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2. DEEP LEARNING ARCHITECTURES 

 

Deep Learning along with Artificial Intelligence is the most popular technologies 

recently. Deep learning is a subset of machine learning coming under the sphere of artificial 

intelligence and works by gathering huge datasets to make machines act like humans. Deep 

architectures comprise of multiple levels of non-linear operations where each level of the 

architecture represents features at a different level of abstraction, defined as a composition of 

lower-level features. Deep learning methods have the potential to tackle new complex problems 

like speech, language and image recognition by learning features in the data that combine into 

increasingly higher level, abstract forms. The deployment of neural networks has supported deep 

learning to produce optimized results.  

  This chapter deals with the major architectures of deep learning used in this research 

work. Section 2.1 begins with an outline of the deep neural network architecture and highlights 

its applications in real life. It introduces the basic terminologies used in deep neural networks 

and analyses the pros and cons of deep neural networks. Section 2.2 presents the basic 

architecture of Convolutional Neural Networks and its architecture. Restricted Boltzman 

Machines and Deep Belief Networks are introduced in Section 2.3 and 2.4. The detailed 

description of the variant forms of RNN, i.e., LSTM and GRU are presented in Section 2.6 and 

2.7 respectively. 

2.1 DEEP NEURAL NETWORKS  

A deep neural network includes a hierarchy of layers, in which each layer alters the input 

data into more abstract depictions which are then combined by the output layer to make 

predictions. DNN aims to learn feature hierarchies with features from higher levels of the 

hierarchy formed by the composition of lower level features. Much attention has recently been 

dedicated to them due to their theoretical appeal, inspiration from biology, human cognition, 

empirical success in vision and natural language processing. Deep architectures are needed to 

learn the kind of complex functions which can represent high-level abstractions in vision, 

language and other AI-level tasks. 
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Deep Neural Networks consist of several intermediate layers that are used to build up 

multiple layers of abstraction. For instance, in visual pattern recognition, the neurons in the first 

layer might learn to recognize edges, the neurons in the second layer could learn to identify more 

complex shapes, like rectangle or triangle, which is built up from edges. The next layer would 

then distinguish still more complex shapes. These numerous layers of abstraction give deep 

networks a convincing lead in learning to resolve complex pattern recognition problems. 

Moreover there are theoretical results suggesting that deep networks are intrinsically more 

powerful than shallow networks. A shallow neural network has only three layers of neurons: 

 An input layer that accepts the independent variables or inputs of the model 

 One hidden layer 

 An output layer that generates predictions 

A DNN has a structure similar to shallow networks, but it has two or more hidden layers 

of neurons that process inputs. Goodfellow et al. [53] showed that while shallow neural networks 

are able to tackle complex problems, deep learning networks are more accurate, and improve in 

accuracy as more neuron layers are added. Additional layers are useful up to a limit of nine to 

ten, after which their predictive power starts to decline. Most neural network models and 

implementations use a deep network with three to ten neuron layers.  

As shown in Fig 2.1, the input layer in a DNN receives the input data. The inputs are 

passed by the input layer to the first hidden layer which performs mathematical computations on 

the inputs. A neuron in the network contains a nonlinear activation function and has several 

incoming and outgoing weighted connections. Neurons receive weighted inputs and are trained 

to detect precise patterns by transforming it with the activation function und passing it to the 

outgoing connections. Most deep networks use Rectified Linear Units (ReLU) for hidden layers, 

since it trains much faster, is more expressive than logistic function and prevents the vanishing 

gradient problem [54]. Deep neural networks end in an output layer which is a logistic or 

softmax classifier that assigns a likelihood to a particular outcome or label. An error signal is 

generated by the network to determine the difference between the predictions of the network and 

the desired values. The network uses this error signal to change the weights so that predictions 

are more accurate. 

http://www.deeplearningbook.org/
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Fig. 2.1 Basic Architecture of Deep Neural Networks 

Some basic terms used in deep neural networks are given below. 

Input - Source data fed into the neural network, with the goal of making a decision or prediction 

about the data. Inputs to a neural network are typically a set of real values, each value is fed into 

one of the neurons in the input layer. 

Training Set - A set of inputs for which the correct outputs are known, used to train the neural 

network. 

Outputs - Neural networks generate their predictions in the form of a set of real values or 

boolean decisions. Each output value is generated by one of the neurons in the output layer. 

