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ABSTRACT 
 

Globally an increasing number of children are being diagnosed with Autism Spectrum 

Disorder (ASD) and still more persons remain unidentified in the society. ASD is 

characterized by genetic heterogeneity and is defined by a range of conditions that affect 

persons to varied degrees. High risk factors for ASD include genes and genetic mutations, 

chromosomal conditions, family factors, prenatal influences and birth complications. 

Prediction of pretentious genes that underlie this disease is a significant challenge in 

biomedical research. This research titled “Deep Learning Framework For Efficient Prediction 

Of Causative Mutations, Genes And Their Susceptibility To Autism Spectrum Disorder” 

aims at predicting ASD causing genes, their susceptibility and contributing mutations by 

building models through user defined and self learned features based on conventional 

machine learning and contemporary deep learning approaches. 

The core objectives of this research work are as follows. 

1. To create a synthetic gene sequence database that mimics the causative ASD gene 

sequences 

2. To identify and capture distinctive features from the diseased gene sequences that 

contribute to the classification of genes, their susceptibility to the disorder and the 

underlying mutations 

3. To develop a framework based on conventional machine learning techniques for 

prediction of causative ASD genes and the underlying mutations 

4. To develop a model to predict the susceptibility of the ASD genes to the disorder using 

supervised machine learning techniques 

5. To build a deep learning framework for predicting the causative ASD genes, their 

vulnerability to the disorder and the driving mutations through user defined features 

6. To employ Recurrent Neural Network (RNN) variants namely Bidirectional Recurrent 

Neural Network (BRNN), Long Short Term Memory (LSTM) and Gated  Recurrent Units 

(GRU) with user defined features for creating computational models to predict ASD 

causing genes, their susceptibility and the driving mutations 

7. To develop two kinds of encoding schemes namely codon encoding and one hot encoding 

to build DNN, BRNN, LSTM and GRU models through self-learnt features for predicting 

ASD causative genes 

The thesis explains a novel and an unprecedented approach wherein the problem of 

predicting ASD genes, their vulnerability to the disorder and the driving mutations are 
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formulated as pattern classification tasks and solved through conventional supervised 

learning and contemporary deep learning methods. These approaches simplify the prediction 

problem in generating reliable solution based on intelligent hints collected from simulated 

gene sequences.  

Accurate prediction of ASD causing genes and mutations is a complicated task as the 

pattern of the gene sequence varies for every individual. As diseased gene sequences are not 

readily available, they are simulated with the gene mutational information collected from the 

Human Gene Mutational Database (HGMD). The genes associated with two kinds of ASD 

are examined and ten genes namely FMR1, MECP2, TSC1, CACNA1C, SHANK3, CHD8, 

FOXP2, CNTNAP2, GABRB3 and HOXA1 that are key players for syndromic and 

asyndromic ASD are considered for the study. The reference genes are identified from 

OMIM (Online Mendelian Inheritance in Man) database and its corresponding reference gene 

sequences are downloaded from NCBI. The raw sequence obtained from HGMD is processed 

to form cDNA sequence and the nucleotide base variation is done based on the mutational 

information obtained from HGMD database for four types of mutations namely Nonsense, 

Missense, Frameshift and Silent Mutations. The synthetic mutated gene sequences are 

generated and stored as fasta files. In each gene category 100 gene sequences are generated 

and a corpus comprising of 1000 synthetic gene sequences is developed. 

The research work is carried out in three stages using conventional machine learning 

and the contemporary deep learning methods for building the predictive models.  

In the first stage, the traditional learning approach is employed for building the 

prediction models and the key idea here is to identify and extract distinctive features from 

synthetic disease gene sequences. Various descriptors such as gene features, codon features, 

alignment features accounting to 43 attributes have been captured from 1000 gene sequences 

of 10 gene types and the dataset called Codon Measures Dataset (CMDS) is developed for 

learning the gene classification model. Mutational discriminators including gene mutation 

features, amino acid change features and published matrix features are identified and 

extracted. The dataset comprising 1000 instances with a dimension of 15 is created and 

named as Mutation Dataset (MDS) which is exploited for constructing the mutation 

recognition model. The cumulative strength of evidence for each ASD associated gene with 

attributes pertaining to gene, mutation, conserved protein domains, gene expression profiles 

and pathway interactions are integrated for all 1000 instances. A consolidated score is 

calculated by summing the various features for each individual variant of an ASD implicated 

gene leading to a clear understanding of their relevance to the disorder. Finally one of the 



 

iv 

three class labels namely low(score < 0.5), medium (score >=0.5 and < 0.8), high(score 

>=0.8) is assigned  to the gene depending on the range.  Around 25 features have been 

captured from 1000 gene sequences of 10 gene types and the dataset called Gene 

Susceptibility Dataset (GSDS) is developed for the gene susceptibility identification model. 

