
181

8. DEEP LEARNING MODELS TO PREDICT ASD GENES USING GENE

SEQUENCE ENCODING

The research is further progressed to the next stage with encoding schemes to transform

the gene sequences to be given as raw input to deep models. Contemporary deep learning

techniques differ from traditional machine learning in the manner representations are learned

from the raw data. The representations learned through the deep architectures are self taught,

data-driven and does not require any domain knowledge and feature engineering. These features

are not designed by human engineers and not extracted manually as done in traditional machine

learning. In deep learning methods feature learning and classification happens in the unified

framework which helps to eliminate the tedious task of manual feature extraction. The key aspect

of deep learning is that every layer in deep architecture generates a representation of the

observed patterns based on the data it receives as inputs from the layers below, through

optimization of a local unsupervised criterion. The deep architecture is thus capable of capturing

unbiased, intellectual, assorted features which are vital for building the classifiers. Hence it is

intended in this work to exploit the self-learning power of deep learning models by utilizing the

gene sequences as raw input data and thereby avoid the time consuming task of feature

engineering. A new mechanism of encoding the gene sequences, codon encoding and one hot

encoding is proposed here to transform the sequences to provide direct input to the deep

architectures for building the classifiers.

Chapter 6 discussed the development of deep neural network model which exploited user

defined features for predicting ASD causing genes, their susceptibility to the disorder and

triggering mutations. These tasks were implemented by utilizing the RNN and its variants

LSTM, GRU architectures and have been elaborated in chapter 7. This chapter describes the

method of two encoding schemes, codon encoding and one hot encoding and the problem

modeling of deep learning models to predict ASD causing genes.

8.1 CODON ENCODING OF GENE SEQUENCES FOR DEEP LEARNING BASED

PREDICTION OF ASD CAUSING GENES

Identifying genes causing the genetically transmitted Autism Spectrum Disorder (ASD) is

still a challenging task. The rapid developments in the design of deep architecture models have

182

shown considerable success in sequential data processing tasks. As genomics data is dependent

on domain specific experts for identifying relevant contributive features and as extracting hand-

crafted attributes involves much time, an alternate effective solution is the need of the hour.

Deep learning models examine the data to discover associations among the features and enable

faster learning without being explicitly programmed to do so. Hence the primary goal of this

work is to classify the ASD genes by employing deep learning based models without feature

engineering. To prepare the input vectors, new encoding scheme have been defined and ASD

gene sequences are transformed into numerical sequences.

Codon Encoding and Dataset Preparation

Codons are unlike in different gene families and are good discriminators for

differentiating the genes and mutations. Codons are the nucleotide triplet that encodes an amino

acid. The relation between the sequence of bases in DNA or its RNA transcripts and the

sequence of amino acids in proteins is given by the genetic code. The features of the genetic code

are given below.

 An amino acid is encoded by three nucleotides and proteins are built from a basic set of 20

amino acids.

 The code is nonoverlapping. Consider a base sequence ACCGTA. In a nonoverlapping code,

ACC designates the first amino acid, GTA the second, and so forth. Genetics experiments

again established the code to be nonoverlapping.

 The genetic code is degenerate. Some amino acids are encoded by more than one codon, and

there are 64 possible base triplets and only 20 amino acids. Out of the 64 possible triplets

only 61 specify particular amino acids and 3 triplets refer the stop codons that designate the

termination of translation. Thus, there is more than one code word for most of the amino

acids. For instance, there are six different ways to code the protein leucine. The code is

highly degenerate and so only tryptophan and methionine are encoded by just one triplet

each. Two or more triplets encode the other 18 amino acids. Indeed, leucine, arginine, and

serine are specified by six codons each.

https://www.ncbi.nlm.nih.gov/books/n/stryer/A5607/def-item/A5630/
https://www.ncbi.nlm.nih.gov/books/n/stryer/A5607/def-item/A5677/

183

In this work the potential of codons in recognizing the gene sequences is explored. The

simulated mutated sequences undergo the process of codon encoding and are converted into

records having values ranging from 1 to 64 as there are 64 possible codons. A gene sequence S is

composed of codons which are substrings si as defined by equation 8.1.

S= {s1s2…..si }, i ranges from 1 to n where n =|S| / 3 (8.1)

The genetic code showing the relation between codons and amino acid is presented in Table XXXVII.