Neuron / perceptron - The essential unit of the neural network that accepts an input and 

generates a prediction. 

Activation Function - Each neuron allows part of the input which is then passed through the 

activation function. Common activation functions are sigmoid, tanH and ReLu (Rectifier Linear 

Units). Activation functions help to generate output values within an acceptable range, and their 

non-linear form is crucial for training the network. 
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Weight Space - Each neuron is assigned a numeric weight which is combined with the activation 

function to define each neuron‟s output. Neural networks are trained by fine-tuning weights, to 

determine the optimal set of weights that generates the most accurate prediction. 

Forward Pass - The forward pass takes the inputs, passes them through the network and allows 

each neuron to react to a fraction of the input. Neurons generate their outputs and pass them on 

to the next layer, until eventually the network generates an output. 

Error Function - Defines the difference between the actual output of the current model and the 

correct output. When training the model, the objective is to minimize the error function and bring 

output as close as possible to the correct value. 

Backpropagation - In order to learn the optimal weights for the neurons, a backward pass is 

performed moving back from the network‟s prediction to the neurons that generated that 

prediction. This is called backpropagation. Backpropagation tracks the derivatives of the 

activation functions in each successive neuron, to find weights that bring the loss function to a 

minimum, which will generate the best prediction. This is a mathematical process called gradient 

descent. 

Bias and Variance - When training neural networks, bias variance tradeoff is significant. Bias 

measures how well the model fits the training set and is capable of correctly predicting the 

known outputs of the training samples. Variance measures how well the model works with 

unfamiliar inputs that were not available during training. 

Hyperparameters - A hyperparameter is a setting that affects the structure or operation of the 

neural network [55]. In real deep learning projects, tuning hyperparameters is the primary way to 

build a network that provides accurate predictions for a certain problem. Common 

hyperparameters include the number of hidden layers, the activation function, and number of 

epochs the training should be repeated. 

Overfitting - Overfitting happens when the neural network is good at learning its training set, but 

is not able to generalize its predictions to additional, unseen examples. This is characterized by 

low bias and high variance.  
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Underfitting  - Underfitting happens when the neural network is not able to accurately predict the 

training set and also the validation set. This is characterized by high bias and high variance. 

Methods to Avoid Overfitting 

A few common methods to avoid overfitting in deep neural networks are listed below. 

 Retraining neural networks - running the same model on the same training set but with 

different initial weights, and selecting the network with the best performance. 

 Multiple neural networks - training several neural network models in parallel, with the same 

structure but different weights, and averaging their outputs. 

 Early stopping - training the network, monitoring the error on the validation set after each 

iteration and stopping training when the network starts to overfit the data. 

 Regularization - adding a term to the error function equation, intended to decrease the 

weights and biases, smooth outputs and make the network less likely to overfit. 

 Tuning performance ratio – it is similar to regularization and a parameter is used to define 

the required level of regularization  

The neural network structure and the training algorithm is determined by variables called 

hyperparameters. Some of the hyperparameters related to neural network structure are given 

below. 

Number of hidden layers - A hidden layer is present in between input layers and output layers, 

where artificial neurons generate an output through an activation function taking in a set of 

weighted inputs. Using too few neurons in the hidden layers will not help to detect the signals in 

a complicated data set.  An exceedingly large number of neurons in the hidden layers increase 

the time taken to train the network. They are fine-tuned and calibrated through a process called 

backpropagation. 

Dropout - It is a regularization technique for neural network model. In this technique arbitrarily 

chosen neurons are ignored during training. They are dropped-out randomly. Their contribution 

to the activation of downstream neurons is removed on the forward pass and any weight updates 

are not applied to the neuron on the backward pass. 



55 

 

Activation function - In a neural network, the activation function is responsible for transforming 

the summed weighted input from the node into the activation of the node or output for that input.  

The rectified linear activation function is the default activation function for many types of neural 

networks which is a piecewise linear function. It is easier to train and often achieves better 

performance. The sigmoid and hyperbolic tangent activation functions are other methods 

available. 

Weights initialization - A proper initialization of the weights in a neural network is critical to its 

convergence. Initially the weights of artificial neural networks are set to small random numbers. 

The hyperparameters related to the training algorithm are given below. 

