FABRICATION AND PERFORMANCE ANALYSIS OF NATURAL EXTRACT (SOLANUM PROCUMBENS, SOLANUM TORVUM, ARTABOTRYS HEXAPETALUS, GALINSOGA PARVIFLORA AND JASMINUM GRANDIFLORUM L) BASED DYE SENSITIZED SOLAR CELLS USING GRAPHENE OXIDE/ METAL OXIDE (NiO, Y₂O₃, SnO₂) NANOCOMPOSITES AS COUNTER ELECTRODES

THESIS

Submitted to the Bharathiar University in partial fulfillment of the requirements for the award of degree of

DOCTOR OF PHILOSOPHY IN PHYSICS

Submitted by

T. SHANMUGAPRIYA

Under the Guidance of

Dr. (Mrs.) J. BALAVIJAYALAKSHMI, M.Sc., M.Phil. (Phy.), Ph.D., MCA., M.Phil (Comp.Sci) Assistant Professor, Department of Physics

DEPARTMENT OF PHYSICS PSGR KRISHNAMMAL COLLEGE FOR WOMEN College of Excellence An Autonomous College – Affiliated to Bharathiar University Accredited with 'A++' Grade by NAAC, nirf 2021 – 6th Rank An ISO 9001:2015 Certified Institution Peelamedu, Coimbatore – 641004 TAMILNADU, INDIA

DECEMBER 2021

CERTIFICATE

This is to certify that the thesis, entitled FABRICATION AND PERFORMANCE ANALYSIS OF NATURAL EXTRACT (SOLANUM PROCUMBENS, SOLANUM TORVUM, ARTABOTRYS HEXAPETALUS, GALINSOGA PARVIFLORA AND JASMINUM GRANDIFLORUM L) BASED DYE SENSITIZED SOLAR CELLS USING GRAPHENE OXIDE/ METAL OXIDE (NiO, Y₂O₃, SnO₂) NANOCOMPOSITES AS COUNTER **ELECTRODES**, submitted to the Bharathiar University in partial fulfillment of the requirements for the award of degree of DOCTOR OF PHILOSOPHY IN **PHYSICS** is a record of original research work down bv Mrs. T SHANMUGAPRIYA during the period 2016-2021 of her research in the department of Physics at PSGR KRISHNAMMAL COLLEGE FOR WOMEN, **COIMBATORE**, under my supervision and guidance and the thesis has not formed the basis for the award of any Degree/Diploma/Associate ship/ Fellowship or similar title to any candidate of any university

SIGNATURE OF THE GUIDE (J.BALAVIJAYALAKSHMI)

Counter Signed

HEAD OF THE DEPARTMENT

PRINCIPAL

DECLARATION

I, T SHANMUGAPRIYA hereby declare that the thesis, entitled **"FABRICATION AND PERFORMANCE ANALYSIS OF** NATURAL (SOLANUM **PROCUMBENS**, **EXTRACT** SOLANUM TORVUM, ARTABOTRYS HEXAPETALUS, GALINSOGA PARVIFLORA AND JASMINUM GRANDIFLORUM L) BASED DYE SENSITIZED SOLAR CELLS USING GRAPHENE OXIDE/ METAL OXIDE (NiO, Y₂O₃, SnO₂) NANOCOMPOSITES AS COUNTER ELECTRODES", submitted to the Bharathiar University, in partial fulfilment of the requirement for the award of the DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS is a record of original and independent research work done by me during the period of 2016-2021 under the Supervision and Guidance of Dr.(Mrs.) J. Balavijayalakshmi, M.Sc., M.Phil (Phy)., Ph.D, MCA., M.Phil (Comp.Sci), Assistant Professor, Department of Physics and it has not formed the basis for the award of any Degree/ Diploma/ Associateship/ Fellowship or other similar title to any candidate of any University.

