helps 

to understand the structure of social networks because communities are considered as 
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components of social networks and identify the features as well as roles of the network. 

Communities facilitate the visualization of large-scale social networks. Communities enable 

the process of information sharing and dissemination of information to the members through 

the network.  

Communities can be implicit or explicit. Communities that are not actually built by its 

group members but formed by a third party come under implicit category. For example, 

yahoo groups come under explicit community, whereas a community in which all the people 

who use similar or same programming languages come under implicit. In most of the social 

networking sites, contrast to explicit communities, implicit communities and their members 

are obscure to many people. 

Community structure is defined as the possibility of recognizing within the networks, 

subsets of nodes which are more connected among themselves that to the rest of the network. 

When detecting communities, there are two possible modes of data (1) the network structure, 

(2) the features and attributes of nodes. Even though communities form around nodes that 

have common edges and common attributes, community detection algorithms have only 

focused any one of these two data modalities. Traditional community detection algorithms 

concentrate only on the network structure, while clustering algorithms mostly consider only 

node attributes [62]. 

Nature of Network Communities 

As the complexity of networks increases, the definitions of community also differ. 

Though there is variety of different definitions of community, there are many features to be 

considered in the problem of community identification from complex networks. In this 

section, some of the important natures of communities are discussed.  

Directed Network:  Some real-world networks are represented with edges and links, that are 

not reciprocal called directed network. For example, in case of web pages, a hyperlink from 

one page to another is directed and other page may or may not have a hyperlink pointing in 

the backward direction. In community detection, direction of edges also plays an important 

role. 

Hierarchy Network: When a node in a network belongs to only one community, then the 

community is said to be separated or disjoint. Most of the disjoint communities are 

hierarchical in nature. Hierarchy describes the organization of elements in a network. It 

shows how nodes link to each other to form motifs, how motifs combine to form 

communities and how communities are joined to form the entire network. In general, a 
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network’s community structure encompasses a potentially complicated set of hierarchical and 

modular components. In this context, the term module is used to refer to a single cluster of 

nodes. Given a network that has been partitioned into modules, it can be divided in an 

iterative fashion until each node is in its own singleton community [63].  

Overlapping Network: The complex network models of real-world phenomena exhibit an 

overlapping community structure, i.e. a node in the network can belong to more than one 

community. The presence of nodes belonging to several communities occurs naturally from 

real data. Hence, overlap is one of the peculiar features of community. The overlap of 

different communities exists widely in real-world complex networks, particularly in social 

networks. In complex networks, nodes are typically shared between two or more groups. In 

such cases, communities are said to be overlapping. Fig.2.3 shows the disjoint community 

structure and Fig.2.4 shows an example of possible overlapping of nodes by two 

communities. 

 

Fig. 2.3 Disjoint Communities 

 

Dense groups in complex networks often overlap with each other. For example, in 

social networks, human beings have multiple roles in the society and these roles make the 

members of network to join into multiple communities at the same time such as colleges, 

universities, families or relationships, companies, hobby clubs, etc. In co-authorship network, 

nodes represent the scientists and two nodes are connected if they have coauthored one or 

more articles and the articles are communities. Overlapping considerably increases the 

complexity of the communities [64].     
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Fig. 2.4 Overlapping Communities 

 

Weighted Network: A weighted network is a network where the links among nodes have 

weights assigned to them. In many real-world networks, not all links in a network have the 

same capacity. Links in complex networks are often associated with weights that differentiate 

them in terms of their strength, intensity or capacity. In social networks, the strength of social 

relationships is a function of their duration, emotional intensity, intimacy and exchange of 

services. For non-social networks, weights often refer to the function performed by links. In 

weighted networks, a group of vertices can be considered as a community only if the weights 

of their connections are strong enough [65]. 

