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5. COMMUNITY DETECTION BASED ON SUBGRAPH ANALYSIS 

 
 An in-depth analysis of detected communities is required further exploration about 

cohesive subgraphs in the network, their nodes, the interaction between the nodes and their 

in-degree and out-degree, in order to improve the quality of community detection. The 

problem of identifying sub-graphs in a graph structure and complex networks is challenging. 

The subgraph analysis approach is adopted here based on maximal k-core, k-plex and 

maximal clique for further investigation of sub-community detection. This chapter describes 

the implementation of three primary sub-graph based detection methods for sub-community 

detection and summarizes the findings.  

 

5.1 INTRODUCTION 

All graphs are finite, simple, and directed. A social network is a graph whose vertices 

represent a set of actors and whose edges indicate relationships between actors. In 

computational social networks, finding a large cohesive subgraph is an extensively studied 

topic with a large number of applications. The sociologic applications of cohesive subgroups 

include identification of work groups, sports teams, political party, religious cults, or hidden 

structures like criminal gangs and terrorist cells. A subgraph induces a clique if there exists 

an edge between every pair of vertices. Clique is one of the earliest and most commonly used 

models in the field of cohesive subgraphs detection. A clique is a graph with an edge between 

any pair of vertices, which can be regarded as the most cohesive graph. Cliques also provide 

an intuitive approach for detecting cohesion in social networks.  

Cliques and graph theoretic clique relaxations are used to model clusters in graph-

based data mining, where data is modeled by a graph in which an edge implies some 

relationship between the entities represented by its endpoints. Cohesive subgroups are 

subsets of actors amongst whom there are relatively strong, direct, intense, frequent, or 

positive ties. These subgroups are interesting because they facilitate the emergence of 

consensus among the actors. In other words, members within a cohesive subgroup tend to 

exhibit homogeneity. The properties of cliques like vertex degree, path length, and 

connectivity are captured to model cohesion in social networks. The maximum clique 

problem has applications in ad hoc wireless networks, data mining, combinatorial 

optimization, biochemistry, and genomics. In contrast to existing sub-graph extraction 

techniques which are based on a complete clustering of the graph nodes, the algorithm takes 
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into account the fact that not every participating node in the network needs to belong to a 

community. Another advantage is that the method does not require specifying the number of 

clusters. This motivates the study of clique relaxations and the current research has relaxed a 

variety of clique properties including familiarity, reachability, and robustness. Some 

techniques for identifying cohesive subgroups based on relaxed cliques are k-clique, k-core 

and k-plex [83].   

The problem of identifying sub-graphs helps to analyze graph structures and complex 

networks and it is challenging. This work demonstrates an approach for identifying a set of 

sub-graphs of a given graph through a set of partitioning techniques using maximal k-clique, 

maximal k-core, and maximal k-plex algorithms.  

 

5.2 SUBGRAPH ALGORITHMS 

A subgraph is a subset of the nodes of a network, and the edges linking these nodes. 

Any group of nodes can form a subgraph. Subgraphs or components are portions of the 

network that are disconnected from each other. In this research work, an in-depth 

investigation of communities has been performed using three subgraph algorithms such as 

maximal k-clique, maximal k-core, maximal- k-plex which are described in the following 

sections.  

5.2.1 Maximal K-Clique Algorithm 

 The core elements of this algorithm are cliques and k-cliques. Before presenting the 

maximal k-clique algorithm, the mathematical formulations of cliques and k-cliques are 

stated below.  

Clique: A clique is a subset of the vertices such that every pair of vertices in the subset is 

connected by an edge. Given a directed graph G= (V, E) where V denotes the set of vertices 

and E the set of edges, the graph G1= (V1, E1) is called a sub-graph of G if V1⊆ 𝑉, 𝐸1 ⊆ 𝐸  

and for every edge (vi, vj)€ E1 the vertices vi,vj € V1. A sub-graph G1 is said to be complete if 

there is an edge for each pair of vertices. A complete sub-graph is also called a clique as 

shown in Fig.5.1. A clique is maximal, if it is not contained in several other cliques. The 

clique number of a graph is equal to the cardinality of the largest clique of G and it is 

obtained by solving the maximum clique problem.  
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Fig. 5.1 Cliques with 1, 2, 3, 4, 5 and 6 Vertices 

 

The clique structure, where there is an edge for each pair of vertices, shows many 

restrictions in real life modeling. So, alternative approaches are suggested in order to relax 

the clique concept, such as k-clique, k-core and k-plex. 

K-clique: A clique of a graph G is a complete subgraph of G, and the clique of the largest 

possible size is referred to as a maximum clique. A maximal clique is a clique that cannot be 

extended by including one or more adjacent vertex, such that it is not a subset of a larger 

clique. A group of size k is called a k-clique. It is a maximal set of vertices that are at a 

distance not greater than k from each other such that 1-cliques correspond to vertices, 2-

cliques to edges, and 3-cliques to cycles.  

