CONTENTS

CHAPTER NUMBER	TITLE	PAGE NUMBER
	Abstract	i
	List of Figures	v
	List of Table	X
	List of Abbreviations	xii
	CHAPTER I	
	INTRODUCTION	
1.1	Introduction to Nanotechnology	1
1.2	Nanomaterials	2
1.3	Synthesis of Nanoparticles	3
1.3.1	Top Down Approch	4
1.3.2	Bottom Up Approch	4
1.4	Properties of Nanomaterials	5
1.4.1	Optical properties	6
1.4.2	Structural Properties	7
1.4.3	Electrical Properties	7
1.4.4	Mechanical Properties	8
1.4.5	Magnetic Properties	9
1.4.6	Thermal Properties	10
1.4.7	Chemical Properties	10
1.5	Application of nanotechnology	11
1.5.1	Drug Delivery	11

1.5.2	Diagnostic Techniques	12
1.5.3	Antibacterial Treatment	12
1.5.4	Sensing	12
1.5.5	Dye Sensitized Solar cells (DSSCs)	13
1.5.6	Nanoparticle Fuel	15
1.5.7	Electronic	15
1.5.8	Hydrogen Fuel cells	16
1.6	Review of Literature	16
1.7	Characterization Techniques	19
1.7.1	X-Ray Diffraction	19
1.7.2	Field Emission Scanning Electron Microscopy	20
1.7.3	Fourier Transform Infrared Spectroscopy	21
1.7.4	Energy Dispersive X-ray Analysis	22
1.7.5	High Resolution Transmission Electron Microscopy	22
1.7.6	Raman Spectroscopy	23
1.7.7	Solar Simulator	24
1.7.8	UV- Vis Spectroscopy	25
1.8	Materials	26
1.8.1	Nickel Oxide	26
1.8.2	Yttrium Oxide	27
1.8.3	Tin Oxide	28
1.8.4	Solanum Procumbens	29
1.8.5	Solanum Torvum	30
1.8.6	Artabotrys Hexapetalus	30

1.8.7	Galinsoga Parviflora	31
1.8.8	Jasminum Grandiflorum L	32
1.9	Scope of the Work	32
1.9.1	Methodology	33
1.9.2	Organization of Thesis	34
	References	36
	CHAPTER II	
PREPAR	RATION AND CHARACTERIZATION OF GRAI	PHENE
	OXIDE NANOSHEETS	
2.1	Introduction	43
2.2	Materials and Methods	44
2.2.1	Materials	44
2.2.2	Synthesis of Graphene oxide nanosheet	44
2.2.3	Natural Dyes Preparations	44
2.2.4	Preparation of DSSCs	45
2.2.5	Characterization Techniques	45
2.3	Results and Discussion	46
2.3.1	XRD, FTIR and Raman Analysis of GO nanosheet	46
2.3.2	FESEM, HRTEM and EDX analysis of GO nanosheet	47
2.3.3	UV-Vis Spectral nalysis	49
2.4	Conclusion	52
	References	53

CHAPTER III

SYNTHESIS AND CHARACTERIZATION OF GRAPHENE OXIDE / NICKEL OXIDE NANOCOMPOSITES FOR DYE SENSITIZED SOLAR CELL APPLICATION

3.1	INTRODUCTION	55
3.2	Materials and Methods	55
3.2.1	Materials	55
3.2.2	Synthesis of GO / Nio nanocomposites	56
3.2.3	Characterization techniques	56
3.3	Results and Discussion	56
3.3.1	XRD analysis	56
3.3.2	FTIR Spectral Analysis	58
3.3.3	Raman Spectroscopy	58
3.3.4	FESEM	59
3.3.5	EDX Analysis	60
3.3.6	HRTEM Analysis	62
3.3.7	Selected Area Electron Diffraction Analysis	63
3.4	Conclusion	63
	References	64
	CHAPTER IV	
	ATION AND CHARACTERIZATION OF GRAPHE	
YTTRIUN	M OXIDE NANOCOMPOSITES FOR DYE SENSITI	ZED SOLAR
	CELL APPLICATIONS	
4.1	INTRODUCTION	65
4.2	Materials and Experimental	66
4.2.1	Materials	66