Signature of the Candidate

(T. SHANMUGAPRIYA)

CERTIFICATE OF GENUINENESS OF THE PUBLICATION

This is to certify that the Ph.D candidate **Mrs. T. SHANMUGAPRIYA** working under my supervision has published the research article in the journal named

- Advanced in Applied Research: Preparation and characterization of nitrogen doped graphene oxide/nickel oxide nanocomposites for dye sensitized solar cell applications with Vol. Nos 1 Page No 34-38 Year of Publication: 2019 published by Adv. Appl. Res.
- Journal of Nano and Electronic Physics: Electrochemical Investigation of Nitrogen Doped Graphene Oxide/Yttrium Oxide Nanocomposites with Vol No 13 Page Nos 05038-4 Year of Publication :2019 Published by Sumy State University.
- Asia Pacific Journal of Chemical Engineering: Role of graphene oxide/yttrium oxide nanocomposites as a cathode material for natural dyesensitized solar cell applications with Vol No 16 Page Nos 1-12 Year of Publication :2020 Published by Wiley.
- 4. Journal of Cluster science: Efficiency Studies of Galinsoga Parviflora Pigments as a Sensitizer in Pt Free Graphene Oxide/Nickel Oxide Counter Electrode with Dye Sensitized Solar Cell Applications Vol No 32 Page Nos 1277-1288 Year of Publication: 2020 Published by Springer.

The content of the publication incorporates part of the results presented in her thesis.

Counter Signed

Research Supervisor

HOD/ Principal of the Institution(with seal)

பாரதியார் பல்கலைக்கழகம்

BHARATHIAR UNIVERSITY

COIMBATORE - 641 046. TAMILNADU, INDIA

State University Re-Accredited with "A" Grade by NAAC Ranked 13th among Indian Universities by MHRD-NIRF

CERTIFICATE OF PLAGIARISM CHECK T.SHANMUGAPRIVA. Name of the Research Scholar 1 M.Phil., / Ph.D., Course of study 2 FABRICATION AND PERFORMANCE ANALYSISOF NATURAL EXTRACT CSOLANUM PROCUMBENS, 3 Title of the Thesis / Dissertation SOLANUM TORVUM, ARTABOTRYS HEXAPETALUS, GIALINSODIA PARVIFLORA ANDJASMINUM GTRANDI FLORUM L) BASED DYE SENISTIZED SOLAR CELLS USIN D GRA PHENE DXIDE/METALOXADE (N10, Sn02, Y203) NANOCOMPOSITES AS COUNTER ELECTRON Dr. J. BALAVIJAYALAKSHMI Name of the Supervisor 4 PSGR KRISHNAMMAL COLLEGE Department / Institution/ Research Centre 5 FOR WOMEN 17 % % of Similarity of content Identified 6 Acceptable Maximum Limit 7 30 % Software Used URKUND 8 17/12/2021 Date of verification 9

Report on plagiarism check, items with % of similarity is attached

J. Ralanijany Signature of the Superivisor (Seal) Dr. J. BALAVIJAYALAKSHMI M.Sc(Phy),, M.Phil, Ph.D., MCA., M.Phil(C.S)., Assistant Professor **Department of Physics PSGR Krishnammal College for Women** Peelamedu, Coimbatore - 641 004 Head of the Department HEENA Misc. HPML, PhD. University Librarian (BU) Combatoria - 641 004 University selprarian Arignar Anna Central Library

Bharathiar University Coimbatore - 641 046.*

Pla Olympic antal College or Women

(Seal)

the Researcher

Director i/c **Center for Research & Evaluation** (Seal)

Curiginal

Document Information

Analyzed document	Shanmugapriya. T.docx (D122	2827246)
Submitted	2021-12-17T08:45:00.00000	00
Submitted by		
Submitter email	rspani1967@gmail.com	
Similarity	17%	đ
Analysis address	rspani1967.bhauni@analysis.urkund.com	

Sources included in the report

J URL: 6dbd25e8-504f-41b4-af5a-ea647af5d76f Fetched: 2021-10-21T10:21:09.4200000

106

W2/2) University Librarian Arighar Anna Central Library Bharathiar University

Coimbatore - 641 046.

1/57

ACKNOWLEDGEMENT

I owe my sincere thanks to the **Lord Almighty** *and my parents for showering me with their generous blessings in all my endeavors.*

I express my gratitude and wish to place on record my sincere thanks to Sri. G. Rangaswamy, Managing Trustee, PSGR Krishnammal College for Women, whose untiring zeal and perseverance has laid the foundation to build this paramount masterpiece which is a temple of learning and hasinspired many.

I wish to express my deep sense of reverential gratitude to Smt. R. Nandini, Chair Person, PSGR Krishnammal College for Women, for providing the facilities to conduct this study.

I record my thanks to **Dr. (Mrs.)** N. Yesodha Devi M.Com., Ph.D., Secretary, PSGR Krishnammal College for Women, for granting mepermission to undertake this project work.

I record my deep sense of gratitude and indebtedness to Dr. (Mrs.) S. Nirmala M.B.A., M.Phll, Ph.D., Principal, PSGR Krishnammal College for Women, Coimbatore, for providing help towards the completion of this study.

