
181 

 

8. DEEP LEARNING MODELS TO PREDICT ASD GENES USING GENE 

SEQUENCE ENCODING  

 

The research is further progressed to the next stage with encoding schemes to transform 

the gene sequences to be given as raw input to deep models. Contemporary deep learning 

techniques differ from traditional machine learning in the manner representations are learned 

from the raw data. The representations learned through the deep architectures are self taught, 

data-driven and does not require any domain knowledge and feature engineering. These features 

are not designed by human engineers and not extracted manually as done in traditional machine 

learning. In deep learning methods feature learning and classification happens in the unified 

framework which helps to eliminate the tedious task of manual feature extraction. The key aspect 

of deep learning is that every layer in deep architecture generates a representation of the 

observed patterns based on the data it receives as inputs from the layers below, through 

optimization of a local unsupervised criterion. The deep architecture is thus capable of capturing 

unbiased, intellectual, assorted features which are vital for building the classifiers. Hence it is 

intended in this work to exploit the self-learning power of deep learning models by utilizing the 

gene sequences as raw input data and thereby avoid the time consuming task of feature 

engineering. A new mechanism of encoding the gene sequences, codon encoding and one hot 

encoding is proposed here to transform the sequences to provide direct input to the deep 

architectures for building the classifiers. 

Chapter 6 discussed the development of deep neural network model which exploited user 

defined features for predicting ASD causing genes, their susceptibility to the disorder and 

triggering mutations. These tasks were implemented by utilizing the RNN and its variants 

LSTM, GRU architectures and have been elaborated in chapter 7. This chapter describes the 

method of two encoding schemes, codon encoding and one hot encoding and the problem 

modeling of deep learning models to predict ASD causing genes.  

8.1 CODON ENCODING OF GENE SEQUENCES FOR DEEP LEARNING BASED 

PREDICTION OF ASD CAUSING GENES  

Identifying genes causing the genetically transmitted Autism Spectrum Disorder (ASD) is 

still a challenging task. The rapid developments in the design of deep architecture models have 



182 

 

shown considerable success in sequential data processing tasks. As genomics data is dependent 

on domain specific experts for identifying relevant contributive features and as extracting hand-

crafted attributes involves much time, an alternate effective solution is the need of the hour. 

Deep learning models examine the data to discover associations among the features and enable 

faster learning without being explicitly programmed to do so. Hence the primary goal of this 

work is to classify the ASD genes by employing deep learning based models without feature 

engineering. To prepare the input vectors, new encoding scheme have been defined and ASD 

gene sequences are transformed into numerical sequences. 

Codon Encoding and Dataset Preparation 

Codons are unlike in different gene families and are good discriminators for 

differentiating the genes and mutations. Codons are the nucleotide triplet that encodes an amino 

acid. The relation between the sequence of bases in DNA or its RNA transcripts and the 

sequence of amino acids in proteins is given by the genetic code. The features of the genetic code 

are given below. 

 An amino acid is encoded by three nucleotides and proteins are built from a basic set of 20 

amino acids. 

 The code is nonoverlapping. Consider a base sequence ACCGTA. In a nonoverlapping code, 

ACC designates the first amino acid, GTA the second, and so forth. Genetics experiments 

again established the code to be nonoverlapping. 

 The genetic code is degenerate. Some amino acids are encoded by more than one codon, and 

there are 64 possible base triplets and only 20 amino acids. Out of the 64 possible triplets 

only 61 specify particular amino acids and 3 triplets refer the stop codons that designate the 

termination of translation. Thus, there is more than one code word for most of the amino 

acids. For instance, there are six different ways to code the protein leucine. The code is 

highly degenerate and so only tryptophan and methionine are encoded by just one triplet 

each. Two or more triplets encode the other 18 amino acids. Indeed, leucine, arginine, and 

serine are specified by six codons each.  

https://www.ncbi.nlm.nih.gov/books/n/stryer/A5607/def-item/A5630/
https://www.ncbi.nlm.nih.gov/books/n/stryer/A5607/def-item/A5677/
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In this work the potential of codons in recognizing the gene sequences is explored. The 

simulated mutated sequences undergo the process of codon encoding and are converted into 

records having values ranging from 1 to 64 as there are 64 possible codons. A gene sequence S is 

composed of codons which are substrings si as defined by equation 8.1. 

S= {s1s2…..si  },  i ranges from 1 to n where  n =|S| / 3            (8.1) 

The genetic code showing the relation between codons and amino acid is presented in Table XXXVII. 