Table XXXVII Genetic Code Showing Relation Between Codons and Amino Acid

Codon Amino Acid
Abbre

viation
Codon Amino Acid

Abbre

viation
Codon

Amino

Acid

Abbre

viation

TTT Phenylalanine Phe CCA Proline Pro AAT Asparagine Asn

TTC Phenylalanine Phe AGA Arginine Arg AAC Asparagine Asn

TTA Leucine Leu AGG Arginine Arg AAA Lysine Lys

TTG Leucine Leu GTT Valine Val AAG Lysine Lys

TCT Serine Ser GTC Valine Val AGT Serine Ser

TCC Serine Ser CCG Proline Pro AGC Serine Ser

TCA Serine Ser CAT Histidine His GCA Alanine Ala

TCG Serine Ser CAC Histidine His GCG Alanine Ala

TAT Tyrosine Tyr CAA Glutamine Gln GAT Aspartate Asp

TAC Tyrosine Tyr CAG Glutamine Gln GAC Aspartate Asp

TAA Termination Ter CGT Arginine Arg GTA Valine Val

TAG Termination Ter CGC Arginine Arg GTG Valine Val

TGT Cysteine Cys CGA Arginine Arg GCT Alanine Ala

TGC Cysteine Cys CGG Arginine Arg GCC Alanine Ala

TGA Termination Ter ATT Isoleucine Ile GGA Glycine Gly

TGG Tryptophan Trp ATC Isoleucine Ile GAA Glutamate Glu

CTT Leucine Leu ATA Isoleucine Ile GAG Glutamate Glu

CTC Leucine Leu ATG Methionine Met GGT Glycine Gly

CTA Leucine Leu ACT Threonine Thr GGC Glycine Gly

CTG Leucine Leu ACC Threonine Thr GGG Glycine Gly

CCT Proline Pro ACA Threonine Thr

CCC Proline Pro ACG Threonine Thr

184

Ex: A gene sequence AGACTGGTTCCA… consists of codons AGA CTG GTT CCA…

Each codon of the DNA sequence codes for a single amino acid and each nucleotide unit

consists of a phosphate, deoxyribose sugar and one of the 4 nitrogenous nucleotide bases,

adenine, guanine, cytosine and thymine represented by A, G, C and T respectively. This codon

mapping is mathematically formulated as given in equation 8.2.

 si ε {xp{yq{zr}}}, where <xp / yq / zr> = A / C / G / T where p, q, r=1,2,3,4 (8.2)

For example the triplet <x1 y3 z1> represents the Codon AGA.

There are 64 possible combinations of codons composed of three nucleotide bases that specify

the amino acids during protein assembling. Codons are mapped onto numbers ranging from 1 to

64. The entire gene sequence S is converted into a numerical vector V of codons CO as in (8.3).

Vj = [COi]j where i = 1 to nr, n=4, r=3, j =total number of gene sequences (8.3)

For example AGA is encoded to 09 as per the following scheme.

AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

The codon encoded SHANK3 gene sequence is given as follows

15 36 42 22 43 38 10 38 47 46 12 27

41 25 14 26 44 11 29 10 42 19 22 32

30 21 25 ……

In this manner codon encoding is done for all 1000 sequences available in the corpus.

The length of the codon encoded sequences is variable and depends on the number of codons

present in a gene sequence. All sequences are not of the same length, but in order to make it

uniform, 0 padding is done to make them equal in length. The length of each record is taken as

2582 timesteps of a feature vector which is the maximum number codons in a gene sequence.

185

The Codon Encoded Dataset (CEDS) consisting of the encoded feature vectors is created with

1000 instances of dimension 2582 where each instance is assigned with one hot encoded class

label ranging from 1 to 10.

Methodology

The mutated disease gene sequences are codon encoded and used in this multi-class

pattern classification problem. Four different deep models based on DNN, BRNN, LSTM and

GRU architectures are built by training with the codon encoded dataset. The methodology

includes three elements namely datasets creation, model building, performance evaluation and

the architecture of codon encoding based deep models for identifying ASD genes is depicted in

Fig.8.1

Fig. 8.1 Architecture of Codon Encoding Based Deep Models for Identifying

ASD Genes

Input sequences ACGTCGGGGGGGTTTTTTTTTTCAAAAA

CAAAAACGGGCCCGGTTTTCAAAAAGGG

Masking Layer

Codon

encoding

HotEncodi

ng

DNN/BRNN/

LSTM /GRU

Layer

Output Layer 0000100000 0100000000 ………………..