Dynamic Network: Complex networks are not always static. In reality, networks gradually 

evolve over time. Particularly, social networks witness the expansion in size and space as 

their users continuously increase, changing the network to dynamic in nature. A dynamic 

network is a special type of evolving complex network where changes are often introduced 

over time. The set of edges appearing and disappearing in the communities as time evolves 

have a little effect to the local structure of the network. But, over a long period of time this 

dynamics may lead to a significant transformation of network community structure. The 

study of dynamic communities is an emerging area of interest in the field of complex 

networks [66]. 
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2.3 COMMUNITY DETECTION APPROACHES  

The actors in a network tend to form groups of closely-knit connections. The groups 

are also called communities, clusters, cohesive subgroups or modules in different perspective. 

Individuals interact more frequently within a group than between groups. Detecting cohesive 

groups in a social network remains a core problem in social network analysis. Finding out 

these groups also aids for other related tasks of social network analysis. Classic approaches of 

finding communities in network borrow the design of graph partitioning and hierarchical 

clustering. Graph partitioning approaches needs to recognize information about the global 

structure of network and determine in advance the number and size of subgroup that they 

want to get. Hierarchical partitioning is cluster analysis method in which the network of 

interest is divided into several subgroups. The division is natural because it depends on node 

relationship inside the network than node properties itself. Node relationship is measured by 

similarity metrics, such as vertex similarity and edge betweeness. Both metrics uses 

corresponding matrix and has the drawbacks on computation complexity, when it come to 

large-scale network. From many different ideas and perspective, the community detection 

based research roughly categorized into four approaches Node-Centric, Group-Centric, 

Network-Centric, and Hierarchical-Centric [67]. The detailed note on these approaches is 

presented below. 

2.3.1 Node Centric Community Detection 

Node centric community detection approaches generally determines groups where 

each node in a group satisfy important properties such as complete mutuality, reachability, 

nodal degree, relative frequency. Complete mutuality of nodes in a group defines a clique 

which is a fully connected subgroup. Maximum clique approach is a basic algorithm for 

community detection.  Clique percolation approach is an enhanced version of maximal clique 

which is used for finding overlapping communities. Reachability among nodes happens if 

there exists a path between those nodes. This property of nodes defines k-clique which is a 

maximal subgraph wherein the largest geodesic distance between any of two nodes is no 

greater than k. k-clique is commonly used in traditional SNA [67].  Detailed descriptions of 

some of the node-centric community detection algorithms are presented in section 2.4. 

2.3.2 Group-Centric Community Detection 

In group centric community detection each node in the group has to satisfy certain 

properties. Group-centric criteria consider the connections inside a group as whole. It is 

acceptable to have some nodes in the group to have low connectivity as long as the group 
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satisfies certain requirements. One such example is density-based groups. Density based 

group does not guarantee the nodal degree or reachability for each node in the group. It 

allows the degree of different nodes to vary drastically, thus seems more suitable for large-

scale networks. 

A greedy algorithm is adopted to find a maximal quasi-clique. The quasi-clique is 

initialized with a vertex with the largest degree in the network, and then expanded with nodes 

that are likely to contribute to a large quasi-clique. This expansion continues until no nodes 

are added to maintain density. Due to the heuristic being used, not all satisfied communities 

can be enumerated. But it is able to identify some communities for a medium range of 

community size/density, to detect small communities [67]. 

2.3.3 Hierarchy-Centric Community Detection  

Another line of community detection is to build a hierarchical structure of 

communities based on network topology. This facilitates the examination of communities at 

different granularity. There are mainly three types of hierarchical clustering: divisive, 

agglomerative, and structure search.  

Divisive hierarchical clustering: Divisive clustering first partitions the actors into several 

disjoint sets. Then each set is further divided into smaller ones until the set contains only a 

small number of actors. Here the key is how to split the network into several parts. Some 

partition methods can be applied recursively to divide a community into smaller sets. One 

particular divisive clustering proposed for graphs is based on edge betweeness. It 

progressively removes edges that are likely to be bridges between communities. If two 

communities are joined by only a few cross-group edges, then all paths through the network 

from nodes in one community to the other community have to pass along one of these edges. 