Table XXXVII Genetic Code Showing Relation Between Codons and Amino Acid 

Codon Amino Acid 
Abbre

viation 
Codon Amino Acid 

Abbre

viation 
Codon 

Amino 

Acid 

Abbre

viation 

TTT Phenylalanine Phe CCA Proline Pro AAT Asparagine Asn 

TTC Phenylalanine Phe AGA Arginine Arg AAC Asparagine Asn 

TTA Leucine Leu AGG Arginine Arg AAA Lysine Lys 

TTG Leucine Leu GTT Valine Val AAG Lysine Lys 

TCT Serine Ser GTC Valine Val AGT Serine Ser 

TCC Serine Ser CCG Proline Pro AGC Serine Ser 

TCA Serine Ser CAT Histidine His GCA Alanine Ala 

TCG Serine Ser CAC Histidine His GCG Alanine Ala 

TAT Tyrosine Tyr CAA Glutamine Gln GAT Aspartate Asp 

TAC Tyrosine Tyr CAG Glutamine Gln GAC Aspartate Asp 

TAA Termination Ter CGT Arginine Arg GTA Valine Val 

TAG Termination Ter CGC Arginine Arg GTG Valine Val 

TGT Cysteine Cys CGA Arginine Arg GCT Alanine Ala 

TGC Cysteine Cys CGG Arginine Arg GCC Alanine Ala 

TGA Termination Ter ATT Isoleucine Ile GGA Glycine Gly 

TGG Tryptophan Trp ATC Isoleucine Ile GAA Glutamate Glu 

CTT Leucine Leu ATA Isoleucine Ile GAG Glutamate Glu 

CTC Leucine Leu ATG Methionine Met GGT Glycine Gly 

CTA Leucine Leu ACT Threonine Thr GGC Glycine Gly 

CTG Leucine Leu ACC Threonine Thr GGG Glycine Gly 

CCT Proline Pro ACA Threonine Thr    

CCC Proline Pro ACG Threonine Thr    
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Ex: A gene sequence AGACTGGTTCCA… consists of codons AGA CTG GTT CCA… 

Each codon of the DNA sequence codes for a single amino acid and each nucleotide unit 

consists of a phosphate, deoxyribose sugar and one of the 4 nitrogenous nucleotide bases, 

adenine,  guanine, cytosine and thymine represented by A, G, C and T respectively. This codon 

mapping is mathematically formulated as given in equation 8.2. 

 si  ε {xp{yq{zr}}},  where <xp / yq / zr> = A / C / G / T where p, q, r=1,2,3,4     (8.2) 

For example the triplet  <x1 y3 z1> represents the Codon AGA. 

There are 64 possible combinations of codons composed of three nucleotide bases that specify 

the amino acids during protein assembling. Codons are mapped onto numbers ranging from 1 to 

64. The entire gene sequence S is converted into a numerical vector V of codons CO as in (8.3). 

Vj = [ COi ]j where i = 1 to nr,  n=4, r=3, j =total number of gene sequences        (8.3)  

For example AGA is encoded to 09 as per the following scheme. 

 
AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 

CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT 

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT 

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

 

The codon encoded SHANK3 gene sequence is given as follows 

15 36 42 22 43 38 10 38 47 46 12 27 

41  25  14 26 44 11 29 10 42 19 22 32 

30 21 25 ……  

In this manner codon encoding is done for all 1000 sequences available in the corpus. 

The length of the codon encoded sequences is variable and depends on the number of codons 

present in a gene sequence. All sequences are not of the same length, but in order to make it 

uniform, 0 padding is done to make them equal in length. The length of each record is taken as 

2582 timesteps of a feature vector which is the maximum number codons in a gene sequence. 
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The Codon Encoded Dataset (CEDS) consisting of the encoded feature vectors is created with 

1000 instances of dimension 2582 where each instance is assigned with one hot encoded class 

label ranging from 1 to 10.  

Methodology 

The mutated disease gene sequences are codon encoded and used in this multi-class 

pattern classification problem. Four different deep models based on DNN, BRNN, LSTM and 

GRU architectures are built by training with the codon encoded dataset. The methodology 

includes three elements namely datasets creation, model building, performance evaluation and 

the architecture of codon encoding based deep models for identifying ASD genes is depicted in 

Fig.8.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.1 Architecture of Codon Encoding Based Deep Models for Identifying  

ASD Genes 

Input sequences       ACGTCGGGGGGGTTTTTTTTTTCAAAAA 

CAAAAACGGGCCCGGTTTTCAAAAAGGG 
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During the initial phase, the corpus built using 1000 mutated gene sequences accounting 

for ten types of ASD genes and four types of mutations as mentioned in Chapter 3 is used. 