I wholeheartedly thank **Dr.** (**Mrs.**) **P.Meena** M.Sc., M.Phil., Ph.D., Associate Professor and Head of the Department of Physics, PSGRKrishnammal College for Women, Coimbatore, for her encouragement and generous help which Was of great value.

I am very much indebted to my guide **Dr.(Mrs.) J. Balavijayalakshmi** M.Sc., M.Phill. (Phy.), Ph.D., MCA., M.Phil.(Comp.Sci). Assistant Professor, Department of Physics, PSGR Krishnammal College for Women, Coimbatore, for her excellent, outstanding guidance, constructive criticism, motivation, valuable advice untiring support, timely suggestions, constant encouragement and inspiration throughout the study, holding me strong in all the places I faltered. I have a great pleasure in thanking my doctoral committee member, Dr.R.JAYAPRAKASH M.Sc., M.Phil., Ph.D., Associate Professor, Dept of Phy, Ramakrishnamission for his valuable guidelines, feedback and recommendations that have enhanced the quality of my research work.

I Sincerely thank all the **Staff Members** of the **Department of Physics**, PSGR Krishnammal College for Women, Coimbatore, for being supportive and understanding.

I thank my **Family Members and Friends** for their support, understanding and co-operation for the successful completion of the study.

T. SHANMUGAPRIYA

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1.1	Nano scale and Nanostructure	1
1.2	Types of Nanomaterials	3
1.3	Top-down and Bottom-up approach	5
1.4	Fluorescence emission of (CdSe) ZnS quantum dots of various sizes and absorption spectra of various sizes and shapes of gold nanoparticles	7
1.5	Electrical Properties	8
1.6	Magnetic properties of nanostructured materials.	10
1.7	Applications of nanotechnology	11
1.8	Schematic representation of X-ray diffraction	19
1.9	ZEISS-SIGM Field Emission Scanning Electron Microscopy	21
1.10	Shimadzu IR affinity-1spectrometer	22
1.11	Schematic representation of HR- TEM	23
1.12	SP 150 Biologic Instrument	24
1.13	Light Source for Solar simulator	25
1.14	Cary 60 UV-Vis Spectrometer	26
1.15	Crystal structure of Nickel oxide	26
1.16	Crystal structure of Yttrium oxide	28
1.17	Crystal structure of Tin oxide	29
1.18	Solanum Procumbens (SP)	30
1.19	Solanum Torvum (ST)	30
1.20	Artabotrys Hexapetalus (AH)	31

1.21	Galinsoga Parviflora (GP)	31
1.22	Jasminum Grandiflorum L (JG)	32
1.23	Methodology	33
2.1	(a) XRD (b) FTIR and (c) Raman analysis of GO nanosheets	47
2.2	(a) FESEM, (b) HRTEM (c) SAED and (d) EDX analysis of GO nanosheet	48
2.3	(a-f) UV-Vis spectral analysis of (a) GO dye (b) Solanum Procumbens (SP), (c)Solanum Torvum (ST)(d) Artabotrys Hexapetalus (AH) (e) Galinsoga Parviflora (GP) (f) Jasminum Grandiflorum L (JG)	50
2.4	Band gap energy of (a) GO) (b)Solanum Procumbens (SP), (c)Solanum Torvum (ST) (d) Artabotrys Hexapetalus (AH) (e) Galinsoga Parviflora (GP) (f) Jasminum Grandiflorum L (JG)	51
3.1	XRD spectra of (a) NiO (b) GO/NiO (5:1) (c) GO/NiO (5:2) (d) GO/NiO (5:3) (e) GO/NiO (5:4) and (f) GO/NiO (5:5) nanocomposites	57
3.2	(a-f) FT-IR spectra of (a) NiO (b) GO/NiO (5:1) (c) GO/NiO (5:2) (d) GO/NiO (5:3) (e) GO/NiO (5:4) and (f) GO/NiO (5:5) nanocomposites	58
3.3	 (a-e) Raman Analysis of (a)NiO (b) GO/NiO (5:1) (c) GO/NiO (5:2) (d) GO/NiO (5:3) (e) GO/NiO (5:4) and (f) GO/NiO (5:5) nanocomposites 	59
3.4	FESEM images of (a) NiO and (b) GO/NiO (5:1) (c) GO/NiO (5:2) (d) GO/NiO (5:3) (e) GO/NiO (5:4) and (f) GO/NiO (5:5) nanocomposites	60
3.5	EDX spectra (a) NiO (b) GO/NiO (5:1) (c) GO/NiO (5:2) (d) GO/NiO (5:3) (e) GO/NiO (5:4) and (f) GO/NiO (5:5) nanocomposites	61
3.6	(a-c) HRTEM images of (a-c) GO/NiO (5:4) nanocomposites	62
3.7	(a) SAED image of Graphene oxide/ Nickel oxide nanocomposites	63