Learning rate - The learning rate is a hyperparameter that controls how much to change the 

model in response to the estimated error each time the model weights are updated. It is 

challenging to choose the learning rate as a too small value may end in a long training process 

that could get stuck, whereas a large value may result in learning a sub-optimal set of weights too 

fast or an unsteady training process 

Epoch, batch size - The number of epochs is a hyperparameter that defines the number of times 

the learning algorithm will work through the entire training dataset. One epoch indicates that 

each sample in the training dataset has had an opportunity to update the internal model 

parameters. An epoch is comprised of one or more batches. Before updating the internal model 

parameters, the number of samples to work through is defined using the batch size 

hyperparameter. Batch gradient descent, is the learning algorithm when all training samples are 

used to create one batch [56]. In the stochastic gradient descent, the batch is the size of one 

sample. Mini-batch gradient descent is the learning algorithm used when the batch size is more 

than one sample and less than the size of the training dataset. In the case of mini-batch gradient 

descent, popular batch sizes are 32, 64, and 128 samples. 

Optimizer algorithm - Gradient descent is one of the most popular algorithms to perform 

optimization and the most common way to optimize neural networks. Every Deep Learning 

library contains implementations of various algorithms to optimize gradient descent. Stochastic 

Gradient Descent (SGD), Adam, AdaGrad, Adamax, Adadelta, RMSprop are some optimizers 

available. 
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The number of architectures and algorithms used in deep learning is extensive and broad. 

Recently there are several deep learning architectures developed that greatly expanded the 

number and type of problems neural networks can address. Some of the popular deep learning 

architectures, Convolutional Neural Networks, Restricted Boltzman Machines, Deep Belief 

Networks, Recurrent Neural Networks, Long Short Term Memory units and Gated Recurrent 

Units are elaborated in the following sections. 

Applications of Deep Neural Networks 

Deep learning models have repeatedly demonstrated its superior performance on a wide 

variety of tasks including speech, natural language, vision and playing games. DNNs are used for 

Content editing, face recognition, market segmentation, marketing campaign analysis etc. A 

DNN associates the video frames with a database of pre-rerecorded sounds in order to select a 

sound that best matches what is happening in the scene. DNNs are good at text translation which 

is done without any preprocessing and the algorithm discovers the dependencies between words 

and their mapping to a new language.  DNN is applied for automatic handwriting generations 

where a corpus of handwriting examples is given and the model generates new handwriting for a 

given word or phrase [57].  Image classification, object detection, image restoration and image 

segmentation are the various applications of DNN in computer vision. Some of the popular DNN 

applications are listed below 

Automatic Speech Recognition: The success of deep learning started with automatic speech 

recognition. DNN models are competitive with traditional speech recognizers on selected tasks. 

Visual Art Processing: Increasing application of deep learning techniques has been developed in 

various visual art tasks. DNNs have proven themselves capable of identifying the style period of 

a given painting, capturing the style of a given artwork and applying it in a visually pleasing 

manner to an arbitrary photograph or video, and generating striking imagery based on random 

visual input fields. Deep learning-based image recognition has become excellent, producing 

more accurate results than human contestants.  

Image Recognition: Deep learning-trained vehicles now interpret 360° camera views. DNNs are 

also applied in facial dysmorphology novel analysis that is used to analyze cases of human 

deformity linked to a huge database of genetic syndromes.  



57 

 

Recommendation Systems: Deep learning is used in recommendation systems to extract 

significant features for a latent factor model for content-based music recommendations. Multiple 

view deep learning has been applied for learning user preferences from numerous domains. The 

model enhances recommendations in multiple tasks with the help of a hybrid collaborative and 

content-based approach.  

Bioinformatics: Prediction of gene ontology annotations and gene-function relationships is done 

by an autoencoder ANN. In medical informatics, sleep quality is predicted using deep learning 

using wearable data and health complications are predicted from electronic health record data. 

Deep learning has also showed efficacy in healthcare. 

Benefits of DNN 

In deep neural networks, features are automatically deduced and optimally tuned for 

desired outcome. Deep networks do not require feature extraction manually and takes input 

directly. Features are not required to be extracted ahead of time thus avoiding time consuming 

machine learning. Classical machine learning algorithms often require complex feature 

engineering in which a deep dive exploratory data analysis is first performed on the dataset. In 

conclusion the finest features must be cautiously selected to pass over to the machine learning 

algorithm. This can be skipped when using a deep network as one can just pass the data directly 

to the network and usually achieve good performance. This totally gets rid of the big and 

challenging feature engineering stage of the whole process. 

