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4. DIRECTED NETWORK BASED ON COMMUNITY 

DETECTION 

 
Community detection is the graph theoretical problem of identifying meaningful 

subgroups within a network. Within Twitter, this corresponds to groups of users who share 

similar interests, or who are engaging with each other on a particular topic. Though studies 

have used community detection methods to analyze twitter networks, these have generally 

ignored the directionality of the edges. Most of the widely-used community detection 

methods are defined for undirected networks and are not easily adapted to the directed. Most 

of the community detection strategies are designed for directed networks and several 

applications to which community detection is highly relevant are better modeled in directed 

networks. The directed network-based community detection methods and their 

implementation on sample twitter network are described in this chapter. 

 

4.1 INTRODUCTION 

In recent years, social community research has been carried out using a large amount 

of data collected from online interactions and from explicit courting hyperlinks in online 

social community systems including Facebook, Twitter, LinkedIn, Flickr, Instant Messenger, 

and so on. Twitter is a new shape of media and utilized in numerous fields, consisting of 

corporate advertising and marketing, education, broadcasting and etc. Structural 

characteristics of such social networks can be explored using socio metrics to understand the 

structure of the network, the properties of links, the roles of entities, information flows, 

evolution of networks, clusters/communities in a network, nodes in a cluster, center node of 

the cluster/network, and nodes on the periphery. The functionality of the associated objects 

from network groups are observed based on interaction modules, characteristic values and are 

expecting unobserved connections among nodes. The nodes have many relationships among 

themselves in communities. Identifying community is a complex task of clustering nodes into 

small communities and a node may be belonging to a couple of communities straight away in 

a community structure [78]. 

Two exclusive assets of facts are used to carry out the clustering in community 

detection. First is nodes and its attributes and the second one is the connection between 

nodes. The attributes of nodes in community structure are known properties of users like 

network profile, author publication, publication histories help to determines similar nodes and 
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community module to which the node belongs. The connection between nodes provides 

information about friendships, authors collaborate, followers, and topic interactions.  

Few clustering algorithms employ node attributes but ignore the relationships among 

nodes. The network detection algorithms use corporations of nodes which can be densely 

linked but ignore the node attributes. Some community detection algorithms fail to describe 

the critical shape in a community. For example, attributes may also inform about which 

community node with few hyperlinks belonging to and it is difficult to determine from 

community structure alone. The community offers detail about nodes belongs to the equal 

community even some of the nodes have no attributes values. Node attributes can balance 

the network structure which ends up in accurate detection of communities. Thus, community 

detection becomes a challenging task when taking into account both nodes attribute and 

network topology.  

The problem of clustering in directed networks is measured to be a more challenging 

task as compared to the undirected case. It is clear that ignoring edge directionality and 

considering the graph as undirected is not a meaningful way to cluster directed networks as it 

fails to confine the asymmetric relationships implied by the edges of a directed network. 

Therefore, the main challenge is to suggest meaningful ways to incorporate edge 

directionality in the clustering process. Some additional essentials that strengthen the 

challenging nature of the problem are:  

• Graph concepts are theoretically well formulated for undirected graphs, but not enough 

effort has been taken to extend these concepts on directed graphs  

• Extension of the solutions proposed for the undirected graph based community detection 

problem to community detection on a directed graph is not straightforward 

• The intuition based on the intra-cluster and inter-cluster edge density cannot be easily 

extended to the directed case, due to the absence of link symmetry.  

• The presence of directed edges implies more sophisticated types of clusters that do not 

exist in undirected networks and cannot be captured using only density and edge 

concentration characteristics  

The proposed method overcomes the above hassle by identifying groups based totally 

on the node and its attributes with the aid of implementing Girvan-Newman set of rules. In 

this work, the Girvan-Newman algorithm based on Edge-Betweenness Modularity and 

Random walk is applied for discovering communities in networks with node attributes [79]. 
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These two algorithms for community detection in the directed network are described in the 

following sections. 

 

4.2 GIRVAN-NEWMAN EDGE BETWEENNESS ALGORITHM 

Girvan and Newman is a general community finding algorithm. It performs natural 

divisions among the vertices without requiring specifying the number of communities.  