Edge betweenness is a measure to count how many shortest paths between pair of nodes pass 

along the edge, and this number is expected to be large for those between-group edges. 

Hence, progressively removing those edges with high betweenness can gradually disconnect 

the communities, which leads naturally to a hierarchical community structure [67].  

Agglomerative hierarchical clustering: Agglomerative clustering begins with each node as a 

separate community and merges them successively into larger communities. Modularity is 

used as a criterion to perform hierarchical clustering. A community pair is merged such that it 

results in the largest increase of overall modularity and the merge continues until no merge 

can be found to improve the modularity. This algorithm incurs many imbalanced merges, 

resulting in high computational cost. Hence, the merge criterion is modified accordingly to 
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take into consideration the size of communities. In such scheme, communities of comparable 

sizes are joined first, leading to a more balanced hierarchical structure of communities and to 

improved efficiency.  

Structure Search: Structure search starts from a hierarchy and then searches for hierarchies 

that are more likely to generate the network. This idea was first implemented in topic 

taxonomy for group profiling, and then a similar idea is applied for hierarchical construction 

of communities in social networks. It defines a random graph model for hierarchies such that 

two actors are connected based on the interaction probability of their least common ancestor 

node in the hierarchy. A sequence of hierarchies is generated via local changes of the network 

based on the probability of likelihood. The final hierarchy is the consensus of a set of 

comparable hierarchies. The bottleneck with structure search approach is its huge search 

space. The challenge is how to scale it to large networks [67]. 

2.3.4 Network-Centric Community Detection 

The network-based community detection algorithms are based on the overall topology 

of the network, aiming at obtaining possible partitions from within the network. These 

algorithms usually include certain metrics defined upon all the partitions. Some of the 

algorithm types that follow the network-centric approach are given below. 

Vertex Similarity: Vertex similarity community detection algorithm is based upon a 

similarity metric between pair of nodes. A commonly used similarity is the structural 

similarity, where the similarity is defined by how much any pair of nodes connects to similar 

nodes. Once this similarity measures are obtained for all nodes in the system, any clustering 

algorithm can be used to obtain the different groups. A sample similarity measures include 

Jaccard and Cosine similarity measures. 

Modularity Maximizations: Modularity is a measure of the quality of the network partitions. 

Modularity as a metric and modularity maximization as a community detection algorithm are 

of special importance. A number of community detection algorithms use the principle of 

modularity maximization to find the most optimal structure. A possible approach here is 

through a greedy algorithm. It begins off with all nodes belonging to their own separate 

communities and then merges those two communities that make a better overall modularity 

score. The process continues until a local modularity maximum is found. Another important 

algorithm that utilizes modularity is Girvan - Newman algorithm [67]. 

This research work employs node-centric approach for community detection in social 

network and is elucidated in the following section. 
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2.4 NODE-CENTRIC COMMUNITY DETECTION ALGORITHMS 

A community is a densely connected subset of nodes that is sparsely linked to the 

remaining network. Social networks are a combination of important heterogeneities in 

complex networks, such as collaboration networks and interaction networks. Finding 

communities within an arbitrary network is an interesting and computationally difficult task. 

Node-centric community detection algorithms are basically grouped into (i) principal 

community detection algorithms (ii) subgraph community detection algorithms (iii) 

overlapping community detection algorithms. 

Principal Community Detection Algorithms 

Girvan-Newman and Random Walks algorithms are the basic community detection 

techniques designed for directed graph.  

Girvan-Newman Partitioning Algorithm: The Girvan-Newman technique for the detection 

and analysis of community structure depends upon the iterative elimination of edges with the 

highest number of the shortest paths that pass through them. By getting rid of the edges, the 

network splits down into smaller networks, i.e. communities. The idea is to find which edges 

in a network occur most frequently between other pairs of nodes by finding edge betweenness. 

The edges union communities are then expected to have high edge betweenness. The 

underlying community structure of the network will be fine-grained once edges with high edge 

betweenness are eliminated.  