Alternately k-clique is the distance based model, where k is the maximum path length 

between each pair of vertices. A k-clique is a subset of vertices C such that, for every i, i€C, 

the distance d (i, j) ≤ k. The one-clique is identical to a clique because the distance between 

the vertices is one edge. The 2-clique is the maximal whole sub-graph with a path length of 

one or two edges. The path distance of two can be represented by the friend of a friend 

connection in social relationships. The increase of the value k communicates to a gradual 

relaxation of the criterion of clique membership.  

Determining clique nodes is the first step to build a maximal-clique graph. A set of 

maximal cliques in the original graph G are adopted as clique nodes of the corresponding 

maximal-clique graph Gc. Since each maximal clique is one of the largest cliques having all 

the nodes of G, the determination process of clique nodes is transformed into finding all the 

largest cliques that each node in G belongs to, and the algorithm is developed. 

First, the algorithm calculates the degree of each node in G and sorts the nodes in 

descending order of their degrees. Since the nodes with higher degrees are more likely to 

constitute larger maximal cliques, the clique nodes are determined in descending order 

according to their clique sizes. Suppose that the number of nodes of G is N and the largest 

node degree is kmax, then the size of cliques in G is not larger than kmax+1. The algorithm 

searches for the k-clique(s) of each node as k decreases from kmax+1 to 1. As every two nodes 

in a clique are adjacent, the degrees of all nodes in a k-clique must be larger than k-1. Since 

http://mathworld.wolfram.com/MaximumClique.html
http://mathworld.wolfram.com/MaximalClique.html
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only the largest clique(s) for each node are interested, the searching process stops seeking 

smaller cliques for a node if it has been assigned to the larger ones. 

Algorithm  

Determining the clique nodes of GC 

Input: Original graph G = (V, E); 

Output: set of clique nodes VC          

 VC ←ϕ;   

Calculate the degree (vi) of each node vi∈V; 

Kmax ← maxviev   k(vi); 

Sort the nodes in descending order of the degree, 

For k=kmax+1 to 1 do 

For each node vi∈V do 

If k (vi)<k-1 

No more k-cliques exist and goto Outer loop; 

end if 

if vi has been assigned to one clique node 

 goto Inner loop; 

end if 

Neigh(vi)←{vj|(vj is adjacent to vi and k(vj)≥k-1}; 

If |Neigh (vi)|<k-1 

 vi cannot constitute k-cliques and goto Inner loop ; 

end if 

if the nodes in Neigh(vi) can constitute q(k-1)-cliques(q≥1) 

     Vc←Vc ∪{vi,((k-1)-clique)1}∪…∪(vi,((k-1)q}; 

end if  

Inner loop; 

 end for 

 Outer loop; 

end for 

The process of searching for k-clique(s) of a node happens when the following three 

conditions are satisfied; (i) the node degree is not smaller than (k-1), (ii)  the node has not 

been assigned to any cliques (iii) at least (k-1) adjacent nodes have a degree no smaller than 

(k-1). If all these conditions are satisfied, then the problem of finding all the k-cliques that 

contain this node is transformed into the task of searching for the (k-1)-clique(s) constituted 

by its neighbors. Then all the discovered k-cliques are added to the set of clique nodes [84].  

5.2.2 Maximal k-Core Algorithm 

Degree based models of cohesion, which overcome the drawbacks inherent in the 

definitions of k-clique and k-club, were introduced in [79] and the concept of a k-core was 

introduced in [80], which is a subgraph with minimum degree at least k. In other words, S ⊆ 

V is a k-core if |N (v) ∩ S| ≥ k ∀ v S, where N (v) denotes the set of neighbors of a vertex v ∈ 



 

  

 

83 
 

V in G. K-cores were noted to only indicate dense regions of the graph and not necessarily 

identify a cohesive subgroup. This approach was only to produce global measures that 

captured the cohesive subgroups as well as regions surrounding them. Pick a vertex v of 

minimum degree δ (G), if δ (G) ≥ k then it has a k-core. If δ (G) < k, then that vertex cannot 

be in a k-core. Delete the corresponding vertex, G ← G − v and continue recursively until the 

vertex set of G is a maximum k-core or the set is empty. These structures are easy to find and 

they only point out dense regions of the graph where interesting subgroups can be found.   

A k-core is the subgraph generated by recursively removing all nodes with degree 

smaller than k from a graph. As it uses the degree to induce the subgraphs, it is also called a 

degree core. Mathematically, let G= (V, E) be a simple graph. A graph G = (V, E) of |V | = n 

vertices and |E| = e edges; a k-core is defined as A subgraph H = (C, E|C) induced by the set 

C ⊆ V is a k-core or a core of order k iff ∀v ∈ C : degree H(v) ≥ k, and H is the maximum 

subgraph with this property. A k-core of G can be obtained by recursively removing all the 

vertices of degree less than k, until all vertices in the remaining graph have at least degree k. 