4.2.2	Preparation of Yttrium oxide Nanocomposites	66
4.2.3	Preparation of GO / Y ₂ O ₃ nanocomposites	66
4.2.4	Characterization Techniques	66
4.3	Results and Discussion	67
4.3.1	XRD analysis	67
4.3.2	FTIR analysis	68
4.3.3.	Raman SPectroscopy	69
4.3.4	FESEM	70
4.3.5	EDX Analysis	71
4.3.6	HRTEM Analysis	73
4.3.7	Selected area electron diffraction analysis	74
4.4	Conclusion	74
	Reference	75
	CHAPTER V	
	ION AND CHARACTERIZATION OF GRAPHENE OXII	
OXIDE	ION AND CHARACTERIZATION OF GRAPHENE OXII NANOCOMPOSITES AS COUNTER ELECTRODE IN D SENSITIZED SOLAR CELL	YE
OXIDE 3	ION AND CHARACTERIZATION OF GRAPHENE OXII NANOCOMPOSITES AS COUNTER ELECTRODE IN D SENSITIZED SOLAR CELL INTRODUCTION	YE 77
5.1 5.2	ION AND CHARACTERIZATION OF GRAPHENE OXID NANOCOMPOSITES AS COUNTER ELECTRODE IN DESENSITIZED SOLAR CELL INTRODUCTION Materials and Experiments	YE 77 78
5.1 5.2 5.2.1	ION AND CHARACTERIZATION OF GRAPHENE OXID NANOCOMPOSITES AS COUNTER ELECTRODE IN DESENSITIZED SOLAR CELL INTRODUCTION Materials and Experiments Materials	77 78 78
5.1 5.2 5.2.1 5.2.2	ION AND CHARACTERIZATION OF GRAPHENE OXID NANOCOMPOSITES AS COUNTER ELECTRODE IN D SENSITIZED SOLAR CELL INTRODUCTION Materials and Experiments Materials Synthesis of GO / SnO ₂ nanocomposites	77 78 78 78
5.1 5.2 5.2.1 5.2.2 5.2.3	ION AND CHARACTERIZATION OF GRAPHENE OXID NANOCOMPOSITES AS COUNTER ELECTRODE IN D SENSITIZED SOLAR CELL INTRODUCTION Materials and Experiments Materials Synthesis of GO / SnO ₂ nanocomposites Characterization techniques	77 78 78 78 78
5.1 5.2 5.2.1 5.2.2 5.2.3 5.3	ION AND CHARACTERIZATION OF GRAPHENE OXID NANOCOMPOSITES AS COUNTER ELECTRODE IN DESENSITIZED SOLAR CELL INTRODUCTION Materials and Experiments Materials Synthesis of GO / SnO ₂ nanocomposites Characterization techniques Results and Discussion	77 78 78 78 78 78
5.1 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3.1	ION AND CHARACTERIZATION OF GRAPHENE OXID NANOCOMPOSITES AS COUNTER ELECTRODE IN DESENSITIZED SOLAR CELL INTRODUCTION Materials and Experiments Materials Synthesis of GO / SnO ₂ nanocomposites Characterization techniques Results and Discussion XRD analysis	77 78 78 78 78 78 78 78
5.1 5.2 5.2.1 5.2.2 5.2.3 5.3	ION AND CHARACTERIZATION OF GRAPHENE OXID NANOCOMPOSITES AS COUNTER ELECTRODE IN DESENSITIZED SOLAR CELL INTRODUCTION Materials and Experiments Materials Synthesis of GO / SnO ₂ nanocomposites Characterization techniques Results and Discussion	77 78 78 78 78 78

5.3.6	HRTEM	84
5.3.7	Selected area electron diffraction analysis	85
5.4	Conclusion	86
	Reference	87
	CHAPTER VI	
	ICY STUDIES OF SOLANUM PROCUMBENS (SP)	
	M (ST), ARTABOTRYS HEXAPETALUS (AH), GA	
	A (GP) AND JASMINUM GRANDIFLORUM L (JG TIZER IN PT FREE GRAPHENE OXIDE, GRAPHE	
	OXIDE AS COUNTER ELECTRODE FOR DYE SI	
MORE	SOLAR CELL APPLICATIONS	
6.1	INTRODUCTION	88
6.2	Materials and Experiments	89
6.2.1	Natural Dye Preparation	89
6.2.2	Preparation of DSSCs	90
6.2.3	Characterization Technique	91
6.3	Results and Discussion	91
6.3.1	UV- Vis Analysis	91
6.3.2	Electrochemical Impedance Spectroscopy	93
6.3.3	Efficiency Studies	95
6.4	Conclusion	101
	References	102