Consequently codon encoding of these mutated gene sequences are done according to the 

method mentioned in the previous section. The input vectors are reshaped to have n time steps 

and k features, where n is the number of integers in the generated sequence and k is the set of 

possible integers at each time step. CEDS comprising of 1000 class labeled input vectors of 

dimension 2582 is used for building models. 

The second phase consists of building deep neural networks that can automatically 

extract useful features from sequential patterns through high-level information associated with 

observed signals which in turn can be used for classification of pretentious genes that underlie 

ASD. Four different deep network architectures namely DNN, BRNN, LSTM, GRU are 

designed to build gene identification models. In order to ensure fair computation of the models 

the basic structure of the proposed deep models is designed uniformly with one input layer, 2 

hidden layers with 8 memory units, a masking layer and an output layer. The output layer is a 

fully connected layer with 10 neurons for the 10 possible integers that may be output. The output 

layer provides a softmax activation function that allows the network to learn and output the 

distribution over the possible output values. In case of LSTM, the two stacked LSTM recurrent 

layers that are capable of automatically learning feature representations is used as done in section 

7.2.  In GRU, shared feature extraction is performed using two parallel submodels designed 

using Keras functional API as in section 7.3.  

To improve the accuracy and efficiency of the models, a choice of hyperparameters such 

as batch size, epochs, dropout, learning rate and optimizer are taken into consideration. The 

parameters of the network are updated using mini - batch gradient descent.  The epochs denote 

the number of times the network will work through the entire training dataset. The important 

regularization technique dropout enables to randomly ignore selected neurons during training. 

The significance of learning rate parameter is to decide the pace at which a deep model replaces 

the concepts it has already learned with the new ones. The optimization algorithm in a network 

enables to minimize the error function and Adam optimizer is the algorithm used in this 

implementation. The best configuration for the network is achieved by fine tuning the above 

mentioned hyperparameters. The four deep learning techniques such as DNN, BRNN, LSTM 



187 

 

and GRU have been trained with the CEDS dataset to build ASD gene type identification 

models. 

In the concluding phase, the models are tested using 10-fold cross validation and 

evaluated for their predictive performance using various metrics such as precision, recall, F- 

measure, accuracy, log loss and specificity. 

 Experiment and Results 

Implementation of DNN, BRNN, LSTM and GRU is done using Keras which is a high-

level API for neural networks. The hyper parameters used in the previous experiments are used 

here also for the sake of uniformity. During training and testing, data are segmented on mini-

batches of size 64 data segments. Varying dropouts from 0.2 to 0.5 are tested for this dataset and 

it is found that dropout of 0.3 is optimal. The learning rate of 0.01 is fixed and the network used 

the efficient Adam optimization algorithm. The log loss function is used while training which is 

suitable for multiclass classification problems. Varying epochs of 50, 100, 150, 200, 250 are 

experimented and the epoch size of 250 is fixed for the network. The four deep models are 

trained with the above parameter settings using CEDS dataset and the ASD causative gene 

identification models are built. 

The performance of the four independent models was evaluated based on prediction 

accuracy, logarithmic loss, precision, recall and F-measure. The standard 10 - fold cross-

validation technique was applied to split the data and to estimate their impact on the model‟s 

prediction performance for unknown samples. The epochwise accuracy of the models are 

tabulated in Table XXXVIII. 

Table XXXVIII Epochwise Accuracy of Deep Models with Codon Encoding 

Epochs DNN BRNN LSTM GRU 

50 74.1% 77.4% 79.3% 79.5% 

100 74.9% 79.2% 80.4% 80.6% 

150 75.0% 80.3% 81.5% 81.4% 

200 77.2% 80.9% 82.1% 82.8% 

250 81.4% 81.5% 82.5% 83.9% 
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The experiment is carried out for different epochs and the results showed that GRU based 

ASD gene prediction model has achieved high accuracy of 83.9% at 250 epochs. The DNN and 

BRNN models demonstrated equal performances with accuracy of 81.4% and 81.5% for the gene 

identification model whereas LSTM attained 82.5% accuracy. It is found that the accuracy also 

increases to a considerable extent in all the four models as epochs are increased from 50 to 250. 

The epochwise log losses of the models are tabulated in Table XXXIX. 