A vertex i have coreness c if it belongs to the c-core but not to (c + 1)-core. Let ci the 

coreness of vertex i. A shell Cc is composed of all the vertices whose coreness is c. The 

maximum value c such that Cc is not empty is denoted cmax. The k-core is thus the union of all 

shells Cc with c ≥ k.  Each connected set of vertices having the same coreness c is a cluster 

Qc. Each shell Cc is thus composed by clusters 𝑄𝑚
𝑐   such that 𝐶𝑐 =∪1≤ 𝑚 ≤ 𝑞𝑚𝑎𝑥

𝑐    𝑄𝑚
𝑐   

where  𝑞𝑚𝑎𝑥
𝑐  is the number of clusters in Cc.  

 

Fig. 5.2 k-Core for Small Graph 

Fig.5.2 shows a simple illustration of k-core decomposition of a connected graph and 

its visual representation. Every vertex of a associated graph belongs to the 1-core. A dashed 

line encloses all the vertices in the 1-core i.e. the entire graph. Then, all vertices of degree d < 

2 are recursively removed. The other vertices maintain a degree d ≥ 2 are not eliminated. The 

remaining vertices form the 2-core is enclosed by a dotted line. Further pruning allows 
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identifying the innermost set of vertices, the 3-core. All vertices having an internal degree at 

least 3 are highlighted by a dash-dotted line. Each closed line contains the set of vertices 

belonging to a given k-core, while different k-shells are distinguished. 

The algorithm computes every non-empty degree core of a graph and identifies the 

connected components of these subgraphs. These components form a hierarchy where two 

components have a parent-child relationship when the latter has been immediately split from 

the former. Component A has split from a component B if A is a subgraph of B and A is a 

component of the k-core and B a component of the (k+1) core for some integer k. V (A) is 

taken to the set of vertices contained within the component A [85]. The maximal k-core 

algorithm is given below. 

Algorithm 

Compute the degrees of vertices;  

  order the set of vertices V in increasing order of their degrees;  

  for each v ∈ V in the order do begin  

   core[v] := degree[v];  

   for each u ∈ Neighbors(v) do 

    if degree[u] > degree[v] then begin  

     degree[u] := degree[u] − 1;  

     reorder V accordingly  

end  

end;  

5.2.3 Maximal K-Plex Algorithm 

A subset of vertices S is said to be a k-plex if the degree of every vertex in the 

induced subgraph G[S] is at least |S| − k. That is, S ⊆ V is a k-plex if the following condition 

holds: 

degG[S] (v) = |N(v) ∩ S| ≥ |S| − k ∀ v ∈ S           (5.1) 

A k-plex is said to be maximal if it is not strictly restricted in any other k-plex. It is 

also called as the cardinality of the largest k-plex in the graph and denoted by ωk(G). The 

maximum k-plex problem is to find the largest k-plex of the given graph. The maximum k-

clique and maximum k-core problems are reduced to the maximum clique problem when k = 

1 and is a relaxation of the clique requirement for all other k > 1, allowing for at most k − 1 

non-neighbors inside the set. This is illustrated in Fig.5.4. The set {1, 2, 3, 4} is a 1-plex 

(clique), sets {1, 2, 3, 4, 5} and {1, 2, 3, 4, 6} are 2-plexes and the entire graph is a 3-plex.  
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 Fig. 5.3 Illustration of k-plexes for k = 1, 2, 3 

The clique algorithm is generalized to find maximum k-plex. The clique algorithm 

examines every clique in G where G can contain an exponential number of cliques with 

respect to |V||. The algorithm attempts to avoid enumeration of an exponential number of 

subgraphs. The algorithm for maximal k-clique is given below. 

Algorithm  

 

while U≠Ø 

If |K| + |U| ≤ max 

Return  

End 

K= K∪ {v}; U = U\{v} for some v∈ U 

U’ := {u ∈U; K U {u} is a k-plex 

basicPlex(U’,K) 

  end 

    if |k|> max 

end  

return 

 

The candidate set U for a k-plex k is defined as 

𝑈 ≔ {𝑣 ∈ 𝑉\𝐾 ∶ 𝐾 ∪ {𝑣}𝑖𝑠 𝑎 𝑘 − 𝑝𝑙𝑒𝑥 }                                                     (5.2) 

For u, v ∈ V, let d (u, v) be the length of the shortest path from u to v in G. The concept of 

neighborhood is based on the parity of shortest path lengths from some root node s. Given a 

root s ∈ V, define the following sets: 

𝐾0 ∶= {𝑣 ∈ 𝑉|𝑑(𝑠, 𝑣)𝑒𝑣𝑒𝑛  } 𝑎𝑛𝑑  𝐾1 ∶= {𝑣 ∈ 𝑉|𝑑(𝑠, 𝑣)𝑜𝑑𝑑       (5.3) 

For i ∈ {0, 1}, notice that 𝑢, 𝑣 ∈ 𝐾𝑖 𝑎𝑛𝑑 𝑢𝑣 ∈ 𝐸(𝐻)̅̅̅̅   together imply d (u, s) = d (v, s). 