The performance of deep networks is much better with more data than classical machine 

learning algorithms. Multifaceted methods are often required to improve accuracy with classical 

machine learning algorithms but with a deep network it can be done using more data. Deep 

networks are also robust to natural variations in the data and automatically learn them. Massive 

parallel computations can be performed using GPUs and are scalable for large volumes of data. 

Also it delivers better performance results when amount of data are huge.  

Deep learning architecture is adaptable to novel problems in the future. Deep learning 

techniques can be adapted to different domains and applications far more easily than classical 

machine learning algorithms. Transfer learning has made it possible to use pre-trained deep 

networks for different applications within the same domain [58]. In computer vision, pre-trained 

https://en.wikipedia.org/wiki/Gene_Ontology
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Electronic_health_record
https://en.wikipedia.org/wiki/Artificial_intelligence_in_healthcare
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image classification networks are often used as a feature extraction front-end to object detection 

networks. 

Limitations of DNN 

In a deep neural network it is not easy to comprehend output using mere learning and it 

needs classifiers to do so. The results of a deep network are not interpretable. The underlying 

process of what is happening at the neuronal level is not clear. Deep networks are very black box 

such that researchers do not fully understand the inside of deep networks. Classical ML 

algorithms are quite easy to interpret and understand as direct feature engineering is involved. 

The design of the network and hyper-parameters are also challenging due to the lacking 

theoretical foundation. Deep learning requires lot of tuning and proper parameter configuration is 

often difficult to be done. The presence of noisy labels affects the learning of the algorithms. It is 

extremely expensive to train deep networks due to complex data models. They require high-end 

GPUs to be trained in a reasonable amount of time with big data. GPUs are very expensive and 

training deep networks to high performance for large amount of data incurs high computational 

cost.   

2.2 CONVOLUTIONAL NEURAL NETWORKS (CNN) 

CNN is a neural network with multiple layers and its exclusive architecture is designed to 

capture increasingly multifaceted features of the data at each layer to decide the output [59].  

CNNs are proven very effective at tasks involving data that is closely knitted together, primarily 

in the field of computer vision. CNNs are proved to work fine for visual recognition. Once a 

segment within a particular sector of an image is learned, the CNN can recognize that segment 

present anywhere else in the image [60]. On the other side CNN is highly dependent on the size 

and quality of the training data and is highly susceptible to noise. There are 4 primary steps or 

stages in designing a CNN namely 

 Convolution: The input signal is received at this stage 

 Subsampling: Inputs received from the convolution layer are smoothened to reduce the 

sensitivity of the filters to noise or any other variation 

 Activation: This layer controls the flow of signals from one layer to the other 
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 Fully connected: In this stage, all the layers of the network are connected with every neuron 

from a preceding layer to the neurons from the subsequent layer 

The fully connected neural network structure, where neurons in one layer communicate 

with all the neurons in the next layer, is incompetent when it comes to analyzing large images. 

As shown in Fig.2.2, CNN uses a three-dimensional structure in which neurons in one layer do 

not connect to all the neurons in the next layer; instead, each set of neurons analyzes a small 

region or feature of the image.  

 

 

Fig. 2.2 Architecture of CNN 

 

The final output of this structure is a single vector of probability scores. A CNN first 

performs a convolution, which involves scanning the image, analyzing a small part of it each 

time, and creating a feature map with probabilities that each feature belongs to the required class. 

The second step is pooling, which reduces the dimensionality of each feature while maintaining 

its most important information. The pooling function in CNN is to progressively reduce the 

spatial size of the representation to reduce the amount of parameters and computation in the 

network. Pooling layer operates on each feature map independently.   

CNNs are able to carry out numerous rounds of convolution and then pooling. 

Eventually, when the features are at the precise level of granularity, it creates a fully-connected 

network that analyzes the ultimate probabilities and decides the class of the image. The 

concluding step may be used for more intricate tasks, such as generating a caption for the image. 
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Benefits and Limitations 

CNNs minimize computation compared to a regular neural network They simplify 

computation to a great extent without losing the essence of the data. They are great at handling 

image classification. CNNs depend on the initial parameter tuning to avoid local optima. CNNs 

require a substantial amount of work to initialize according to the problem at hand which is a 

limitation and it requires specialist knowledge in the domain. 