Table XXXIX Epochwise Log Loss of Deep Models with Codon Encoding 

Epochs DNN BRNN LSTM GRU 

50 1.6742 0.9439 0.8875 0.9157 

100 1.0557 0.9120 0.8696 0.8433 

150 0.9726 0.8351 0.8281 0.7952 

200 0.9521 0.8678 0.8174 0.7640 

250 0.8248 0.7902 0.8025 0.7014 
 

The log loss function punishes the classifiers for the inaccuracy of predictions. The 

experimental results indicate that in the early epochs the log loss is high and drastically comes 

down as epochs escalate. In 50 epochs DNN has the highest log loss whereas LSTM has the 

least. The GRU method has the least log loss of 0.7014 at 250 epochs for ASD gene 

identification model whereas it is 0.7902, 0.8025 and 0.8248 for BRNN, LSTM and DNN 

respectively. The performance comparisons of the models are summarized in Table XL. 

 Table XL Performance Results of Deep Models with Codon Encoding   

Metrics DNN BRNN LSTM GRU 

Precision 0.81 0.83 0.83 0.85 

Recall 0.82 0.8 0.82 0.83 

F-  Measure 0.81 0.81 0.82 0.84 

Accuracy 81.40% 81.50% 82.50% 83.90% 

Correctly classified instances 407 407 412 419 

Incorrectly classified instances 93 93 88 81 

Specificity 73.6% 73.9% 74.5% 78.9% 

 

The result analysis indicates that GRU model is effective in predicting the ASD genes 

with a precision of 0.85, recall of 0.83 and F-measure of 0.84. The LSTM classifier stands 
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second with a precision of 0.83 and recall of 0.82 whereas DNN and BRNN show equal 

performance with F-measure of 0.81 and accuracy of 81.4%, 81.5%. GRU based gene prediction 

model has correctly identified 419 instances. When evaluating the specificity, GRU gives a 

prominent score value of 78.9% for identifying the genes whereas it is 74.5% for LSTM based 

ASD gene prediction model. The following charts from Fig.8.2 to Fig.8.8 depict the 

experimental results.  

 

 

Fig. 8.2 Epochwise Accuracy of Deep Models with Codon Encoding 

 

 

Fig. 8.3 Epochwise Log Loss of Deep Models with Codon Encoding 
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Fig. 8.4 Performance of DNN Model with Codon Encoding 

 

Fig. 8.5 Performance of BRNN Model with Codon Encoding 

 

Fig. 8.6 Performance of LSTM Model with Codon Encoding 
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Fig. 8.7 Performance of GRU Model with Codon Encoding 

 

Fig. 8.8 Performance Comparison of Deep Models with Codon Encoding 

 

Fig.8.2 shows that the epochwise accuracy values are higher for GRU based gene 

recognition model. The logloss which is initially high for all models reduces with increased 

epochs and is observed to be minimum for the GRU gene prediction model which is illustrated in 

Fig.8.3. The performance of the four models is illustrated in Fig.8.4 to 8.7 and it is noticed that 

the precision, recall and accuracy of gene prediction model is high compared to other models. 
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Comparison of Deep Learning Models with Self Learned Vs User Defined Features 

The effectiveness of the deep models developed with codon encoded dataset (CEDS) in 

predicting ASD gene type is compared with the models trained using hand crafted 

features(CMDS) in the previous experiments described in chapter 6 and chapter 7. The 

performance measures like precision, recall, accuracy, F-measure and log loss are used to 

compare the models and the comparative performance is reported in Table XLI - Table XLII. 

Table XLI Comparative Performance of Deep Models - Self Learned Features (CEDS) Vs 

User Defined Features (CMDS) 

Metrics 

Self Learned features - Codon encoding 

(CEDS dataset) 

User Defined Features 

 (CMDS dataset) 

DNN BRNN LSTM GRU DNN BRNN LSTM GRU 

Precision 0.81 0.83 0.83 0.85 0.79 0.80 0.81 0.83 

Recall 0.82 0.8 0.82 0.83 0.81 0.77 0.78 0.81 

F-  Measure 0.81 0.81 0.82 0.84 0.80 0.78 0.79 0.82 

Accuracy 81.40% 81.50% 82.50% 83.90% 80.8% 81.3% 81.9% 82.5% 

 

It is observed that deep learning models have attained improved accuracy when trained 

with the codon encoded dataset. The GRU model outperforms with 83.9% accuracy in 

identifying ASD genes using self learned features and 82.5% with user defined features.  LSTM 

shows 0.6% enhanced accuracy working with the encoded gene sequences. BRNN shows almost 

equal accuracy 81.5% and 81.3% in both the methods and increased F- measure of 0.81. DNN 

achieves 0.6% improved accuracy and its precision has also improved. The comparison of log 

loss of four models on CEDS and CMDS is presented in Table XLII. 
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Table XLII Log Loss of Deep Models - Self Learned Features (CEDS) 