4.1	XRD images of (a) $Y(OH)_{3}$, (b) Y_2O_3 (c-g) GO/ Y_2O_3 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	67
4.2	(a-d) FT-IR spectra of (a) Y_2O_3 (b-f) GO/Y_2O_3 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	68
4.3	(a-e) Raman analysis of (a) Y_2O_3 , (b-f) GO/ Y_2O_3 (5:1, 5:2, 5:3, 5:4 and 5:5)nanocomposites	69
4.4	FESEM images of (a) Y_2O_3 (b-f) GO/Y_2O_3 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	71
4.5	EDX spectra (a) Y_2O_3 (b-f) GO/ Y_2O_3 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	72
4.6	(a-c) HRTEM images of GO / $Y_2O_3(5:4)$ nanocomposites	73
4.7	SAED image of Graphene oxide / Yttrium oxide (5:4) nanocomposites	74
5.1	XRD Spectra of (a) SnO_2 (b-f) GO/SnO_2 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	79
5.2	FT-IR Spectrum of (a) SnO_2 and (b-f) GO/SnO_2 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	80
5.3	(a-e) Raman analysis of (a) SnO_2 (b-f) GO/SnO_2 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	81
5.4	FESEM (a) SnO_2 and (b-f) GO/SnO_2 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	82
5.5	EDAX Spectra (a) GO (b) SnO_2 (c-e) GO/SnO_2 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	84
5.6	HR-TEM images of (a-c) GO/SnO ₂ (5:5) nanocomposites	85
5.7	SAED image of GO/SnO ₂ (5:5) nanocomposites	85
6.1	Schematic Flow chart for the fabrication of Natural Dye Sensitized Solar cell using GO/NiO nanocomposites as counter electrode	90
6.2	UV-Vis spectral analysis of GO / NiO of various concentrations (a) 5:1 (b)5:2 (c) 5:3 (d) 5:4 and (e) 5:5 nanocomposites	91

6.3	Band gap energy of Nanocomposites GO/NiO of various concentrations of (a)5:1, (b)5:2, (c) 5:3, (d) 5:4 and (e) 5:5	92
6.4	(a-e) Electrochemical impedance spectroscopy of a (a)GO/NiO (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with SP as a sensitizer (b) GO/NiO (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with ST as a sensitizer (c) GO/NiO (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with AH as a sensitizer (d)GO/NiO (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with GP as a sensitizer (e) GO/NiO (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with JG as a sensitizer	94
6.5	Current density Voltage (I-V) curves of (a) GO with SP, ST, AH, GP and JG dye (b-f) GO/NiO (5:1, 5:2, 5:3, 5:4 and 5:5) with SP, ST, AH, GP and JG Dye	96
7.1	UV- Vis spectral analysis of GO/Y_2O_3 (a) 5:1 (b) 5:2 (c)5:3 (d) 5:4 and (e) 5:5 nanocomposites	106
7.2	Band gap energy of GO/Y_2O_3 (5:1, 5:2, 5:3, 5:4 and 5:5) Nanocomposites	107
7.3	Electrochemical impedance spectroscopy (EIS) of a (a)GO/Y ₂ O ₃ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with SP as a sensitizer (b) GO/Y ₂ O ₃ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with ST as a sensitizer (c) GO/Y ₂ O ₃ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with AH as a sensitizer (d)GO/Y ₂ O ₃ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with GP as a sensitizer (e) GO/Y ₂ O ₃ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with JG as a sensitizer	109
7.4	Current density Voltage (I-V) curves of (a) GO/Y_2O_3 (5:1) with JG (b) GO/Y_2O_3 (5:2) With JG (c) GO/Y_2O_3 (5:3) with JG (d) GO/Y_2O_3 (5:4) with JG and (e) GO/Y_2O_3 (5:5) with JG	110
8.1	UV- Vis spectral analysis of GO/SnO_2 (a) 5:1 (b) 5:2 (c)5:3 (d) 5:4 and (e) 5:5 nanocomposite	119
8.2	Band gap energy of GO/SnO_2 (5:1, 5:2, 5:3, 5:4 and 5:5) nanocomposites	120