186

During the initial phase, the corpus built using 1000 mutated gene sequences accounting

for ten types of ASD genes and four types of mutations as mentioned in Chapter 3 is used.

Consequently codon encoding of these mutated gene sequences are done according to the

method mentioned in the previous section. The input vectors are reshaped to have n time steps

and k features, where n is the number of integers in the generated sequence and k is the set of

possible integers at each time step. CEDS comprising of 1000 class labeled input vectors of

dimension 2582 is used for building models.

The second phase consists of building deep neural networks that can automatically

extract useful features from sequential patterns through high-level information associated with

observed signals which in turn can be used for classification of pretentious genes that underlie

ASD. Four different deep network architectures namely DNN, BRNN, LSTM, GRU are

designed to build gene identification models. In order to ensure fair computation of the models

the basic structure of the proposed deep models is designed uniformly with one input layer, 2

hidden layers with 8 memory units, a masking layer and an output layer. The output layer is a

fully connected layer with 10 neurons for the 10 possible integers that may be output. The output

layer provides a softmax activation function that allows the network to learn and output the

distribution over the possible output values. In case of LSTM, the two stacked LSTM recurrent

layers that are capable of automatically learning feature representations is used as done in section

7.2. In GRU, shared feature extraction is performed using two parallel submodels designed

using Keras functional API as in section 7.3.

To improve the accuracy and efficiency of the models, a choice of hyperparameters such

as batch size, epochs, dropout, learning rate and optimizer are taken into consideration. The

parameters of the network are updated using mini - batch gradient descent. The epochs denote

the number of times the network will work through the entire training dataset. The important

regularization technique dropout enables to randomly ignore selected neurons during training.

The significance of learning rate parameter is to decide the pace at which a deep model replaces

the concepts it has already learned with the new ones. The optimization algorithm in a network

enables to minimize the error function and Adam optimizer is the algorithm used in this

implementation. The best configuration for the network is achieved by fine tuning the above

mentioned hyperparameters. The four deep learning techniques such as DNN, BRNN, LSTM

187

and GRU have been trained with the CEDS dataset to build ASD gene type identification

models.

In the concluding phase, the models are tested using 10-fold cross validation and

evaluated for their predictive performance using various metrics such as precision, recall, F-

measure, accuracy, log loss and specificity.

 Experiment and Results

Implementation of DNN, BRNN, LSTM and GRU is done using Keras which is a high-

level API for neural networks. The hyper parameters used in the previous experiments are used

here also for the sake of uniformity. During training and testing, data are segmented on mini-

batches of size 64 data segments. Varying dropouts from 0.2 to 0.5 are tested for this dataset and

it is found that dropout of 0.3 is optimal. The learning rate of 0.01 is fixed and the network used

the efficient Adam optimization algorithm. The log loss function is used while training which is

suitable for multiclass classification problems. Varying epochs of 50, 100, 150, 200, 250 are

experimented and the epoch size of 250 is fixed for the network. The four deep models are

trained with the above parameter settings using CEDS dataset and the ASD causative gene

identification models are built.

The performance of the four independent models was evaluated based on prediction

accuracy, logarithmic loss, precision, recall and F-measure. The standard 10 - fold cross-

validation technique was applied to split the data and to estimate their impact on the model‟s

prediction performance for unknown samples. The epochwise accuracy of the models are

tabulated in Table XXXVIII.

Table XXXVIII Epochwise Accuracy of Deep Models with Codon Encoding

Epochs DNN BRNN LSTM GRU

50 74.1% 77.4% 79.3% 79.5%

100 74.9% 79.2% 80.4% 80.6%

150 75.0% 80.3% 81.5% 81.4%

200 77.2% 80.9% 82.1% 82.8%

250 81.4% 81.5% 82.5% 83.9%

188

The experiment is carried out for different epochs and the results showed that GRU based

ASD gene prediction model has achieved high accuracy of 83.9% at 250 epochs. The DNN and

BRNN models demonstrated equal performances with accuracy of 81.4% and 81.5% for the gene

identification model whereas LSTM attained 82.5% accuracy. It is found that the accuracy also

increases to a considerable extent in all the four models as epochs are increased from 50 to 250.

The epochwise log losses of the models are tabulated in Table XXXIX.