Otherwise, d (u, s) and d (v, s) would have different parities. Therefore, for every v ∈ Ki, 

𝑁(𝑣) ∩ {𝑢 ∈   𝐾𝑖{𝑣}: 𝑑(𝑢, 𝑠) ≠ 𝑑(𝑣, 𝑠)} = Ø                                              (5.4) 

5 6 

4 3 

1 2 
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Let  𝐾𝑖  ∉  ℐ𝐻, there exists many subsets 𝐾 ′ ⊆ 𝐾𝑖such that𝐾 ′ ⊆ 𝐼𝐻. In order to examine 

these subsets, elements in IH are constructed from Ki by removing one end of every edge in 𝐻̅ 

[Ki]. The edge uv ∈ E(𝐻̅ [Ki]) can be  removed using the following rules.  

Rule 1. If deg𝐻̅ [Ki](v) ≤ deg𝐻̅ [Ki](u), remove u. Otherwise, remove v.  

Rule 2. If deg𝐻̅ (v) ≤ deg𝐻̅ (u), remove u. Otherwise, remove v.  

Rule 3. Always remove v.  

Rule 4. Always remove u.  

Let 𝐾𝑖
𝑗
be the subset obtained from Ki be applying Rule j to every edge in E (𝐻̅ [Ki]). 

Rules 1 and 2 are greedy metrics. Rules 3 and 4 are included to diversify the search space. 

Then each set 𝐾𝑖
𝑗
 is extended to a maximal k-plex in H. All k-plexes that are constructed 

from a set Ki in this way constitute a neighborhood. The search space is essentially a function 

of the root nodes, and specifying a set of neighborhoods is equivalent to specifying a set of 

root nodes R [86]. 

 

5.3 SUBGRAPH BASED COMMUNITY DETECTION MODEL  

Here the community detection model is developed using subgraph analysis with 

maximal k-clique, maximal k-core, and maximal k-plex. The model is constructed with three 

components, input, process, and output. The input component uses twitter network data 

presented in chapter 3. The graph representation of the twitter data is used as input. The 

second component includes a community detection process wherein three different 

algorithms described in sections 5.2 are employed. In the first case, the maximal k-clique 

algorithm is implemented using the adjacency matrix representation of the given network. 

The community detection process is performed by determining the complete sub-graphs with 

maximum path length for each node. In the second case, the maximal k-core method is 

employed wherein the subgraphs are identified by recursively deleting all nodes of degree 

less than k from the given graph. The maximal k-plex algorithm is demonstrated in the third 

case wherein the subgraph is identified by the largest k-plex using nodelist. The third 

component is the output logic in which the effectiveness of this sub-graph based community 

detection algorithms is evaluated using centrality measures and also it analyses the detected 

communities based their membership distribution. The inferences are drawn based on the 

experiment results. The architecture of the model is shown in Fig.5.4.  
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Fig. 5.4 Sub Graph Community Detection Framework 

 

5.4 EXPERIMENTS AND RESULTS  

Subgraph analysis through maximal k-clique, maximal k-core, and maximal k-plex 

has been carried out for the same twitter network data in Matlab 2016a and R platform. In 

each case, the investigation was done for various k values ranging from 1 to 12. But the 

commonly used value of k is 3 in most of the existing research. Various centrality measures 

are evaluated and the membership distribution of nodes in various subgraphs is analyzed for 

all the three cases.  

Results of k-Clique Algorithm 

The adjacency matrix of the sample twitter network is used here and it is transformed 

into a network matrix using the get_community_matrix features in closeness, degree, in-

degree, out-degree, edge-betweenness centrality, subgraph centrality, eigen vector centrality. 

This community matrix is used for further processing. The community matrix of the 

adjacency matrix shown in Table V of chapter 3 is given in Table XIII. The maximal k-clique 

algorithm has discovered 135 subgroups from the given network when k=3.  Fig.5.5 shows 

the maximal k-clique subgraphs of the sample network. 
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Table XIII Community Matrix of Adjacency Matrix 

0 0.00013 0 0.00014 0 0 0 0.00013 0 0.00012 

0.00012 0.00013 0.00012 0 0.00012 0.00013 0.00012 0.00013 0.00012 0.00013 

0.00012 0.00013 0.00012 0.00014 0.00012 0.00013 0.00012 0 0.00012 0.00013 

0.00012 0.00013 0.00012 0.00012 0.00012 0.00012 0.00012 0 0.00012 0.00013 

0 0 0 0.00013 0 0.00012 0 0.00013 0 0.00012 

0.00012 0.00013 0.00012 0.00012 0.00012 0.00012 0.00012 0 0.00012 0.00013 

0 0.00012 0 0 0 0.00013 0 0.00013 0 0 

0.00012 0.00012 0.00012 0.00013 0.00012 0.00014 0.00012 0.00012 0.00012 0.00012 

0.000123 0 0.00013 0 0.00013 0.00012 0 0.00014 0.00012 0.00013 

0.00012 0.00013 0.00012 0.00012 0.00012 0.00012 0.00012 0 0.00012 0.00013 

 

 
 

Fig. 5.5 Maximal Clique Subgroups of the Twitter Network 

 

A sample of 10 sub graphs detected by maximal k- clique is shown below. The 

number indicates the node ids of the nodes in the communities. 