viii

- 8.3 Electrochemical impedance spectroscopy (EIS) of a (a)GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with SP as a sensitizer (b) GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with ST as a sensitizer (c) GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with AH as a sensitizer (d)GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with GP as a sensitizer (e) GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with JG as a sensitizer
- 8.4 Current density Voltage (I-V) curves of (a) GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with SP as a sensitizer (b) GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with ST as a sensitizer (c) GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter 124 electrode with AH as a sensitizer (d) GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with GP as a sensitizer (e) GO/SnO₂ (5:1, 5:2, 5:3, 5:4 and 5:5) counter electrode with JG as a sensitizer

122

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
6.1	Photovoltaic parameters of the GO nanosheet as counter electrode with natural extracts of SP, ST, AH, GP and JG as a sensitizer for DSSC	97
6.2	photovoltaic parameters of the GO/NiO (5:1 to 5:5) nanocomposites counter electrode and SP as a sensitizer for DSSCs	98
6.3	photovoltaic parameters of the GO/NiO (5:1 to 5:5) nanocomposites counter electrode and ST as a sensitizer for DSSCs	98
6.4	photovoltaic parameters of the GO/NiO (5:1 to 5:5) nanocomposites counter electrode and AH as a sensitizer for DSSCs	99
6.5	photovoltaic parameters of the GO/NiO (5:1 to 5:5) nanocomposites counter electrode and GP as a sensitizer for DSSCs	99
6.6	photovoltaic parameters of the GO/NiO (5:1 to 5:5) nanocomposites counter electrode and JG as a sensitizer for DSSCs	100
7.1	Photovoltaic parameters of the GO/Y_2O_3 (5:1 to 5:5) nanocomposites counter electrode and SP as a sensitizer for DSSCs	101
7.2	Photovoltaic parameters of the GO/Y_2O_3 (5:1 to 5:5) nanocomposites counter electrode and ST as a sensitizer for DSSCs	111
7.3	Photovoltaic parameters of the GO/Y_2O_3 (5:1 to 5:5) nanocomposites counter electrode and AH as a sensitizer for DSSCs	112
7.4	Photovoltaic parameters of the GO/Y_2O_3 (5:1 to 5:5) nanocomposites counter electrode and GP as a sensitizer for DSSCs	112
7.5	Photovoltaic parameters of the GO/Y_2O_3 (5:1 to 5:5) nanocomposites counter electrode and JG as a sensitizer for DSSCs	113

- 8.1 photovoltaic parameters of the GO/SnO₂ (5:1 to 5:5) nanocomposites counter electrode and SP as a sensitizer for 125 DSSCs
- 8.2 photovoltaic parameters of the GO/SnO₂ (5:1 to 5:5) nanocomposites counter electrode and ST as a sensitizer for 125 DSSCs
- 8.3 photovoltaic parameters of the GO/SnO₂ (5:1 to 5:5) nanocomposites counter electrode and AH as a sensitizer for 126 DSSCs
- 8.4 photovoltaic parameters of the GO/SnO₂ (5:1 to 5:5) nanocomposites counter electrode and GP as a sensitizer for 126 DSSCs
- 8.5 photovoltaic parameters of the GO/SnO₂ (5:1 to 5:5) nanocomposites counter electrode and JG as a sensitizer for 127 DSSCs

ABBREVATIONS

DSSC	Dye sensitized solar cell
CE	Counter Electrode
GO	Graphene oxide
rGO	Reduced Graphene oxide
NiO	Nickel Oxide
Y_2O_3	Yttrium oxide
SnO ₂	Tin Oxide
H_2SO_4	Sulphuric Acid
KMnO ₄	Potassium permanganate
H_2O_2	Hydrogen peroxide
NH4OH	Ammonia solution
SP	Solanum Procumbens
ST	Solanum Torvum
AH	Artabotrys Hexapetalus
GP	Galinsoga Parviflora
JG	Jasminum Grandiflorum L
FTO	Flurine doped tin oxide
Pt free	Platinum free
XRD	X – Ray Diffraction
FTIR	Fourier transform infrared spectroscopy
UV- VIS	Ultra violet Visible spectroscopy
FESEM	Field Emission Scanning Electron Microscopy
FT IR	Fourier transform infrared spectroscopy
EDAX	Energy dispersive X-ray analysis
HR TEM	High resolution transmission electron microscopy