2.3 RESTRICTED BOLTZMANN MACHINES (RBM) 

RBM is a two layer undirected neural network consisting of visible layer and hidden 

layer [61]. There are no connections within each layer, but connections run visible to hidden. It is 

trained to maximize the expected log probability of the data. The inputs are binary vectors as it 

learns Bernoulli distributions over each input. The activation function is computed the same way 

as in a regular neural network and the logistic function usually used is between 0-1. The output is 

treated as a probability and each neuron is activated if activation is greater than random variable. 

The hidden layer neurons take visible units as inputs. Visible neurons take binary input vectors 

as initial input and then hidden layer probabilities. The architecture of an RBM is illustrated in 

Fig.2.3. 

 

Fig. 2.3 RBM Architecture 
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In the training phase Gibbs Sampling is performed and is equated to computing a 

probability distribution using a Markov Chain Monte Carlo approach. In pass 1 hidden layer 

probabilities h is computed from inputs v whereas in pass 2 these probabilities back down to the 

visible layer, and to get v and h they are backed up to the hidden layer. The weights are updated 

using the differences in the outer products of the hidden and visible activations between the first 

and second passes [62]. To approach the optimal model, a vast number of passes are needed, so 

this approach provides proximate inference, but works well in practice. After training, the hidden 

layer activations of an RBM can be used as learned features. 

Benefits and Limitations 

RBM is a generative model, and is used to model the unknown distribution of data like 

images, text, etc. The advantage of this model is that it can create samples that look like they 

come from the distribution of the data [63]. RBMs can be used as feature extractors that could be 

trained with some other models on top or stack them to pre-train a deeper feed forward neural 

model. The primary disadvantage is that RBMs are difficult to train. 

2.4 DEEP BELIEF NETWORKS (DBN)  

A deep-belief network is composed of a stack of Restricted Boltzmann machines, and  

each RBM layer communicates with both the preceding and successive layers. The nodes of any 

single layer do not communicate with each other laterally. The stack of RBMs concludes with a 

softmax layer to create a classifier. Except the first and final layers, each layer in a DBN has a 

double role [64]. It acts as the hidden layer to the nodes that arrive before it, and as the input or 

visible layer to the nodes that appear after. It is a network built of single-layer networks. Fig.2.4 

illustrates the architecture of DBN which is composed of layers of Restricted Boltzmann 

Machines (RBMs) for the pretrain phase and then a feed-forward network for the fine-tune 

phase. 
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Fig. 2.4 DBN Architecture 

 

The fundamental purpose of RBMs in the context of deep learning and DBNs is to learn 

these higher-level features of a dataset in an unsupervised training fashion. In DBNs, the 

building blocks for each layer are RBMs, and the principle of greedy layer-wise unsupervised 

training is applied. The process is as follows: 

1. The first layer is trained as an RBM and the raw input is modeled as its visible layer 

2. First layer is used to obtain a representation of the input that will be used as data for the 

second layer  

3. The second layer is trained as an RBM by taking the transformed data as training examples  

4. Iterate 2 and 3 for the desired number of layers, each time propagating upward either samples 

or mean values 

5. All the parameters of this deep architecture are fine-tuned with respect to a supervised 

training criterion 

Benefits of DBN 

DBN has the benefit that each layer learns more complex features than layers before it. 

DBN can be used as a feature extraction method and also used as neural network with initially 

learned weights. DBNs have a better a performance than the traditional neural network due the 

initialization of the connecting weights rather than just using random weights in neural networks 

[65]. Each layer in DBN depends on Contrastive Divergence method for input reconstruction 
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which increases the performance of the network. The greedy layer-by layer learning algorithm 

can find a good set of model parameters fairly quickly, even for models that contain many layers 

of nonlinearities and millions of parameters. Also the learning algorithm can make efficient use 

of very large sets of unlabeled data, and so the model can be pre-trained in a completely 

unsupervised fashion. 

Limitations of DBN 

The disadvantage of DBN is that the approximate inference procedure is limited to a 

single bottom-up pass. The model can fail to sufficiently account for ambiguity when 

interpreting uncertain sensory inputs as a consequence of ignoring top-down influences on the 

inference process. Further it learns a layer of features at a time and does not re-adjusts its lower-

level parameters. 