Table XXXIX Epochwise Log Loss of Deep Models with Codon Encoding

Epochs DNN BRNN LSTM GRU

50 1.6742 0.9439 0.8875 0.9157

100 1.0557 0.9120 0.8696 0.8433

150 0.9726 0.8351 0.8281 0.7952

200 0.9521 0.8678 0.8174 0.7640

250 0.8248 0.7902 0.8025 0.7014

The log loss function punishes the classifiers for the inaccuracy of predictions. The

experimental results indicate that in the early epochs the log loss is high and drastically comes

down as epochs escalate. In 50 epochs DNN has the highest log loss whereas LSTM has the

least. The GRU method has the least log loss of 0.7014 at 250 epochs for ASD gene

identification model whereas it is 0.7902, 0.8025 and 0.8248 for BRNN, LSTM and DNN

respectively. The performance comparisons of the models are summarized in Table XL.

 Table XL Performance Results of Deep Models with Codon Encoding

Metrics DNN BRNN LSTM GRU

Precision 0.81 0.83 0.83 0.85

Recall 0.82 0.8 0.82 0.83

F- Measure 0.81 0.81 0.82 0.84

Accuracy 81.40% 81.50% 82.50% 83.90%

Correctly classified instances 407 407 412 419

Incorrectly classified instances 93 93 88 81

Specificity 73.6% 73.9% 74.5% 78.9%

The result analysis indicates that GRU model is effective in predicting the ASD genes

with a precision of 0.85, recall of 0.83 and F-measure of 0.84. The LSTM classifier stands

189

second with a precision of 0.83 and recall of 0.82 whereas DNN and BRNN show equal

performance with F-measure of 0.81 and accuracy of 81.4%, 81.5%. GRU based gene prediction

model has correctly identified 419 instances. When evaluating the specificity, GRU gives a

prominent score value of 78.9% for identifying the genes whereas it is 74.5% for LSTM based

ASD gene prediction model. The following charts from Fig.8.2 to Fig.8.8 depict the

experimental results.

Fig. 8.2 Epochwise Accuracy of Deep Models with Codon Encoding

Fig. 8.3 Epochwise Log Loss of Deep Models with Codon Encoding

190

Fig. 8.4 Performance of DNN Model with Codon Encoding

Fig. 8.5 Performance of BRNN Model with Codon Encoding

Fig. 8.6 Performance of LSTM Model with Codon Encoding

191

Fig. 8.7 Performance of GRU Model with Codon Encoding

Fig. 8.8 Performance Comparison of Deep Models with Codon Encoding

Fig.8.2 shows that the epochwise accuracy values are higher for GRU based gene

recognition model. The logloss which is initially high for all models reduces with increased

epochs and is observed to be minimum for the GRU gene prediction model which is illustrated in

Fig.8.3. The performance of the four models is illustrated in Fig.8.4 to 8.7 and it is noticed that

the precision, recall and accuracy of gene prediction model is high compared to other models.

192

Comparison of Deep Learning Models with Self Learned Vs User Defined Features

The effectiveness of the deep models developed with codon encoded dataset (CEDS) in

predicting ASD gene type is compared with the models trained using hand crafted

features(CMDS) in the previous experiments described in chapter 6 and chapter 7. The

performance measures like precision, recall, accuracy, F-measure and log loss are used to

compare the models and the comparative performance is reported in Table XLI - Table XLII.

Table XLI Comparative Performance of Deep Models - Self Learned Features (CEDS) Vs

User Defined Features (CMDS)

Metrics

Self Learned features - Codon encoding

(CEDS dataset)

User Defined Features

 (CMDS dataset)

DNN BRNN LSTM GRU DNN BRNN LSTM GRU

Precision 0.81 0.83 0.83 0.85 0.79 0.80 0.81 0.83

Recall 0.82 0.8 0.82 0.83 0.81 0.77 0.78 0.81

F- Measure 0.81 0.81 0.82 0.84 0.80 0.78 0.79 0.82

Accuracy 81.40% 81.50% 82.50% 83.90% 80.8% 81.3% 81.9% 82.5%

It is observed that deep learning models have attained improved accuracy when trained

with the codon encoded dataset. The GRU model outperforms with 83.9% accuracy in

identifying ASD genes using self learned features and 82.5% with user defined features. LSTM

shows 0.6% enhanced accuracy working with the encoded gene sequences. BRNN shows almost

equal accuracy 81.5% and 81.3% in both the methods and increased F- measure of 0.81. DNN

achieves 0.6% improved accuracy and its precision has also improved. The comparison of log

loss of four models on CEDS and CMDS is presented in Table XLII.