{1 4 5 6 8 10 11 12 13 14 15 16 17 20 21 24 28 29 30 31 32 33 34 35 36 37 38 39 40 43 45 46 47 48 49 50 51} 

{1 2 4 5 6 8 9 10 11 12 13 14 16 17 18 19 20 21 25 28 30 41 44 48 49 50 51 53 54 55 57 59 60 61 62 63 64 65} 

{2 3 5 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 41 42 43 44 45 46 47 49 50 51 52 53 54} 

{1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 37 38 39 40 41 42} 

{1 2 3 4 5 6 7 8 9 10 12 14 15 16 17 20 22 23 24 25 26 29 30 31 32 33 35 36 37 40 42 43 44 45 46 47 48 49 50} 

{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 32 33 35 36 37 38 39 40 41 42} 

{2 3  5 6 7 8 9 10 13 14 16 21 23 24 25 26 27 28 29 30 32 35 36 37 38 39 40 47 48 51 54 56 58 59 60 62 64 66} 

{2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 19 20 21 24 25 26 27 29 30 32 33 35 36 38 39 40 42 43 44 46 48 49 50} 

{3 4 5 6 7 8 10 12 15 16 17 18 19 20 22 24 25 26 27 28 29 30 31 32 33 35 36 38 39 40 41 43 45 46 47 48 49} 

{3 4 5 6 7 8 11 12 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 34 36 38 39 40 43 45 46 47 48 50 51} 
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Modularity score is used to measure the strength of division of a network into 

modules. The modularity score achieved by maximal k-clique is 0.31. Membership 

distribution of friends and followers in communities is also analyzed. Out of 135 

communities, 78 dense communities and 57 sparse communities are detected. Subgroups 

having less number of nodes ranging from 0 to 100 are considered as sparse subgroups and 

this indicate that interaction between the nodes is very less. The size of the largest community 

obtained is 1746 and the size of the smallest subgroup is 20.  The metadata about 

communities are summarized in Table XIV.  

Table XIV k-Clique Subgroups When k=3 

k Number of 

Communities 

Largest 

Subgroup 

Size 

Smallest 

Subgroup 

Size 

Number of 

Dense 

subgroups 

Number of 

Sparse 

Subgroups 

 3 135 1746 20 78 57 

 

Various centrality measures of communities such as degree, in-degree, out-degree, 

closeness, edge-betweenness centrality, nodal centrality, sub-graph centrality, eigenvector 

centrality are derived from network matrix. From the results, it is found that the in-degree of 

32 subgroups lies between 501 to 1800 whereas in-degree of 46 subgroups lies between 101 

to 500. The in-degree of 57 sub-groups lies between 20 to 100 which indicate that friends and 

followers are less interactive with other nodes. The high out-degree of 22 subgroups lies 

between 101 to 250 and high out-degree of 27 subgroups lies between 61 to 100. High out- 

degree value of 24 subgroups suggests more interaction from outer node to the nodes in these 

subgroups. For other 84 subgroups, the out-degree lies in the range of 20 to 60. The degree 

measures of k-clique subgroups are evaluated using the k-clique algorithm and the results for 

10 subgroups detected k=3 are presented in Table XV. 

Table XV Centrality Measures of Communities 

Measures Com1 Com2 Com3 Com4 Com5 Com6 Com7 Com8 Com9 Com10 

Closeness 0.0066 0.0058 0.0054 0.0057 0.0048 0.0055 0.0056 0.0066 0.0065 0.0064 

Degree 172 130 150 137 72 119 152 160 127 143 

In degree 82 62 62 71 40 60 89 71 39 59 

Out degree 90 68 58 66 32 59 63 89 88 84 

Betweenness  93 90 87 85 71 70 69 65 63 59 

SC* 1.0652 1.0652 1.0427 1.0472 1.0239 1.0435 1.0456 1.0638 1.0616 1.0616 

EC* 0.1089 0.0871 0.0759 0.0852 0.0399 0.0792 0.0825 0.1113 0.1047 0.1057 

NC* 120.929 59.534 43.688 44.167 11.527 31.083 36.343 85.307 106.96 100.06 

*SC-Sub-Graph Centrality, EC-Eigenvector Centrality, NC-Nodal Centrality 
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The subgroups recognized excessive in-degree, out-degree, closeness, sub-graph 

centrality for all sub-groups is in the range of 1.023-1.1/2 and Eigenvector centrality varies 

from 0.03 - 0.1. The highest value of nodal centrality is 120.93 for sub-community 1. The 

effects of maximal clique locating algorithm indicate the satisfactory consequences in all 

instances. This suggests that the sports person’s community is dense and communication 

among nodes is excessive. 