2.5 RECURRENT NEURAL NETWORKS (RNN) 

Recurrent Neural Networks (RNNs) are artificial neural network models that are well-

suited for pattern classification tasks whose inputs and outputs are sequences. The importance of 

developing methods for mapping sequences to sequences is illustrated by tasks such as speech 

recognition, speech synthesis, named-entity recognition, language modeling, and machine 

translation. An RNN symbolizes a sequence with a high-dimensional vector of a preset 

dimensionality that includes new observations using a complex nonlinear function. RNNs can 

implement random memory-bounded computation and are extremely expressive and as a result, 

they can be configured to accomplish nontrivial performance on complex sequence tasks [66]. 

RNNs have turned out to be difficult to train, especially on problems with complicated long-

range temporal structure, exactly the setting where RNNs have to be most useful. 

In a traditional neural network the assumption is that all inputs and outputs are self-

regulating and not dependent on each other. As depicted in Fig 2.5 RNNs consider both the 

current input and a framework unit built upon previously seen data, whereas the only input 

ANNs take into concern is the present example they are being fed. An obvious limitation of 

neural networks is that they accept a fixed-sized vector as input and produce a fixed-sized vector 

as output performing this mapping using a fixed amount of computational steps.  
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Fig. 2.5 Architecture of RNN 

 

Recurrent nets are more stimulating as they operate over sequences of vectors either in 

the input or output, or in both. RNNs are defined as recurrent as they carry out the same task for 

every element of a sequence, with the output being reliant on the earlier computations. RNNs 

have a memory that captures information about what has been calculated so far and hence make 

use of information in long sequences. Unlike a traditional deep neural network, which uses 

different parameters at each layer, a RNN shares the same parameters across all steps. This 

reflects the fact that RNN performs the same task at each step, just with different inputs. This 

significantly reduces the total number of parameters needed to learn. Training a RNN is done 

using the back propagation algorithm. As the parameters are shared by all time steps in the 

network, the gradient at each output depends on the calculations of the current time step and also 

the previous time steps. 

A recurrent neural network can be thought of as the addition of loops to the standard 

feed-forward multilayer perceptron architecture. For example, in a given layer, each neuron may 

pass its signal latterly in addition to forward to the next layer. The output of the network is given 

as an input to the network with the next input vector. The standard RNN is a nonlinear dynamical 

system that maps sequences to sequences. It is parameterized with three weight matrices and 

three bias vectors whose concatenation θ completely describes the RNN [67]. Given an input 
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sequence (x1,...,xt), the RNN computes a sequence of hidden states ht and a sequence of outputs 

zt. 

Recurrent neural networks (RNNs) have recently shown attractive methods to solve 

machine learning tasks. RNN is extension of a traditional neural network, which is able to handle 

a variable-length sequence input. The variable-length sequence is solved by recurrent hidden 

layer whose activation is done at each time in RNN. In an RNN as shown in Fig.2.6, given input 

layer of sequence x={x1,x2,…xn}, ht  is hidden layer, output layer  y={y1,y2…yn} the update of 

the recurrent hidden layer is given in equation 2.1. 

 ht= σ(Wxhxt+Whhht-1+bn)  (2.1) 

where σ is activation function, commonly used sigmoid function or hyperbolic tangent function, 

whh is the weight at recurrent neuron, wxh is the weight at input neuron and b denotes bias vector. 

The output layer is computed using equation 2.2. 

Yt=Whyht+by  (2.2) 

 

Fig. 2.6 RNN Unfolded 

 

In RNN model, if the sequence consists of 3 words, the network would be unrolled into a 

3-layer neural network, one layer for each word.  Xt is the input at time step t, st the hidden state 

at time step t which is the memory of the network. The hidden state is calculated based on the 

preceding hidden state and the input at the present step st = f (Uxt+Wst-1). The function f is a 

nonlinearity like tanh or Relu.  S-1 required to calculate the first hidden state, is normally 

initialized to zero. Ot is the output at step t. St obtains information about the earlier time steps. 
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The output at step Ot is calculated exclusively based on the memory at time t. The recurrent 

connections include state or memory to the network and let it to learn broader generalizations 

from the input sequences. The staple technique for training feed forward neural networks is to 

back propagate error and update the network weights. Due to the recurrent or loop connections 

backpropagation breaks down in a recurrent neural network. Backpropagation through Time or 