193

Table XLII Log Loss of Deep Models - Self Learned Features (CEDS)

Vs User Defined Features (CMDS)

Architecture

Self Learned features –

Codon encoding

 (CEDS dataset)

User Defined Features

 (CMDS dataset)

DNN 0.8248 0.8641

BRNN 0.7902 0.8010

LSTM 0.8025 0.8284

GRU 0.7014 0.7162

With regard to logarithmic loss GRU has comparatively less misclassifications for both

self learned and user defined features. It has evidenced reduced values of 0.7162 and 0.7014 for

CMDS and CEDS respectively. The comparative performance of the deep learning models using

CEDS and CMDS is depicted in Fig.8.9 – Fig.8.10.

Fig. 8.9 Comparative Performance of Deep Models - Self Learned Features (CEDS) Vs

User Defined Features (CMDS)

194

Fig. 8.10 Log Loss Comparison of Deep Models - Self Learned Features (CEDS) Vs User

Defined Features (CMDS)

It is evident that the deep models show superior performance with codon encoded dataset

rather than with user defined CMDS dataset for identifying genes. GRU models have high

accuracy in predicting the genes and outperforms with high precision and recall than its near

equivalent LSTM as shown in Fig.8.9. The recall values of BRNN, LSTM and GRU appear the

same whereas accuracy is constantly soaring for GRU than the other models. The performance of

the models with regard to log loss are given in Fig.8.10 and it shows that the all the models show

slightly higher log loss for gene identification with user defined features than with CEDS dataset.

Among the four models, GRU based model has a minimum log loss for ASD gene identification.

Findings

From this work it is found that the deep learning models have extracted gene

characteristics automatically from codon encoding of gene sequences through self learning and

has exhibited superior performance. These deep models surpass their respective performance for

gene prediction using hand crafted features by capturing the influential, intricate and

inconspicuous features directly from the encoded gene sequences which may not be noticed by

humans. It is evident that deep models have eliminated the need for domain expertise and feature

engineering thus reducing the time taken. Empirical experiments on encoded datasets confirm

that the GRU model outperforms other deep learning models as the long-term temporal

195

dependencies of gene sequence observations are jointly learned by the integrated sub models.

The reliability of the gene identification model is proved by self taught features learnt through

deep learning. These experiments also prove that the proposed method can be used as a general

deep learning framework for classification of gene sequences and disease prediction as direct

input is given without the need for careful extraction of features.

8.2 ONE HOT ENCODING OF GENE SEQUENCES FOR DEEP LEARNING BASED

PREDICTION OF ASD CAUSING GENES

The previous experiment utilized the codon encoding scheme of the gene sequences to

train the deep models which are able to classify the ASD gene sequences. The codon patterns are

read by the networks and it self-learns features from the varied sequences. But positional

information of each nucleotide in the sequence is not explicitly specified to the deep networks.

Since gene sequences are denoted as a sequence of successive letters without space, it is

proposed to use one-hot encoding to give binary representation for the input sequences without

losing positional information of each nucleotide. In this work, the utility of using one hot

encoding method to encode a gene sequence as vector of numerical values for building the deep

models to predict the type of ASD causative genes is explored.

One Hot Encoding and Dataset Preparation

The simulated mutated sequences undergo the process of one hot encoding where each

input sequence of length l is transformed into a 4 × l representation. The nucleotide bases

adenine (A), cytosine (C), guanine (G), thymine (T) match the components from top to bottom

respectively. If one of the nucleotide appears, the corresponding component is set to one and the

others are set to 0. All sequences are not of the same length, but in order to make it uniform, 0

padding is done to make them equal in length. The maximum length of the available CDNA

sequence is 7746 which corresponds to CHD8 gene. Hence each input sequence is transformed

into a 7746 x 4 one-hot encoded vector. A one hot encoded sample of size 10-base pair for the

gene sequence ACGTGTCCAG is shown below.

1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 1 1 0 0

0 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0

196

In this manner one hot encoding is done for all 1000 sequences available in the corpus.

The One Hot Encoded Dataset (OHEDS) consisting of encoded feature vectors is created with

1000 instances of dimension 7746 x 4 where each instance is assigned with one hot encoded

class labels ranging from 1 to 10 for the ten possible genes.