Results of k-Core Algorithm 

 A k-core is a maximal sub-graph that contains nodes of degree k or more. The 

coreness of a vertex is k if it belongs to the k-core. The main core is the core with the largest 

degree. The types of the core and the possible values like in-degree cores, out-degree cores, 

and total degree cores are computed. The experiment has been conducted in R statistical data 

mining platform with igraph packages to find the communities in sports person network.  

Based on the k-core size, subgraph communities are detected. Fig.5.6 shows the different 

sub-groups with core size 1 to 12. 

 
 

 
 

Fig. 5.6 (1-12) k-Core Sub Groups 

 

When k value is 1, 2,3,4,5, the number of sub graph communities detected from the 

given network are 1590, 190, 150, 29, 20 respectively. Ten sample sub graphs identified from 

input network when k=3 with node ids are shown below.   
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{2 3 5 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 91 22 95 22 94 22 87 22 86 33 40 41 43 45 46 51 66   92} 

{3 5 6 7 8 9 10 13 14 16 21 23 24 25 26 27 28 29 30 32 35 36 40 41 43 45 46 73 104 19 60 19 59 19 56 19 55 195}   

{13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 129 30 32 3440 41 43 45 46 53 19 51 29 50 194 9 195 71 94}  

{19 44 20 22 23 24 25 26 29 30 31 32 33 35 36 37 40 42 43 44 45 46 47 48 49 50 56 58 60 65 66 80 81 61 45} 

{1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 32 34 36 37 38 39 40 41 42 45} 

{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 27 28 29 30 32 34 36 37 38 40 41 42 44 46 48 50 52 54} 

{1 2 3 4 5 6 7 8 9 10 12 13 14 18 19 21 22 24 25 26 29 34 35 36 37 38 39 40 45 46 48 50 51 53 54 55 57 58 60} 

{2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 19 20 21 24 25 26 27 29 30 32 33 35 36 38 39 40 42 43 44 46 48 49 54 58}  

{3 4 5 6 7 8 10 12 15 16 17 18 19 20 22 24 25 26 49   79 14 13 66   92 18 17 18 14 18 31 66   91 92 81 71 81} 

 {1 2 4 5 6 8 9 10 11 12 13 14 16 17 18 19 20 21 25 28 30 33 35 41 44 56 59 91132 180 190 272 303 311 829}  

 

In each case number of dense and sparse communities is identified.  The metadata of 

k-core communities for k = 1 to 5 are depicted in Table XVI.  Membership distribution of 

friends and followers in communities is also analyzed. For example, when k=3, number of 

communities detected are 135, in which 82 are dense communities and 68 are sparse 

communities. The size of the largest community obtained is 1684 and the size of the smallest 

subgroup is 16. Fig.5.7 depicts node distribution of k-core sub groups of the community 

network and Fig 5.8 to Fig.5.12 shows sample subgroups of the sports person corresponding 

to k=1 to 5. 

  Table XVI Size of k-Core Subgroups for k= 1 To 5 

k-Core 

Size 

Number of 

Community 

Largest 

Subgroup 

Size 

Smallest 

Subgroup 

Size 

Number of 

Dense 

Subgroups 

Number of 

Sparse 

Subgroups 

1 1590 2162 14 873 717 

2 190 1954 17 119 71 

3 150 1684 16 82 68 

4 29 1984 23 20 9 

5 20 713 15 16 4 

 

 

Fig. 5.7 Community Distribution of k-Core Subgraphs 
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Fig. 5.8 Maximal k- Core Subgraphs when k=1 

 

 
 

Fig. 5.9 Maximal k- Core Subgraphs when k=2 

 

 
 

Fig. 5.10 Maximal k- Core Subgraphs when k=3 
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Fig. 5.11 Maximal k- Core Subgraphs when k=4 

 

 
 

Fig. 5.12 Maximal k- Core Subgraphs when k=5 

 

The Maximal k-core modularity score of 0.45 is achieved. This reveals dense 

connection exists between the nodes within clusters but sparse connections between nodes in 

different clusters. The degree measures of k-core subgroups are evaluated using the k-core 

algorithm and the basic measures of communities such as in-degree, out-degree of subgraphs, 

are derived for k=1 to 5 and analysis was done. Table XVII portrays the smallest and highest 

degree of the k-core subgraphs of the given input network. In this, the minimum degree is 11 

maximum degrees is 2162 for one k-core subgraph while the minimum degree is 17 and the 

maximum degree is 1954 for two k-core sub-communities. The minimum and maximum 

degrees are 13, 81, 10, and 1684, 931, 173 for 3, 4 and 5 k-core communities.    
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Table XVII Degree Measures of k-Core Subgraphs  
 

k-core 

size 

Minimum 

Degree 

Maximum 

Degree 

Highest 

In-Degree 

Lowest 

In-degree 

Highest 

Out-degree 

Lowest 

Out-Degree 

1 11 2162 1252 40 452 145 

2 17 1954 1324 43 541 221 

3 13 1684 1572 62 126 303 

4 81 931 923 32 489 263 

5 10 713 844 12 393 125 

 