Girvan-Newman algorithm follow the below steps:  

Step 1: Calculate edge betweenness for every edge in the graph 

Step 2: Remove the edge with highest edge betweenness 

Step 3: Calculate edge betweenness for remaining edges 

Step 4: Repeat steps 2–4 until all edges are removed. 

In order to calculate edge betweenness, it is necessary to find all shortest paths in the graph. The 

algorithms begin with one vertex, calculates edge weights for paths going through that vertex, 

and then repeats it for every vertex in the graph and amount the weights for every edge [68]. 

Random Walks Algorithm: Random walks algorithm is another commonly used community 

detection algorithm designed for directed graph. Let G be a graph or digraph with the 

additional assumption that if G is a digraph, then deg+ (v) > 0 for every vertex v.  Consider 

an object placed at vertex vj. At each stage the object moves to an adjacent vertex. The 
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probability that it moves to the vertex vi is 
1

deg(𝑣𝑖)
 𝑜𝑟

1

𝑑𝑒𝑔+(𝑣𝑗)
 if (vj, vi) is an edge on G and G 

is a graph or digraph, respectively. Otherwise the probability is 0. Therefore 

𝑚𝑖𝑗 =  

{
 
 

 
 

1   

deg(𝑣𝑗)
 𝑖𝑓 (𝑣𝑗, 𝑣𝑖)𝑖𝑠 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝐺   

1

𝑑𝑒𝑔 + (𝑣𝑗)
 𝑖𝑓 (𝑣𝑗, 𝑣𝑖)𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑔𝑟𝑎𝑝ℎ 𝐺

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                             (2.3) 

 

Then M = (mij) is a Markov matrix. The roles of i and j are reversed as it need the columns of 

M to sum to 1. As each stage, a sequence of adjacent vertices is produced. This sequence 

signifies the 1 position of the object at a given stage. Moreover, this sequence is a walk in the 

graph. It is called such a walk as a random walk on the graph or digraph G. The i, j entry of 

Mk represents the probability that a random walk of length k starting at vertex vj, ends at the 

vertex vi [69].   

Sub-Community Detection Algorithms 

A subgraph of graph G is a graph G’ such that G’ ⊆ G thus possessing a smaller set of 

the vertices and edges of the parent graph. An induced sub graph is a subgraph G’ of a graph 

G, where all edges connecting the vertices V’ in G’ are also present in G. An edge-induced 

subgraph is a set of edges taken from the parent graph, in which vertices incident to the edges 

are included [56]. A subgraph is a common subgraph of graphs G1 and G2 if it is isomorphic 

to the subgraphs G’1 and G’2 of G1 and G2 respectively. The Maximum Common Induced 

Subgraph (MCIS) is the largest induced subgraph common to G1 and G2, whereas the 

Maximum Common Edge Subgraph (MCES), is the largest number of edges isomorphic to 

G1 and G2. There are three types of subgraphs namely Maximal k-clique, maximal k-core, 

maximal k-plex. Most of the sub-community detection algorithms are based on these three 

types of subgraphs [70]. 

Maximal k-clique: A clique in graph theory is a series of vertices such that each vertex is 

connected to each other vertex. A maximal clique in a graph is a clique that cannot be 

extended i.e. no nodes can be added to it which can enlarge the clique. A maximum clique of 

a graph is a maximal clique of the largest possible size, bringing the possibility that a graph 

can in fact possess multiple maximum cliques. Clique detection algorithms make up a group 

of methods which are important for finding the Maximal Clique Subgraph (MCS) of graphs. 

The maximum clique problem is to find a largest possible complete sub-graph. A triangle is 

an example of a clique, where all the nodes are connected to each other. Maximum clique 
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algorithms are being widely used within computing science in areas like, computer vision, 

design of communication protocols, compiler code generation, malware detection, 

cryptography, robotics, fraud detection, fault diagnosis, manufacturing, and sociology [71]. 