81

83

5.3.4

5.3.5

FESEM

EDX Analysis

CHAPTRE VII

ROLE OF GRAPHENE OXIDE / YTTRIUM OXIDE NANOCOMPOSITES AS A CATHODE MATERIAL FOR NATURAL DYE (SOLANUM PROCUMENS (SP), SOLANUM TORVUM (ST), ARTABOTRYS HEXAPETALUS (AH), GALINSOGA PARVIFLORA (GP), AND JASMINUM GRANDIFLORUM L (JG)) SENSITIZED SOLAR CELL

7.1	INTRODUCTION	104
7.2	Materials and Experiments	105
7.2.1	Natural Dye Preparation	105
7.2.2	Preparation of DSSCs	105
7.2.3	Characterization Technique	106
7.3	Results and Discussion	106
7.3.1	UV- Vis Analysis	106
7.3.2	Electrochemical Impedance Spectroscopy	107
7.3.3	Efficiency Studies	109
7.4	Conclusion	114
	References	115

CHAPTER VIII

PLATINUM FREE GRAPHENE OXIDE/SnO₂ NANOCOMPOSITES AS A COUNTER ELECTRODE FOR NATURAL DYES (SOLANUM PROCUMENS (SP), SOLANUM TORVUM (ST), ARTABOTRYS HEXAPETALUS (AH), GALINSOGA PARVIFLORA (GP), AND JASMINUM GRANDIFLORUM L (JG)) AS A SENSITIZER FOR SOLAR CELL APPLICATIONS

8.1	INTRODUCTION	117
8.2	Materials and Experiments	118
8.2.1	Natural Dye Preparation	118
8.2.2	Preparation of DSSCs	118

8.2.3	Characterization Technique	119
8.3	Results and Discussion	119
8.3.1	UV- Vis Analysis	119
8.3.2	Electrochemical Impedance Spectroscopy	121
8.3.3	Efficiency Studies	123
8.4	Conclusion	128
	References	129
	CHAPTER IX	
	SUMMARY OF RESULTS AND CONCLUSION	
9.1	Fabrication of graphene oxide nanosheets as a counter electrode for Pt free natural dye sensitized solar cell application	132
9.2	Synthesis and characterization of graphene oxide / nickel oxide nanocomposites for dye sensitized solar cell application	133
9.3	Preparation and characterization of graphene oxide / yttrium oxide nanocomposites for dye sensitized solar cell applications	133
9.4	Preparation and characterization of graphene oxide / tin oxide nanocomposites as counter electrode in dye sensitized solar cell	134
9.5	Efficiency studies of Solanum Procumbens (SP) as a sensitizer in Pt-free graphene oxide /metal oxides (NiO, Y_2O_3 and SnO_2) counter electrode for dye sensitized solar cell applications	134
9.6	Efficiency studies of Solanum Torvum (ST) as a sensitizer in Pt-free graphene oxide / metal oxides (NiO, Y_2O_3 and SnO_2) as counter electrode for dye sensitized solar cell applications	136
9.7	Efficiency studies of Artabotrys Hexapetalus (ah) as a sensitizer in Pt-free graphene oxide /metal oxides (NiO, Y_2O_3 and SnO_2) counter electrode for dye sensitized solar cell applications	137

9.8	Efficiency studies of Galinsoga Parviflora (GP) as a sensitizer in Pt-free graphene oxide /metal oxides (NiO, Y ₂ O ₃ and SnO ₂) counter electrode for dye sensitized solar cell applications	138
9.9	Efficiency studies of Jasminum Grandiflorum L (Jg) as a sensitizer in Pt-free graphene oxide /metal oxides (NiO, Y_2O_3 and SnO_2) as counter electrode for dye sensitized solar cell applications	139
9.10	CONCLUSION	140
	LIST OF PUBLICATIONS	141
	PAPER PRESENTED IN INTERNATIONAL CONFERENCES	142