Also, when k=3, in-degree of 39 subgroups lies between 501 to 1800 whereas in-

degree of 42 sub-groups lies between 101 to 500. The in-degree of 69 subgroups lies between 

20 to 100, which indicate that the nodes in these communities are less interactive with other 

nodes. The high out-degree of 28 subgroups lies between 101 to 250 and high out-degree of 

43 subgroups lies between 61 to 100. The high out-degree value of 53 subgroups suggests 

more interaction from the outer node to these nodes. For other 79 subgroups, the out-degree 

lies in the range of 20 to 60. The results for 15 subgroups are presented in Table XVIII and 

Table XIX. The degree measures of 15 k-core subgraphs of the sample input network are 

illustrated in Fig.5.13. 

Table XVIII Size of k-Core Sub-Groups when k=3 

Subgroup Size of Sub-Groups  

abhinav 305 

anil 501 

Ankit Sharma 522 

Harbhajan Singh 698 

Ishant Sharma 700 

AMAN BERLIA 722 

imran ansari 770 

jegan 779 

jitendra tomar 781 

K Nityananda Reddy 784 

k vijaykumar 785 

manu 807 

pankaj arora 823 

puran dev 839 

ramakarthik 850 

vinita jain 907 

ESPNcricinfo 920 

praveen kumar 928 

Gautam Gambhir 1234 

Aakash Jain 1584 

Ajay 1684 
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Table XIX In-Degree and Out-Degree of k-Core Subgroups when k=3 

 
Subgroups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

In-degree  1101 761 137 431 791 823 62 78 1661 83 168 710 86 65 121 

Out-degree 55 45 63 100 37 48 49 120 47 94 76 71 47 53 79 

 

 

Fig. 5.13 In-Degree and Out-Degree of Maximal k- Core Sub Graphs when k=3 

 

Results of k-Plex Algorithm 

In this work, k-plex sub graph algorithm has been implemented using edgelist of the 

sample network and it has discovered 53 sub groups. The modularity score obtained is 0.23. 

Fig. 5.14a and Fig. 5.14b shows the k-plex subgraphs detected for the given nework. Two 

sample sub graphs of input network when k=3 with node ids are shown below.  

 

{112, 14, 25, 62, 348, 10, 11, 12, 13, 141, 15, 160, 17, 20 ,21 ,241, 281, 129, 130, 131, 322, 331, 342, 352, 362, 
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651,23,589,611,712, 813, 914, 715, 916, 517, 418, 196, 203, 261, 222, 233, 244, 286, 272,829, 304,142, 433 

444,546, 474,950, 515,253, 541,123, 456, 789, 111,213, 141,516, 171,819, 202,122, 239, 247, 252,627, 280, 

293, 313,233, 353,738, 394, 414,212, 345, 678, 910, 120, 131,415, 161,718, 1920, 213, 224, 52,627,282,930, 

323,436, 373,839, 404,142, 45,123, 456, 789, 1011, 121,314, 151,6 17, 181,920, 242,728, 293, 323,436, 379, 

384, 414,244} 
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2124, 2526, 2729, 3032, 3335, 3638, 3940, 4243, 4446, 4849, 5034, 5678, 1012, 1516, 1718, 1920, 2224, 2526, 

2728, 2930, 3132, 3335, 3638, 3940, 4143, 4546, 4748, 493, 4567, 811, 1214, 1516, 1718, 1920 2122, 2325, 26, 

27, 2829, 3031, 3436, 3839, 4043, 4546, 4748, 5051} 

 
Fig. 5.14a Total k-plex Subgroup Network 

 

 

Fig. 5.14b k-Plex Sub Graph Total Network 

 

The size of the subgroup is determined for each sub graph in the network when k=3. 

The large subgroups size denotes that the friends and followers are more interactive with sub 

groups of the network.  When the size of the subgroup is small, the friends and followers are 

less interactive within sub groups. Out of 53, there are 33 dense communities and 20 sparse 

communities detected.  The size of the largest community obtained is 1744 and the size of the 

smallest subgroup is 22.   

 Also, in-degree of 16 subgroups lies between 501 to 1800 and the in-degree of 17 sub-

groups lies between 101 to 500 which indicate that friends and followers are more interactive 

with other nodes. The in-degree of 21sub-groups lies between 20 to 100, which show less 
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interaction with other nodes because it is a very popular node in the network. The high out-

degree of 12 subgroups lies between 101 to 250. High out- degree value of 14 subgroups 

suggests more interaction from the outer node to these nodes. For other 27 subgroups, the 

out-degree lies in the range of 20 to 60. The results for 15 k-plex subgroups are presented in 

Table XX. The degree measures of k-plex subgroups are evaluated using the k-plex algorithm 

and the results for a sample of 20 subgroups are presented in Table XXI. The in degree and 

out the degree of all 53 k-plex subgraphs of the sample input network is illustrated in 

Fig.5.15. 