Vs User Defined Features (CMDS) 

Architecture 

Self Learned features – 

Codon encoding 

 (CEDS dataset) 

User Defined Features 

 (CMDS dataset) 

DNN 0.8248 0.8641 

BRNN 0.7902 0.8010 

LSTM 0.8025 0.8284 

GRU 0.7014 0.7162 

 

With regard to logarithmic loss GRU has comparatively less misclassifications for both 

self learned and user defined features. It has evidenced reduced values of 0.7162 and 0.7014 for 

CMDS and CEDS respectively. The comparative performance of the deep learning models using 

CEDS and CMDS is depicted in Fig.8.9 – Fig.8.10. 

 

Fig. 8.9 Comparative Performance of Deep Models - Self Learned Features (CEDS) Vs 

User Defined Features (CMDS) 
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Fig. 8.10 Log Loss Comparison of Deep Models - Self Learned Features (CEDS) Vs User 

Defined Features (CMDS) 

 

It is evident that the deep models show superior performance with codon encoded dataset 

rather than with user defined CMDS dataset for identifying genes. GRU models have high 

accuracy in predicting the genes and outperforms with high precision and recall than its near 

equivalent LSTM as shown in Fig.8.9. The recall values of BRNN, LSTM and GRU appear the 

same whereas accuracy is constantly soaring for GRU than the other models. The performance of 

the models with regard to log loss are given in Fig.8.10 and it shows that the all the models show 

slightly higher log loss for gene identification with user defined features than with CEDS dataset. 

Among the four models, GRU based model has a minimum log loss for ASD gene identification. 

Findings 

From this work it is found that the deep learning models have extracted gene 

characteristics automatically from codon encoding of gene sequences through self learning and 

has exhibited superior performance. These deep models surpass their respective performance for 

gene prediction using hand crafted features by capturing the influential, intricate and 

inconspicuous features directly from the encoded gene sequences which may not be noticed by 

humans. It is evident that deep models have eliminated the need for domain expertise and feature 

engineering thus reducing the time taken. Empirical experiments on encoded datasets confirm 

that the GRU model outperforms other deep learning models as the long-term temporal 
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dependencies of gene sequence observations are jointly learned by the integrated sub models. 

The reliability of the gene identification model is proved by self taught features learnt through 

deep learning. These experiments also prove that the proposed method can be used as a general 

deep learning framework for classification of gene sequences and disease prediction as direct 

input is given without the need for careful extraction of features.  

8.2 ONE HOT ENCODING OF GENE SEQUENCES FOR DEEP LEARNING BASED 

PREDICTION OF ASD CAUSING GENES 

The previous experiment utilized the codon encoding scheme of the gene sequences to 

train the deep models which are able to classify the ASD gene sequences. The codon patterns are 

read by the networks and it self-learns features from the varied sequences. But positional 

information of each nucleotide in the sequence is not explicitly specified to the deep networks. 

Since gene sequences are denoted as a sequence of successive letters without space, it is 

proposed to use one-hot encoding to give binary representation for the input sequences without 

losing positional information of each nucleotide. In this work, the utility of using one hot 

encoding method to encode a gene sequence as vector of numerical values for building the deep 

models to predict the type of ASD causative genes is explored. 

One Hot Encoding and Dataset Preparation 

The simulated mutated sequences undergo the process of one hot encoding where each 

input sequence of length l is transformed into a 4 × l representation. The nucleotide bases 

adenine (A), cytosine (C), guanine (G), thymine (T) match the components from top to bottom 

respectively. If one of the nucleotide appears, the corresponding component is set to one and the 

others are set to 0. All sequences are not of the same length, but in order to make it uniform, 0 

padding is done to make them equal in length. The maximum length of the available CDNA 

sequence is 7746 which corresponds to CHD8 gene. Hence each input sequence is transformed 

into a 7746 x 4 one-hot encoded vector.  A one hot encoded sample of size 10-base pair for the 

gene sequence ACGTGTCCAG is shown below. 

1 0 0 0 0 0 0 0 1 0 

0 1 0 0 0 0 1 1 0 0 

0 0 1 0 1 0 0 0 0 1 

0 0 0 1 0 1 0 0 0 0 
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In this manner one hot encoding is done for all 1000 sequences available in the corpus. 