Girvan and Newman have proposed an algorithm which has three definitive features; (1) 

edges is gradually removed from a network (2) the edges to be removed are chosen by 

computing betweenness scores (3) the betweenness scores are recomputed for removal of 

each edge. 

Girvan-Newman method of community detection is a divisive method where edge 

weight is the number of shortest paths passing through the edge. This value is called as edge 

betweenness and it is a generalization of central vertex betweenness which determines vertex 

influence on other vertices in the network. Vertex betweenness is the number of shortest 

paths passing through the vertex, therefore, edge betweenness is the number of shortest paths 

passing through the endpoints of the edge.  

Girvan-Newman algorithm has the following steps  

1. Compute edge betweenness for every edge in the graph 

2. Remove the edge with the highest edge betweenness 

3. Calculate edge betweenness for remaining edges 

4. Repeat steps 2-4 until all edges are removed 

The core of the Girvan-Newman algorithm is the calculation of edge betweenness. In 

order to calculate edge betweenness, it is necessary to find all the shortest paths in the graph. 

The algorithm starts with one source vertex s ∈V in a graph, calculates edge weights for 

paths going through that vertex, and then repeats it for every vertex in the graph and 

additions the weights for every edge.  

There are two cases of graphs considered here to find the number shortest paths. In 

the simplest case, the graph is a tree as shown in Fig.4.1a and there exists only one shortest 

path from the source vertex to any other vertex. Starting from the leaves it allocates the value 

1 to the edges that connect leaves with the rest of the tree as there is only one shortest path to 

s passing through that edge. It assigns edge value for an edge as a sum of values assigned to 

the edges directly below it. The number of the shortest paths in the tree from the source 
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vertex to every other vertex passing through a particular edge is determined as the edge 

weight value. By repeating the process for every vertex and calculating the sum of weight 

values for every edge, the edge betweenness for every edge is calculated. 

Fig. 4.1 Number of Shortest Paths in a Graph 

 

If the graph is not a tree as in Fig.4.1b, it is possible that more than one shortest path 

connects source vertex with some other vertex. In that case, value k / l is assigned to the edge 

on the shortest path to source vertex, where k is the number of shortest paths to source vertex 

from the endpoint of the edge that is closer to source and l is the number of shortest paths 

from source vertex to another endpoint of the edge. This value is by multiplying by the 

number of shortest paths from a source that pass-through edges below farther vertex 

increased by one to find the edge betweenness. Assignment starts from the edge that has a 

maximum distance from source vertex.  

The algorithm for calculating edge betweenness is performed in two phases. In the 

first phase of the algorithm, using breadth-first search, distance from source vertex is 

assigned for every vertex and also the number of shortest paths from source to vertices is 

determined. This part of the algorithm is efficiently implemented using an abstract data type 

queue. The second phase starts from edge incident to the vertex with maximum distance 

covering from the source vertex as endpoints.  The numbers of shortest paths passing through 

edges are calculated for every edge. 

Mathematically, for every vertex i ∈V, the triple (di,wi,bi ) is calculated, where di is 

the distance from the source vertex, wi is the number of shortest paths from source vertex to 

vertex i, and bi is the number of shortest paths between source vertex to any vertex in graph 

that passes through vertex i. Let Adj (v) is defined as the set of all vertices adjacent to v such 

that v∈V.  
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Algorithm – Calculation of edgebetweenness (phase 1- vertex marking)  

1. For initial vertex s ∈V let ds = 0, =1 ws, bi = 0.  

2. Let = inf, dv, wv = 0, bv =1 for all v ≠ s ∈V.  

3. Create queue Q, Q ← {s}. Create list L, L ← {s}.  

4. While Q is not empty:  

(a) Dequeue i ← Q.  

(b) For each vertex j ∈ Adj(i): 

 i. If = inf then dj = di +1, wj = wi. Enqueue j → Q.  Push j → L. 

 ii. If dj ≠ inf and dj = di +1 then wj + = wi. 

 iii. If dj ≠ inf and dj < di +1, do nothing. 

The second phase of edge betweenness calculation starts from the vertex that was last 

marked in the first phase and visits vertices in reverse order than they were visited in the first 

phase. Only one shortest path from the source passes through the last marked vertex.  

Algorithm – Calculation of edge betweenness (phase 2)  

While L is not empty: 

(a) Pop i ← L.  