BPTT is the technique used to address this issue. The configuration of the network is unrolled, 

and copies of the neurons that have recurrent connections are created. For example a single 

neuron with recurrent connection (A->A) could be characterized as two neurons with the same 

weight values (A->B).This allows the cyclic graph of a recurrent neural network to be turned into 

an acyclic graph like a classic feed-forward neural network and backpropagation can be applied 

[68]. The vanishing gradient problem is alleviated in deep multilayer perceptron networks 

through the use of the rectifier transfer function, and even more exotic but now less popular 

approaches of using unsupervised pre-training of layers. 

RNNs are a promising solution to tackle the problem of learning sequences of 

information. There are many forms of sequence prediction problems depending on the types of 

inputs and outputs supported. RNNs allow sequences of vectors to be used in the input, output, 

or in the most general case both [69]. The different types of RNN based on the inputs and 

outputs are given in Fig.2.7. Each rectangle represents vectors and arrows represent functions. 

Some examples of sequence prediction problems using RNN include: 

 One-to-one: It deals with fixed size of input to fixed size of output where they are 

independent of previous information. Example: Image classification. 

 One-to-Many: An input observation is mapped to a sequence with multiple steps as an 

output. Example: Image captioning 

 Many-to-One: A sequence of multiple steps as input mapped to class or quantity prediction.  

Example: sentiment classification 

 Many-to-Many: An input sequence of multiple steps is mapped to a sequence with multiple 

steps as output. Example: Machine translation 

  

https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/
https://en.wikipedia.org/wiki/Backpropagation_through_time
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Fig. 2.7 RNN Types Based on Input / Output 

An example for one to many networks is labelling an image with a sentence. The many to 

one approach could handle a sequence of image and produce one sentence for it. The many to 

many approaches is used for language translations. Other use cases for the many to many 

approaches could be to label each image of a video sequence. 

Training through RNN 

There are various steps involved in training an RNN and the foremost one is providing 

single time step of the input to the network. Then its current state is calculated using set of 

current input and the previous state. At the next time step, the current ht becomes ht-1. One can go 

as many time steps according to the problem and join the information from all the previous 

states. Once all the time steps are completed the final current state is used to calculate the output. 

The output is then compared to the actual output i.e the target output and the error is generated. 

The error is then back-propagated to the network to update the weights and hence the network is 

trained. 

Recurrent Neural Network model suffers from a drawback due to the diminishing effect 

of the inputs, which are farther into the past, causing short term memory effect. Although the 

gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, especially 

on problems with long-range temporal dependencies [70], due to their nonlinear iterative nature. 

Even a little change to an iterative process can multiply and result in great effects many iterations 

later. The inference is that in an RNN, at a particular time, the derivative of the loss function can 

be exponentially large with respect to the hidden activations at a much earlier time. Thus the loss 

function is very sensitive to small changes, so it becomes effectively discontinuous. RNNs also 
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experience the vanishing gradient problem which was first described by Hochreiter [71]. RNN 

has its variant forms like Long Short Term Memory units (LSTM) and Gated Recurrent Units 

(GRU) which are developed to overcome the vanishing gradient issue and they are discussed in 

detail in Sections 2.3 and 2.4 respectively. 

Benefits of RNN 

The main advantage of RNN over ANN is that RNN can model sequence of data so that 

each sample can be assumed to be dependent on previous ones. The default feed forward 

network can just compute one fixed-size input to one fixed size output. With the recurrent 

approach one to many, many to one and many to many inputs to outputs are possible. RNNs can 

handle sequential data of arbitrary length and are used for handwriting recognition and speech 

recognition. The ability to work with sequences makes RNN applications versatile as they accept 

variable sized inputs and can also produce variable size outputs. They have a built-in feedback 

loop, which enables them to remember current and past inputs while arriving at a decision 

making them good at forecasting. 

In a neural network there is no memory associated with the model, which is a problem for 

sequential data. RNN addresses that issue by including a feedback loop which serves as a kind of 

memory. Hence a footprint is left out by the past inputs to the model. The RNN uses the 

feedback connection to store information over time in form of activations. This ability is 

significant for many applications involving sequential data because each neuron or unit can use 

its internal memory to maintain information about the previous input. These little memory units 

allow RNNs to be much more accurate and are the reason behind the popularity of this model. 