Methodology

Four different deep models based on DNN, BRNN, LSTM and GRU architectures are

built by training the above OHEDS. The process includes three elements namely dataset

creation, model building, performance evaluation and the architecture of one hot encoding based

deep models for identifying ASD genes is depicted in Fig.8.11.

Fig. 8.11 Architecture of One Hot Encoding Based Deep Models for Identifying ASD Genes

During the initial phase, the corpus built using 1000 mutated gene sequences accounting

for ten types of ASD genes and four types of mutations as mentioned in Chapter 3 is used.

Consequently one hot encoding of these mutated gene sequences are done according to the

method mentioned in the previous section. The input vectors are reshaped to have n time steps

Input sequences ACGTCGGGGGGGTTTTTTTTTTCAAAAA

 CAAAAACGGGCCCGGTTTTCAAAAAGG

 One Hot encoding
1 0 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

Masking Layer

Output Layer 0000100000 0100000000 ………………..

DNN/BRNN/

LSTM/GRU

Layer

197

and k features, where n is the number of integers in the generated sequence and k is the set of

possible integers at each time step. The dataset OHEDS comprises of 1000 class labeled input

vectors of dimension 7746 X4 with 10 class labels and is used for building models.

In the second phase four different deep network architectures namely DNN, BRNN,

LSTM, GRU are designed to build gene identification models. To ensure unbiased

investigations, the basic structure of the deep models configured in the previous work is

employed here. That is the network with one input layer, 2 hidden layers with 8 memory units, a

masking layer and an output layer which is a fully connected layer with 10 neurons for the 10

possible gene classes is designed. The softmax activation function which is placed in the output

layer allows the network to learn and output the distribution over the possible output values. In

case of LSTM, the two stacked LSTM recurrent layers is used as done in section 7.2 and with

GRU, shared feature extraction is performed using two parallel submodels as in section 7.3.

A choice of hyperparameters such as batch size, epochs, dropout, learning rate and

optimizer are similar to that used in the earlier work. Mini - batch gradient descent is used to

update the parameters of the network. The epochs denote the number of times the network will

work through the entire training dataset. The important regularization technique dropout is used

to reduce the effect of overfitting. The predictive model is constructed with sparse categorical

cross entropy loss function for training and suitable for prediction problems. The speed at which

a deep model replaces the concepts it has already learned with the new ones is decided by the

learning rate. The error function is minimized by the optimization algorithm and Adam optimizer

is the algorithm used in this implementation. The above mentioned hyperparameters are fine

tuned to achieve the best configuration for the deep networks. ASD gene type identification

models are built by training the four deep learning techniques using one hot encoded dataset.

In the final phase, 10 - fold cross validation is used to test the models and their predictive

performance is evaluated using various metrics such as precision, recall, F- measure, accuracy,

log loss and specificity.

Experiment and Results

Experiments have been carried out by implementing DNN, BRNN, LSTM and GRU

algorithms using Keras which is a high-level API for neural networks. The hyper parameters

198

used in the previous experiments are used here for the sake of uniformity. During training and

testing, data are segmented on mini-batches of size 64 data segments. The network used a

dropout rate of 0.3 and a learning rate of 0.01. The experiment was conducted for varying epochs

of 50, 100, 150, 200, 250 and the results are tabulated. The network used the sparse categorical

cross entropy loss function while training, suitable for multiclass classification problems and the

efficient Adam optimization algorithm. The four deep classifiers are trained with the above

parameter settings using OHEDS dataset and the ASD causative gene identification models are

built.

The standard 10 - fold cross-validation technique was applied to estimate the predictive

performance of the models. The performance of the four independent models was evaluated

based on prediction accuracy, logarithmic loss, precision, recall and F-measure. The epochwise

accuracy of the models is tabulated in Table XLIII.