(b) For each vertex j ∈ Adj (i):  

i. If di < dj then = +∑j bi 1 σij.  

ii. If di > dj then σij = wj/wi. bi ⋅ 

Both phases of the algorithm are performed for all source vertices s and edge 

betweenness for every edge is calculated as a sum of the edge betweenness calculated in 

every step. The computational complexity of this part of the algorithm is O (mn), where m is 

the number of edges and n is the number of vertices. After each edge betweenness 

calculation, the edge with highest edge betweenness is removed and the algorithm is repeated 

until there is no remaining edge. The complexity of the Girvan-Newman algorithm is, 

therefore, O (m2n) [80].  

 

4.3 RANDOM WALKS ALGORITHM  

Community detection in a large complex network can be carried out by capturing the 

network structure using a random walk in the network. The intuition behind the random walk 

is that the network tends to be trapped inside a denser region or community for a longer 

period of time. This idea is used for inclusion of nodes in the community. A random walk is a 

mathematical concept formalizing a procedure consisting of a sequence of random steps. In 
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case of graphs, given a node that corresponds to a starting point, a random walk is defined as 

the sequence of nodes formed by a repeating process starting from the initial node and 

randomly moving to neighborhood nodes. At each step, the random walker is situated on a 

node of the graph and jumps to a new node selected randomly and uniformly among its 

neighbors. Random walk in a graph is the process of visiting a neighboring node randomly 

from the source node and continuing the process of visiting throughout the graph. Random 

walk process is similar to Markov chain, where the set of states corresponds to vertices in the 

visited path.  

Mathematically, let GU = (V, E) be a directed graph and v0 be the starting node of the 

random walk. At the tth step, the random walk is situated at node i. At (t + 1) step, the random 

walk is moving from node i to node j with transition probability 1/ di  where di is the degree of 

node i. The probability of visiting all nodes from all other nodes in the network through k 

length random walk is represented by transition matrix Tk. Each tuple in the transition matrix 

corresponds to probabilities of visiting all other nodes from node i in k walk length. These 

probabilities are based on structural information in the network. From the structure of the 

network, the following inferences are drawn:  

• If two nodes i and j, are in the same community, the probability of visiting node j from i 

would be higher as compared to visiting a node outside the community. If the probability 

is high, it does not mean that they belong to the same community.  

• The probability Tk
i,j depends on the degree of j because the walker tends to visit towards 

vertices, where the degree is high.  

• Two vertices belonging to the same community tend to see all other vertices in the same 

way and T k i,m ≈ T k j,m , ∀ i, j ∈ same community and m ∈ [1, n]        

Transition matrix obtained by a random walk in the graph is considered for detection 

of communities. Transition matrix describes the probability of visiting each node from every 

other node in k number of steps. Tk
i,j corresponds to the probability of visiting node j from i 

in k number of steps. T1, T2, T3, and Tk are the transition matrices for random walk 

corresponding to 1, 2, 3 and k walk length, respectively. Transition probability from vertex i 

to vertex j in one length random walk is defined by the following equation:  

Tij
1  =

𝐴𝑖𝑗

𝑑𝑖     
                                     (4.1) 

where Aij is the adjacency matrix of the network and di is the degree of vertex i. 
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A node belonging to the same community will have similar behavior as compared to 

nodes outside the communities. Any two nodes inside a community look the same way as 

other nodes in the network. The similarity between two vertices is identified from the 

transition matrix Tk
i,j based on the walk length k. The probability of reaching one node from 

another would be different for different walk lengths. The similarity between i and j for k 

walk length can be computed by the Euclidean distance between row vectors corresponding 

to nodes i and j, in matrix T k  

𝑆𝑖𝑚(𝑖, 𝑗) =  √∑
(𝑇𝑘𝑖,𝑙−𝑇𝑘𝑗,𝑙)2

𝑑𝑙

𝑛
𝑙=𝑖                          (4.2) 

The similarity between nodes calculated based on the random walk in the network is the core 

of community detection. The time complexity of walktrap algorithm is found to be O (mn2) in 

the worst case, where m is the number of edges and n is the number of nodes in the network 

[81].  

Modularity  

Modularity is used to measure the quality of network partitioning of a network. 

Modularity (Q) quantifies the community strength by comparing the fraction of edges within 

the community with such fraction when random connections between the nodes are made. 