Maximal k-Core: A k-core of a graph is a maximal connected subgraph in which every 

vertex is connected to at least k vertices in the subgraph. A k-core framework consists of 

three steps and uses any one of standard community detection methods in an inner step. The 

first step is to reduce the whole graph to a k-core. The second step uses an existing algorithm 

to generate community labels for nodes in the k-core. The third step is to find community 

labels for the remainder of the graph via a fast algorithm. The pseudocode given below is the 

k-core framework where, G is the original graph, K is the desired core number, GK is the k-

core subgraph, GK is the community assignment for the k-core, and G is the community 

assignment for all nodes [72]. 

Algorithm to find the k-core Subgraph 

Step 1: input Graph G, Parameter K 

Step 2: output Subgraph GK 

Step 3: GK G 

Step 4: while GK is not a k-core do 

Step 5: Find all nodes in GK whose degree is less than K 

Step 6: Remove those nodes and their incident edges 

Step 7: Update the node degrees for the remaining nodes 

Step 8: end while 

Step 9: return GK 

Maximal k-plex: A simple directed graph with n vertices is a k-plex if the degree of each 

vertex of the graph is at least n − k. When k = 1, a 1-plex is a clique. Maximum k-plex 

problem aims to find a maximum vertex subset S of a given graph such that the subgraph 

G[S] induced by S is a k-plex. The applications and research on k-plex receive growing 

attention such as using k-plex to analyze social networks of terrorists, clustering and 

partitioning of graph-based data using k-plex], etc. The complement graph of a k-plex is a 

graph of maximum degree at most k- 1. Finding a maximum k-plex in a graph G is equivalent 

to find a maximum induced subgraph of degree bounded by k − 1 in the complement graph of 

G [73].  
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Overlapping Community Detection Algorithms 

Social network is represented as a network graph. Detecting the communities involves 

finding the densely connected nodes. Overlapping communities are likely if a node is a 

member of more than one community. The clique percolation technique is a popular approach 

for analyzing the overlapping community structure of networks. The clique percolation 

method constructs up the communities from k-cliques, which correspond to complete sub-

graphs of k nodes. Two k-cliques are considered adjacent if they share k − 1 nodes. A 

community is defined as the maximal union of k-cliques that can be attained from each other 

through a series of adjacent k-cliques. Such communities can be best interpreted with the help 

of a k-clique templates where a template can be placed onto any k-clique in the graph, rolled 

to an adjacent k-clique by relocating one of its nodes and keeping its other k − 1 nodes fixed. 

Thus, the k-clique communities of a network are all those sub-graphs that can be fully 

explored by rolling a k-clique template in them.  

Clique percolation methods are categorized broadly into two types (i) directed clique 

percolation method  (ii) weighted clique percolation method. The directed clique percolation 

technique  defines directed network communities as the percolation clusters of directed k-

cliques. A directed k-clique is a complete subgraph with k nodes on a network with directed 

links. The k nodes are ordered such that between an arbitrary pair of nodes, there exists a 

directed link pointing from the node with the higher rank towards the node with the lower 

rank.  

The weighted clique percolation technique defines weighted network communities as 

the percolation clusters of weighted k-cliques. The geometric mean of link weights within a 

subgraph is called the strength of that subgraph. On a network with weighted links, a 

weighted k-clique is a absolute subgraph with k nodes such that the geometric mean of 

the k (k - 1) / 2 link weights within the k-clique is greater than a preferred threshold value, I 

[74]. 

 The detailed description of the above-mentioned node-centric community detection 

algorithms are presented in the respective chapters.  

 

 

 

 

 

https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://en.wikipedia.org/wiki/Geometric_mean
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SUMMARY 

The main process of community detection relies primarily on the interactions users 

tend to have with other users on the network, along with the individual behaviors, forming 

some sort of communities characterized with dense connections within the community. In 

this chapter, basic definitions and terminology used in this thesis are presented. Also, 

concepts related to community detection and major four different categories of community 

detection approaches used in social network analysis have been introduced in this chapter. 

Various algorithms used in implementing community detection with experimental results are 

elucidated in the following chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