To predict the ASD candidate genes and mutations concurrently by classifying them 

based on the contributing features, a multi-dimensional machine learning approach is 

proposed. The profound association between genes and mutations is modeled as a multi-label 

problem by capturing the dependencies between them.  The pooled mutation dataset (PMDS) 

with 58 features including codon measures and mutation features from 1000 instances is 

created by pooling the gene, mutations, amino acid substitution attributes and is  used for 

multidimensional modeling of gene - mutation prediction problem. Min - max normalization 

is done to standardize the feature values of all the four datasets. 

Various experiments are carried out by implementing supervised classification 

algorithms such as Decision tree, Multilayer Perceptron, Support Vector Machines using the 

above three dataset CMDS, MDS, GSDS in Scikit Learn environment and different 

independent data driven models are built correspondingly to identify 10 types of genes, to 

recognize 4 forms of mutations and to predict gene susceptibility. Multi-dimensional 

classifiers such as Bayesian classifier chains, Nearest Set Replacement, Class relevance, 

Ensemble of classifier chains with base classifiers are implemented using PMDS in MEKA 

environment and multi-dimensional models are built to predict the ASD candidate gene-

mutation simultaneously. 

In the second stage, the deep learning approach is employed for building the 

prediction models and the key idea here is to explore the competence of deep models. As 

deep architectures are able to discover the high-level features, detect complex interactions 

among them, increase interpretability and support variable-size data, they can be potentially 

powerful in discriminating ASD genes, their susceptibility and mutations. Initially, Deep 

Neural Network (DNN), architecture is attempted for learning feature representations, 

modeling their sequential dependencies and prediction. In the subsequent works, the variants 

of Recurrent Neural Network (RNN) namely Bidirectional Recurrent Neural Network 

(BRNN), Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU) are 

employed to build the classifiers with user defined features and representation learning for 

the above mentioned tasks.  

The deep learning experiments are carried out in Keras environment with Tensorflow 

as backend. The same three user defined feature sets with one hot encoded class labels are 
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used for training the above deep networks. Independent deep models are built 

correspondingly to identify 10 types of genes, to recognize 4 forms of mutations and to 

predict gene susceptibility. 

In the last stage, two types of encoding schemes are proposed for deep learning and 

the key idea here is to utilize the self-learned features of deep learning models. The gene 

sequences are utilized as raw input data without any domain expertise and thereby the time 

consuming task of feature engineering is avoided.  The first encoding scheme adopts codon 

encoding of diseased gene sequences and the Codon Encoded Dataset (CEDS) with 1000 

instances of dimension 2582 is prepared. The next scheme uses one hot encoding technique 

wherein each input sequence is transformed into a 7746 x 4 one-hot encoded vectors and the 

One Hot Encoded Dataset (OHEDS) of 1000 samples is developed. DNN, BRNN, LSTM and 

GRU architectures are employed to build the ASD causative gene type identification model.  

Various experiments have been carried out by implementing the above deep learning 

algorithms using Keras environment with Tensorflow as backend. The two encoded datasets 

with one hot encoded class labels are used for training the deep networks and independent 

deep classifiers are built to identify 10 types of genes. 

The performances of all the predictive classifiers are evaluated using 10 fold cross 

validation and their effectiveness in recognizing the genes, mutations and in predicting the 

gene susceptibility with respect to various metrics like precision, recall, accuracy, F-measure 

is analyzed. The experimental results demonstrate that deep learning based GRU model is 

efficient in predicting the genes and mutations whereas LSTM model is competent in 

detecting the gene susceptibility.  Also the experimental results proved that the GRU model 

utilizing the one hot encoded gene sequences is efficient in discriminating the ASD causing 

genes. 

Identification of pretentious genes and mutations that underlie ASD is a significant 

challenge in biomedical research and hence an attempt is made to carry out research in this 

domain. 
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