Table XLIII Epochwise Accuracy of Deep Models with One Hot Encoding

Epochs DNN BRNN LSTM GRU

50 74.8% 77.7% 79.6% 80.3%

100 75.2% 80.1% 80.6% 80.8%

150 76.6% 80.5% 81.7% 81.6%

200 78.2% 81.4% 82.4% 83.1%

250 81.6% 81.8% 82.9% 84.3%

The tabulated results show that GRU based ASD gene prediction model has achieved an

accuracy of 84.3% at 250 epochs which is higher than that of other three models. At 50 epochs

the GRU prediction model achieved an accuracy of 80.3%, gradually increased to 81.6% at 150

epochs and reached 84.3% at 250 epochs. There is an increase of about 4% accuracy for the

GRU prediction model from 50 to 250 epochs. The experiments show that accuracy of all three

models increases as epochs are increased The accuracy of DNN, BRNN, LSTM models at 250

epochs is 81.6%, 81.8% and 82.9% respectively. The epochwise log loss of these three models is

shown in Table XLIV.

199

Table XLIV Epochwise Log Loss of Deep Models with One Hot Encoding

Epochs DNN BRNN LSTM GRU

50 1.0124 0.8539 0.8474 0.8356

100 0.9951 0.8312 0.8151 0.8130

150 0.9277 0.8151 0.7878 0.7623

200 0.8528 0.8054 0.7302 0.7345

250 0.8047 0.7810 0.7150 0.7004

The results illustrate that the log loss reduces as epochs increase and the models have

achieved better performance by reducing its misclassifications of genes. Initially at 50 epochs the

DNN, BRNN, LSTM, GRU models had log loss of 1.0124, 0.8539, 0.8474 and 0.8356

respectively for predicting genes. This gets reduced at the end of 250 epochs for all the four

models. Eventually the log loss associated with GRU model in classifying the ASD causative

genes is 0.7004 which is comparatively less when compared to that of 0.8248 of DNN model,

0.7802 of BRNN and 0.7150 of LSTM model. The overall performance results of these four

models are shown in Table XLV.

Table XLV Performance Results of Deep Models with One Hot Encoding

Metrics DNN BRNN LSTM GRU

Precision 0.82 0.83 0.84 0.86

Recall 0.81 0.82 0.82 0.84

F- Measure 0.82 0.82 0.83 0.85

Accuracy 81.6% 81.8% 82.9% 84.3%

Correctly classified instances 408 409 414 421

Incorrectly classified instances 92 91 86 79

Specificity 82.6% 82.9% 83.7% 84.9%

The result analysis indicates that GRU model shows promising performance for the ASD

gene prediction. It is effective in predicting the ASD genes with a precision of 0.86, recall of

0.84 and F-measure of 0.85. The DNN and BRNN classifiers achieve almost equal F-measure of

0.82 whereas the LSTM classifier attains a slight upper edge with that of 0.83. The GRU based

200

gene prediction model has correctly identified 421 instances and has achieved specificity of

84.9%. Among the other three models LSTM has correctly identified 414 instances whereas

DNN and BRNN has recognized 408 and 409 respectively. The experimental results of GRU

based models are illustrated in Fig.8.12 to Fig.8.17.

Fig. 8.12 Epochwise Accuracy of Deep Models with One Hot Encoding

Fig. 8.13 Epochwise Logloss of Deep Models with One Hot Encoding

201

Fig. 8.14 Performance of DNN Model with One Hot Encoding

Fig. 8.15 Performance of BRNN Model with One Hot Encoding

202

Fig. 8.16 Performance of LSTM Model with One Hot Encoding

Fig. 8.17 Performance of GRU Model with One Hot Encoding

Fig.8.12 shows that the epochwise accuracy values are steadily increasing for GRU based

gene recognition model. The logloss in identifying genes reduces with increased epochs and is

observed to be minimum for the GRU model which is illustrated in Fig.8.13. The performance of

DNN, BRNN, LSTM and GRU models is depicted from Fig.8.14 to Fig.8.17. It is noticed that

while the precision of gene prediction model is high for GRU the recall has a dip of 0.02. The F-

measure and accuracy of LSTM model is almost equal and BRNN model shows constant recall

and F-measure.

203

Comparison of Deep Learning Models with Self Learned Features of OHEDS and User

Defined Features of CMDS

The performance of the deep models developed with one hot encoded dataset (OHEDS)

is compared with the corresponding models trained with user defined codon measures dataset

(CMDS) for predicting ASD gene type in the previous experiments described in section 8.1. The

comparative analysis is performed with respect to various performance measures like precision,

recall, accuracy, F-measure and log loss and the comparative results is reported in Table XLVI -

Table XLVII.