The One Hot Encoded Dataset (OHEDS) consisting of encoded feature vectors is created with 

1000 instances of dimension 7746 x 4 where each instance is assigned with one hot encoded 

class labels ranging from 1 to 10 for the ten possible genes. 

Methodology 

Four different deep models based on DNN, BRNN, LSTM and GRU architectures are 

built by training the above OHEDS. The process includes three elements namely dataset 

creation, model building, performance evaluation and the architecture of one hot encoding based 

deep models for identifying ASD genes  is depicted in Fig.8.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.11 Architecture of One Hot Encoding Based Deep Models for Identifying ASD Genes 

During the initial phase, the corpus built using 1000 mutated gene sequences accounting 

for ten types of ASD genes and four types of mutations as mentioned in Chapter 3 is used. 

Consequently one hot encoding of these mutated gene sequences are done according to the 

method mentioned in the previous section. The input vectors are reshaped to have n time steps 

Input sequences              ACGTCGGGGGGGTTTTTTTTTTCAAAAA 

        CAAAAACGGGCCCGGTTTTCAAAAAGG 
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and k features, where n is the number of integers in the generated sequence and k is the set of 

possible integers at each time step. The dataset OHEDS comprises of 1000 class labeled input 

vectors of dimension 7746 X4 with 10 class labels and is used for building models. 

In the second phase four different deep network architectures namely DNN, BRNN, 

LSTM, GRU are designed to build gene identification models. To ensure unbiased 

investigations, the basic structure of the deep models configured in the previous work is 

employed here.  That is the network with one input layer, 2 hidden layers with 8 memory units, a 

masking layer and an output layer which is a fully connected layer with 10 neurons for the 10 

possible gene classes is designed. The softmax activation function which is placed in the output 

layer allows the network to learn and output the distribution over the possible output values. In 

case of LSTM, the two stacked LSTM recurrent layers is used as done in section 7.2 and with 

GRU, shared feature extraction is performed using two parallel submodels as in section 7.3.  

A choice of hyperparameters such as batch size, epochs, dropout, learning rate and 

optimizer are similar to that used in the earlier work. Mini - batch gradient descent is used to 

update the parameters of the network.  The epochs denote the number of times the network will 

work through the entire training dataset. The important regularization technique dropout is used 

to reduce the effect of overfitting. The predictive model is constructed with sparse categorical 

cross entropy loss function for training and suitable for prediction problems. The speed at which 

a deep model replaces the concepts it has already learned with the new ones is decided by the 

learning rate. The error function is minimized by the optimization algorithm and Adam optimizer 

is the algorithm used in this implementation. The above mentioned hyperparameters are fine 

tuned to achieve the best configuration for the deep networks. ASD gene type identification 

models are built by training the four deep learning techniques using one hot encoded dataset. 

In the final phase, 10 - fold cross validation is used to test the models and their predictive 

performance is evaluated using various metrics such as precision, recall, F- measure, accuracy, 

log loss and specificity. 

Experiment and Results 

Experiments have been carried out by implementing DNN, BRNN, LSTM and GRU 

algorithms using Keras which is a high-level API for neural networks. The hyper parameters 
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used in the previous experiments are used here for the sake of uniformity. During training and 

testing, data are segmented on mini-batches of size 64 data segments. The network used a 

dropout rate of 0.3 and a learning rate of 0.01. The experiment was conducted for varying epochs 

of 50, 100, 150, 200, 250 and the results are tabulated. The network used the sparse categorical 

cross entropy loss function while training, suitable for multiclass classification problems and the 

efficient Adam optimization algorithm. The four deep classifiers are trained with the above 

parameter settings using OHEDS dataset and the ASD causative gene identification models are 

built. 

The standard 10 - fold cross-validation technique was applied to estimate the predictive 

performance of the models. The performance of the four independent models was evaluated 

based on prediction accuracy, logarithmic loss, precision, recall and F-measure. The epochwise 

accuracy of the models is tabulated in Table XLIII.  