The justification is that a community should have more links between themselves than a 

random gathering of people. The Q value close to 0 means that the fraction of edges inside 

communities is no better than the random case and the value of 1 means that a network 

community structure has the highest possible strength. Mathematically, modularity (Q) is 

defined as: 

𝑄 =    ∑ [ 
|𝐸𝐶𝑖
𝑖𝑛|

|𝐸|
−  (

     2|𝐸𝐶𝑖
𝑖𝑛 |+   |𝐸𝐶𝑖

𝑜𝑢𝑡|

2|𝐸|
)]𝑐𝑖∈𝐶
             (4.3) 

where C is the set of all the communities, ci is a specific community in C, |𝐸𝐶𝑖
𝑖𝑛 |  is the 

number of edges between nodes within community ci , |𝐸𝐶𝑖
𝑜𝑢𝑡|  is the number of edges from 

the nodes in community ci to the nodes outside ci , and |E| is the total number of edges in the 

network. 

Modularity can also be expressed in the following form: 

𝑄 =
1

2|𝐸|
∑ [𝐴

𝑖𝑗  −  
𝑘𝑖𝑘𝑗

2|𝐸|

]𝑖𝑗  𝛿𝑐𝑖,𝑐𝑗         (4.4) 

where ki is the degree of node i, Aij is an element of the adjacency matrix, δci, cj is the 

Kronecker delta symbol, and ci is the label of the community to which node i is assigned. 
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Since larger Q means a stronger community structure based on modularity optimization. The 

modularity measure defined above is suitable only for directed and unweighted networks. 

This definition can be naturally extended to apply to directed networks as well as to weighted 

networks. Weighted and directed networks contain more information than undirected and 

unweighted ones and are therefore often viewed as more valuable but also as more difficult to 

analyze than their simpler counterparts. 

Alternatively, the modularity Q proposed by Newman and Girvan [68] as a degree of 

the selected division of a network is defined as follows:  

Q = (range of edges inside communities) − (predicted a wide variety of such edges)   

The modularity Q measures the fraction of the edges within the community that join 

vertices of the same type, i.e., inside-community edges, minus the expected value of the same 

quantity in a community with the equal network department however with random 

connections among the vertices If the variety of inside community edges is not any higher 

than random, Q = zero. A price of Q this is near 1, which is the maximum, indicates strong 

community shape. Q usually falls inside the range from 0.3 to 0.7 and excessive values are 

rare [82]. 

 

4.4 DIRECTED NETWORK COMMUNITY DETECTION MODEL 

Directed network-based community detection model is built using edge betweenness 

and random walks. The model includes three components, input, process, and output. The 

input component uses twitter network data presented in chapter 3. The graph representation 

of the twitter data is used as input. The second component includes a community detection 

process wherein two different algorithms described in sections 4.2 and 4.3 are pursued. In the 

first case graph partitioning method is used and the number of shortest paths is determined to 

find the edge betweenness. In the second case, the similarity measure is used to group the 

nodes through random walks. The effectiveness of the algorithms is evaluated using the 

modularity score. The third component is the output logic which analyses the detected 

communities based on their membership distribution and various properties. The modularity 

score is evaluated based on the communities detected by these two algorithms. The inferences 

are drawn based on the experiment results. The architecture of the model is shown in Fig.4.2.  
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Fig. 4.2 Community Detection Framework 

 

4.5 EXPERIMENTS AND RESULTS 

Girvan-Newman Algorithm and Random walk algorithms are employed for 

community detection based on edge-betweenness. The real-time twitter network data 

described in chapter 3 is used for the experiment of identifying the communities. The 

experiment is carried out in R environment. Thirty-nine different communities are extracted 

from this network based on edge-betweenness modularity measure and demonstrated in 

different colors in Fig.4.3. These 39 communities are clustered based on followers, friends, 

and both followers and friends in the network. The distribution of nodes in various 

communities is shown in Fig.4.4. The modularity score for this sample network is obtained as 

0.91 by edge betweenness algorithm. 
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Fig. 4.3 Communities Detected using Edge-Betweenness Algorithm 

 

 

Fig. 4.4 Edge-Betweenness Community Size 

The membership size of Community 1 is 69; community 2 has the highest size with 

166 memberships. Communities 3 and 4 have the membership sizes 42 and 39 respectively. 