Table XLVI Comparative Performance of Deep Models - Self Learned Features (OHEDS)

Vs User Defined Features (CMDS)

Metrics

Self Learned Features

One Hot Encoded Dataset (OHEDS)

User Defined Features

 (CMDS dataset)

DNN BRNN LSTM GRU DNN BRNN LSTM GRU

Precision 0.82 0.83 0.84 0.86 0.79 0.80 0.81 0.83

Recall 0.81 0.82 0.82 0.84 0.81 0.77 0.78 0.81

F- Measure 0.82 0.82 0.83 0.85 0.80 0.78 0.79 0.82

Accuracy 81.6% 81.8% 82.9% 84.3% 80.8% 81.3% 81.9% 82.5%

From the comparative results it is observed that deep learning models have attained

improved accuracy when trained with the one hot encoded dataset. The GRU model outperforms

with 84.3% accuracy in identifying ASD genes when one hot encoding is used whereas the

accuracy of 82.5% is reported with CMDS dataset. The precision, recall and F-measure of GRU

has shown improvements than its own performance when using CMDS. BRNN and LSTM

shows 0.5% and 1% enhanced accuracy working with the one hot encoded gene sequences than

CMDS. DNN achieves 0.8% improved accuracy and its precision has also improved. The

comparison of log loss of four models on OHEDS and CMDS is presented in Table XLVII.

204

Table XLVII Log Loss of Deep Models - Self Learned Features (OHEDS)

Vs User Defined Features (CMDS)

Architecture Self Learned

Features

One Hot Encoded

Dataset (OHEDS)

User Defined

Features

 (CMDS dataset)

DNN 0.8047 0.8641

BRNN 0.7810 0.8010

LSTM 0.7150 0.8284

GRU 0.7004 0.7162

With regard to logarithmic loss all the deep models have comparatively less

misclassifications for one hot encoded datasets. GRU model has evidenced reduced log loss

values of 0.7162 and 0.7004 for CMDS and OHEDS respectively. LSTM model is the next best

model with 0.7150 log loss. The comparative performance of the deep learning models using self

learned features from one hot encoding and user defined features from CMDS dataset is depicted

in Fig.8.18 – Fig.8.19.

Fig. 8.18 Comparative Performance of Deep Models - Self Learned Features (OHEDS) Vs

User Defined Features (CMDS)

205

Fig. 8.19 Log Loss Comparison of Deep Models - OHEDS Vs CMDS

It is apparent that the deep models built with one hot encoding show enhanced

performance than the models learnt with user defined featured from CMDS dataset for

identifying genes. GRU models have high accuracy in predicting the genes and outperform its

near equivalent LSTM with high precision and recall as shown in Fig.8.18. The recall values of

DNN, BRNN, LSTM appear the same whereas accuracy is constantly soaring for GRU than the

other models. The performance of the models with regard to log loss is given in Fig.8.19 and it

shows that the all the models show slightly reduced log loss for gene identification with OHEDS

dataset than CMDS dataset. GRU based model shows a major difference in the log loss for ASD

gene identification when compared to other models.

Comparison of Models with Two Encoding Schemes

 On comparing the two encoding schemes it is found that the one hot encoding scheme

performs better than the codon encoding scheme. The deep models DNN, BRNN, LSTM and

GRU with one hot encoding scheme outperformed their respective models using codon encoding

for ASD gene type identification.

Findings

The results confirm that the deep models are able to capture the prominent, intricate and

hidden features that humans can miss by preserving specific position information of each

individual nucleotide in sequences. The deep models have eliminated the complex task of feature

206

engineering and have also reduced the time involved. From the comparative results it is found

that the deep learning models have improved in self learning and exhibited better performance

with respect to various performance measures when using one hot encoding of gene sequences.

Empirical experiments confirm that by using one-hot vectors to develop GRU network model,

significant performance improvements has been achieved in predicting the ASD causative genes.

These experiments also prove that the proposed method can be used as a generalized effective

solution to characterize the variable length gene sequence data with masking and one hot

encoding.

SUMMARY

Deep learning models using DNN, BRNN, LSTM and GRU developed to classify ASD

gene sequences using two different encoding methods have been elaborated in this chapter. Two

encoding mechanisms such as codon encoding and one hot encoding proposed to represent the

gene sequences were illustrated and the preparation of two corresponding datasets have been

described. The models were trained with these two different datasets and the effectiveness of

these models was evaluated using different performance metrics to explore the reliability of the

method. The implementation results were also demonstrated in this chapter with tables and

charts.