Table XX Size of k-Plex Sub-Groups when k=3 

Subgroup Size of Sub-Groups  

Amitabh Bachchan 405 

Aneesh Gautam 421 

Blades of Glory 522 

Bunty Sajdeh 698 

Cristiano Ronaldo 700 

ESPNcricinfo 72 

Gary Kirsten 770 

Harbhajan Singh 779 

Neha Dhupia 1210 

praveen kumar 784 

pankaj arora 78 

Ishant Sharma 807 

Ramakarthik 823 

vinita jain 1683 

ESPNcricinfo 850 

Cristiano Ronaldo  1584 

praveen kumar 1307 

Gautam Gambhir 920 

Neha Dhupia 928 

praveen kumar 1234 
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Table XXI In-Degree and Out-Degree of the k-Plex Subgroups 

 

Subgroups In-degree Out-degree 

k-plex1 199 20 

k-plex2 12 76 

k-plex3 63 37 

k-plex4 11 43 

k-plex5 171 73 

k-plex6 18 72 

k-plex7 49 52 

k-plex8 120 73 

k-plex9 17 38 

k-plex10 14 80 

k-plex11 126 28 

k-plex12 27 71 

k-plex13 188 40 

k-plex14 16 44 

k-plex15 124 21 

k-plex16 37 63 

k-plex17 150 42 

k-plex18 26 68 

k-plex19 23 78 

k-plex20 115 48 

  

 
 

Fig. 5.15 In-Degree and Out-Degree of Maximal k- Plex Sub Graphs 

 

Comparison of Maximal k-clique, k-core, and k-plex 

 

The comparative analysis of these three subgraph based community detection 

algorithms was done with respect to various factors like a number of subgroups, membership 
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distribution, size of the communities, modularity, in-degree, out-degree. The comparative 

results are shown in Table XXII.  

 Table XXII Subgraph Analysis for k-clique, k-core and k-plex 

Algorithm 

(k=3) 

Number of  

Subgroups 

Dense 

Subgroups 

Sparse 

Subgroups 

Highest 

In-

Degree 

Highest 

Out-

degree 

Size of the 

Largest 

Community 

Size of the 

Smallest 

Community 

Modularity 

Score 

k-Clique 135 78 57 1438 189 1746 20 0.31 

k-Core  150 82 68 1572 126 1684 16 0.45 

k-Plex 53 33 20 1364 80 1744 22 0.23 

 

From this subgroup analysis of sports person network, it is found that the k-clique 

algorithm discovered 135 sub-communities in the network in which 78 are dense and 57 are 

sparse subgroups. The sub-groups of a community detected based on the k-core value in the 

maximal k-core algorithm were 150 out of which 82 are dense and 68 are sparse subgroups 

whereas the maximal k-plex algorithm detected 53 different sizes of sub-community. The 

maximal k-core modularity score of 0.45 is much higher than the scores achieved by maximal 

k-clique and maximal k-plex. The maximal k-plex algorithm has yielded very less modularity 

score. 

Also, the highest in-degree 1438 and highest out-degree 189 were obtained by 

maximal k-clique whereas maximum in-degree 1572 and out-degree 126 were observed for 

k-core when k=3. Similarly, the highest in-degree of 1364 and highest out-degree of 80 have 

been reported by the k-plex algorithm. The results of computational experiments indicate the 

effectiveness of the subgroups and the framework used. 

Findings 

From the exhaustive empirical analysis, the following interpretations are drawn.  

• The maximal k-core algorithm detected subgroups based on the k-core value from the 

twitter network. The k-core size of 3 delivered more number of dense communities and 

sparse communities. Also the size of the sparse community is less in case of k-core. 

Therefore the k-core algorithm depicts higher communication between the nodes. 

• The k-plex establishes the intractability of the communities for every fixed k as it is a 

graph-theoretic relaxation of cliques and confirms higher interaction between friends and 

followers. 

• The maximal k-clique shows more number of strong communities as the degree of the 

communities detected by k-clique is higher than maximal k-core and k-plex.  
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• The maximal k-core algorithm yielded high modularity score which ascertains the better 

community detection quality.  

• Among all three subgraph algorithms, k-core establishes superiority community detection 

measures. 

SUMMARY 

The application of subgroup analysis based on maximal k-clique, k-core and k-plex 

algorithm for detecting sub-communities from networks has been demonstrated in this 

chapter. The methodology of the approach and the corresponding experiments carried out on 

the real-time twitter network of sports person have been elucidated with tables and figures. 

Various measures evaluated and interpretations drawn from the examination were also 

discussed in this chapter. The next chapter is intended for overlapping community detection 

based on clique percolation algorithm on twitter data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