Table XLIII Epochwise Accuracy of Deep Models with One Hot Encoding 

Epochs DNN BRNN LSTM GRU 

50 74.8% 77.7% 79.6% 80.3% 

100 75.2% 80.1% 80.6% 80.8% 

150 76.6% 80.5% 81.7% 81.6% 

200 78.2% 81.4% 82.4% 83.1% 

250 81.6% 81.8% 82.9% 84.3% 

 

The tabulated results show that GRU based ASD gene prediction model has achieved an 

accuracy of 84.3% at 250 epochs which is higher than that of other three models.  At 50 epochs 

the GRU prediction model achieved an accuracy of 80.3%, gradually increased to 81.6% at 150 

epochs and reached 84.3% at 250 epochs. There is an increase of about 4% accuracy for the 

GRU prediction model from 50 to 250 epochs. The experiments show that accuracy of all three 

models increases as epochs are increased The accuracy of DNN, BRNN, LSTM models at 250 

epochs is 81.6%, 81.8% and 82.9% respectively. The epochwise log loss of these three models is 

shown in Table XLIV. 
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Table XLIV Epochwise Log Loss of Deep Models with One Hot Encoding 

Epochs DNN BRNN LSTM GRU 

50 1.0124 0.8539 0.8474 0.8356 

100 0.9951 0.8312 0.8151 0.8130 

150 0.9277 0.8151 0.7878 0.7623 

200 0.8528 0.8054 0.7302 0.7345 

250 0.8047 0.7810 0.7150 0.7004 

 

The results illustrate that the log loss reduces as epochs increase and the models have 

achieved better performance by reducing its misclassifications of genes. Initially at 50 epochs the 

DNN, BRNN, LSTM, GRU models had log loss of 1.0124, 0.8539, 0.8474 and 0.8356 

respectively for predicting genes. This gets reduced at the end of 250 epochs for all the four 

models. Eventually the log loss associated with GRU model in classifying the ASD causative 

genes is 0.7004 which is comparatively less when compared to that of 0.8248 of DNN model, 

0.7802 of BRNN and 0.7150 of LSTM model. The overall performance results of these four 

models are shown in Table XLV. 

Table XLV Performance Results of Deep Models with One Hot Encoding 

Metrics DNN BRNN LSTM GRU 

Precision 0.82 0.83 0.84 0.86 

Recall 0.81 0.82 0.82 0.84 

F-  Measure 0.82 0.82 0.83 0.85 

Accuracy 81.6% 81.8% 82.9% 84.3% 

Correctly classified instances 408 409 414 421 

Incorrectly classified instances 92 91 86 79 

Specificity 82.6% 82.9% 83.7% 84.9% 

 

The result analysis indicates that GRU model shows promising performance for the ASD 

gene prediction. It is effective in predicting the ASD genes with a precision of 0.86, recall of 

0.84 and F-measure of 0.85. The DNN and BRNN classifiers achieve almost equal F-measure of 

0.82 whereas the LSTM classifier attains a slight upper edge with that of 0.83. The GRU based 
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gene prediction model has correctly identified 421 instances and has achieved specificity of 

84.9%. Among the other three models LSTM has correctly identified 414 instances whereas 

DNN and BRNN has recognized 408 and 409 respectively. The experimental results of GRU 

based models are illustrated in Fig.8.12 to Fig.8.17. 

 

Fig. 8.12 Epochwise Accuracy of Deep Models with One Hot Encoding 

 

Fig. 8.13 Epochwise Logloss of Deep Models with One Hot Encoding 
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Fig. 8.14 Performance of DNN Model with One Hot Encoding 

 

Fig. 8.15 Performance of BRNN Model with One Hot Encoding 
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Fig. 8.16 Performance of LSTM Model with One Hot Encoding 

 

Fig. 8.17 Performance of GRU Model with One Hot Encoding 

Fig.8.12 shows that the epochwise accuracy values are steadily increasing for GRU based 

gene recognition model. The logloss in identifying genes reduces with increased epochs and is 

observed to be minimum for the GRU model which is illustrated in Fig.8.13. The performance of 

DNN, BRNN, LSTM and GRU models is depicted from Fig.8.14 to Fig.8.17. It is noticed that 

while the precision of gene prediction model is high for GRU the recall has a dip of 0.02. The F-

measure and accuracy of LSTM model is almost equal and BRNN model shows constant recall 

and F-measure.  
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Comparison of Deep Learning Models with Self Learned Features of  OHEDS and User 

Defined Features of CMDS  

The performance of the deep models developed with one hot encoded dataset (OHEDS) 

is compared with the corresponding models trained with user defined codon measures dataset 

(CMDS) for predicting ASD gene type in the previous experiments described in section 8.1. The 

comparative analysis is performed with respect to various performance measures like precision, 

recall, accuracy, F-measure and log loss and the comparative results is reported in Table XLVI - 

Table XLVII. 