Communities 5 and 7 have the same membership size 37 and so on. Five communities of the 

network are recognized as dense and 34 communities are recognized as sparse. A sample of 

ten communities detected by the Girvan-Newman algorithm and their respective membership 

sizes are shown in Table X.  

Table X Communities Identified by Edge betweenness and Respective Sizes 

Commu

nity 

Member

ship sizes 

Commu

nity 

Member

ship sizes 

Commu

nity 

Member

ship sizes 

Commu

nity 

Member

ship sizes 

1 69 11 22 21 37 31 27 

2 166 12 36 22 21 32 14 

3 42 13 23 23 14 33 11 

4 39 14 36 24 19 34 15 

5 37 15 218 25 10 135 21 

6 43 16 23 268 20 36 171 

7 37 17 27 27 21 147 18 

8 34 18 23 284 24 38 70 

9 26 19 25 29 19 39 25 

10 31 20 235 30 19   
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In the case of random walks, eight different communities are extracted from the same 

twitter network based on modularity measure and these communities are demonstrated in 

different colors in Fig.4.5. These 8 communities are clustered based on followers, friends, 

and both followers and friends in the network. The distribution of nodes in various 

communities is shown in Fig.4.6. The modularity score yielded by random walks algorithm is 

0.7.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.5 Communities Detected using Random Walk Algorithm 

 

 
Fig.4.6 Random Walk Community Size 

The membership size of Community 1 is 207, community 2 has 188 and community 3 

has the highest size with 237 memberships. Communities 4 and 5 have the membership sizes 

193 and 209 respectively. Communities 1, 3 and 5 have the high membership size of other 

communities. Five communities of the network are identified as dense and 3 communities are 

identified as sparse.  Eight communities detected by random walks algorithm and their 

membership sizes shown in Table XI.  
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Table XI Communities Identified by Random Walks and Respective Sizes 

Community Membership sizes 

1 207 

2 188 

3 237 

4 193 

5 209 

6 220 

7 180 

8 285 

 

Comparison of Edge-Betweenness and Random walks 

The comparative analysis of these two directed network-based community detection 

algorithms is made in terms of a number of communities, membership distribution, and 

modularity score. The modularity score obtained through Edge-Betweenness algorithm is 

0.91, which proves that the sports person’s twitter network is highly dense. Also, the Girvan-

Newman algorithm has detected 39 different communities from the network and found that 

out of 39 communities, 5 communities are dense. The modularity score found through 

Random walk algorithm is 0.7, which also confirms that the sports person’s friends and 

followers network is dense. The random walk algorithm has found 8 communities from the 

sports person’s network which are all very dense. The comparative results are given in Table 

XII and illustrated in Fig.4.7  

 

Table XII Community Analysis of Edge-Betweenness and Random Walks 

Algorithm 
Modularity 

Score 

Number of 

Communities 

Number of 

Dense 

Communities 

Number of 

Sparse 

Communities 

Edge-Betweenness 0.91 39 4 35 

Random Walks 0.7 8 5 3 
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Fig. 4.7 Comparitive Results of Edge-Betweenness and Random Walks 

Findings  

The aim of this experiment is network detection in graphs which discovers the 

subgroups by using the statistics encoded inside the graph topology. Girvan–Newman 

algorithm has discovered a number of sparse communities than random walks algorithm and 

has eliminated them during clustering. Random walks algorithm finds less number of 

communities with high communication between the nodes. The modularity value 0.91 of the 

tested network by Edge-Betweenness confirms that the network is dense and the algorithm is 

efficient in finding different communities with sparsity. The modularity value 0.71 of the 

checked network by Random walk proves that the network is dense and the algorithm is 

efficient in finding different communities with density. 

 

SUMMARY  

The application of the Girvan-Newman algorithm based on Edge-Betweenness and 

random walk for detecting communities from networks with node attributes has been 

demonstrated in detail in this chapter. The methodology of the approach and the experiments 

carried out using the real-time twitter directed network of a sports person have been 

illustrated with tables and charts. This approach achieved the goal of detecting principal 

communities from the directed network data with basic network properties using graph 

partitioning technique. Further exploration of community detection based on subgraph 

analysis is elucidated in the next chapter. 
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