Table XLVI Comparative Performance of Deep Models - Self Learned Features (OHEDS) 

Vs User Defined Features (CMDS) 

Metrics 

Self Learned Features  

One Hot Encoded Dataset (OHEDS) 

User Defined Features 

 (CMDS dataset) 

DNN BRNN LSTM GRU DNN BRNN LSTM GRU 

Precision 0.82 0.83 0.84 0.86 0.79 0.80 0.81 0.83 

Recall 0.81 0.82 0.82 0.84 0.81 0.77 0.78 0.81 

F-  Measure 0.82 0.82 0.83 0.85 0.80 0.78 0.79 0.82 

Accuracy 81.6% 81.8% 82.9% 84.3% 80.8% 81.3% 81.9% 82.5% 

 

From the comparative results it is observed that deep learning models have attained 

improved accuracy when trained with the one hot encoded dataset. The GRU model outperforms 

with 84.3% accuracy in identifying ASD genes when one hot encoding is used whereas the 

accuracy of 82.5% is reported with CMDS dataset. The precision, recall and F-measure of GRU 

has shown improvements than its own performance when using CMDS. BRNN and LSTM 

shows 0.5%  and 1% enhanced accuracy working with the one hot encoded gene sequences than 

CMDS. DNN achieves 0.8% improved accuracy and its precision has also improved. The 

comparison of log loss of four models on OHEDS and CMDS is presented in Table XLVII. 
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Table XLVII Log Loss of Deep Models - Self Learned Features (OHEDS)  

Vs User Defined Features (CMDS) 

Architecture Self Learned 

Features  

One Hot Encoded 

Dataset (OHEDS) 

User Defined 

Features 

 (CMDS dataset) 

DNN 0.8047 0.8641 

BRNN 0.7810 0.8010 

LSTM 0.7150 0.8284 

GRU 0.7004 0.7162 

 

With regard to logarithmic loss all the deep models have comparatively less 

misclassifications for one hot encoded datasets. GRU model has evidenced reduced log loss 

values of 0.7162 and 0.7004 for CMDS and OHEDS respectively. LSTM model is the next best 

model with 0.7150 log loss. The comparative performance of the deep learning models using self 

learned features from one hot encoding and user defined features from CMDS dataset is depicted 

in Fig.8.18 – Fig.8.19. 

 

 

Fig. 8.18 Comparative Performance of Deep Models - Self Learned Features (OHEDS) Vs 

User Defined Features (CMDS) 
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Fig. 8.19 Log Loss Comparison of Deep Models - OHEDS Vs CMDS 

It is apparent that the deep models built with one hot encoding show enhanced 

performance than the models learnt with user defined featured from CMDS dataset for 

identifying genes. GRU models have high accuracy in predicting the genes and outperform its 

near equivalent LSTM with high precision and recall as shown in Fig.8.18. The recall values of 

DNN, BRNN, LSTM appear the same whereas accuracy is constantly soaring for GRU than the 

other models. The performance of the models with regard to log loss is given in Fig.8.19 and it 

shows that the all the models show slightly reduced log loss for gene identification with OHEDS 

dataset than CMDS dataset. GRU based model shows a major difference in the log loss for ASD 

gene identification when compared to other models. 

Comparison of Models with Two Encoding Schemes 

 On comparing the two encoding schemes it is found that the one hot encoding scheme 

performs better than the codon encoding scheme. The deep models DNN, BRNN, LSTM and 

GRU with one hot encoding scheme outperformed their respective models using codon encoding 

for ASD gene type identification. 

Findings 

The results confirm that the deep models are able to capture the prominent, intricate and 

hidden features that humans can miss by preserving specific position information of each 

individual nucleotide in sequences. The deep models have eliminated the complex task of feature 
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engineering and have also reduced the time involved. From the comparative results it is found 

that the deep learning models have improved in self learning and exhibited better performance 

with respect to various performance measures when using one hot encoding of gene sequences. 

Empirical experiments confirm that by using one-hot vectors to develop GRU network model, 

significant performance improvements has been achieved in predicting the ASD causative genes. 

These experiments also prove that the proposed method can be used as a generalized effective 

solution to characterize the variable length gene sequence data with masking and one hot 

encoding. 

SUMMARY 

Deep learning models using DNN, BRNN, LSTM and GRU developed to classify ASD 

gene sequences using two different encoding methods have been elaborated in this chapter. Two 

encoding mechanisms such as codon encoding and one hot encoding proposed to represent the 

gene sequences were illustrated and the preparation of two corresponding datasets have been 

described. The models were trained with these two different datasets and the effectiveness of 

these models was evaluated using different performance metrics to explore the reliability of the 

method. The implementation results were also demonstrated in this chapter with tables and 

charts.  

 

 

 

 

 

 

 

 