Limitations of RNN 

The downside of RNN is that it can be much more difficult to train and has multiple 

issues with convergence. In unrolled RNN, the gradients that are calculated in order to update the 

weights can become unstable when backpropagation is used. They can turn out to be very large 

numbers called exploding gradients or very small numbers called the vanishing gradients [72]. 

When these large numbers are used to update the network weights, training becomes unstable 

and the network is unreliable. Memorization in RNNs continues to pose a challenge in many 
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applications. RNNs are required to store information over many timesteps and retrieve it when it 

becomes relevant but vanilla RNNs often struggle to do this. RNNs find it complex to process 

very long sequences if using tanh or relu as an activation function. 

2.6 LONG SHORT-TERM MEMORY UNITS (LSTM) 

The Long Short-Term Memory or LSTM network is a recurrent neural network 

introduced [73] to address the vanishing gradient problem. It can be used to deal with difficult 

sequence problems in machine learning and achieve state-of-the-art results. LSTM networks 

have memory cell instead of neurons that are connected into layers.  

A LSTM memory cell as shown in Fig.2.8 has components that make it smarter than a 

classical neuron and a memory for recent sequences. A block consists of gates that manage its 

state and output. A unit works upon an input sequence and sigmoid activation function is used by 

each gate within a unit to control whether they are triggered or not, making the change of state. A 

linear summing unit is at the core and at a given time step it aggregates the combined input it 

receives. Its self recurrent connection has a fixed weight of 1.0 that prevents exponential decay 

of activations from way back in the past, thereby solving the drawback of conventional RNNs. 

There are three types of gates within a memory unit namely the forget gate that conditionally 

decides what information to discard from the unit, the input gate that conditionally decides which 

values from the input to update the memory state and the output gate that conditionally decides 

what to output based on input and the memory of the unit.  

 

Fig. 2.8 LSTM Cell 
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The input gate modulates whether the input from other cells or layer of cells are to be fed 

to the linear unit at the core, thereby modulating the effect of particular input vectors on the state 

of the cell. The output gate modulates whether the output of the linear unit is to be broadcasted to 

the network and hence modulates the effect of this cell on the output of the network. The forget 

gate sets the fixed weight of self recurrent connection to 0 thereby resetting the state of the cell at 

appropriate times, and helps the cell behave like a counter for certain application. This also helps 

it from being influenced by inputs very long back in the past that does not have any bearings on 

the present input. 

Gates consist of a sigmoid neural net layer and a pointwise multiplication operation. The 

output of sigmoid layer is numbers between zero and one, relating how much of each component 

should be let through. A value of zero means to allow nothing while a value of one means allow 

everything. The repeating module in an LSTM has a different structure than an RNN and has 

four, interacting components as shown in Fig.2.9. The forget gate layer receives the values ht−1 

and xt, and then outputs a number between 0 and 1 for each number in the cell state Ct−1. The 

values to be updated are decided by the input gate. A vector of new candidate values, Ct that 

could be added to the state is created by a tanh layer.  These two values are combined in the next 

step and the old cell state, Ct−1 is updated into the new cell state Ct. 

   

Fig. 2.9 Repeating Module in LSTM 

A detailed discussion of the three gates namely forget gate, input gate and output gate of 

the LSTM cell is presented below. 
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Forget gate 

A forget gate is accountable for removing information from the cell state. The 

information that is of less importance or the information that is no longer required for the LSTM 

to comprehend things is removed by multiplication of a filter. This is necessary for optimizing 

the performance of the LSTM network [74]. This gate takes in two inputs ht-1 and xt,, where ht-1 is 

the hidden state from the previous cell or the output of the previous cell and xt is the input at that 

particular time step. Multiplication of the given inputs by the weight matrices is done and a bias 

is added. Next the sigmoid function is applied to this value. The sigmoid function outputs a 

vector, with values ranging from 0 to 1, which corresponds to each number in the cell state and is 

multiplied to the cell state.  

Input Gate 

The input gate is accountable for the addition of information to the cell state, which is 

essentially a three-step process  

a. Regulating what values need to be added to the cell state by involving a sigmoid function. 

This is similar to the forget gate and acts as a filter for l the information from ht-1 and xt. 

b. Creating a vector containing all possible values that can be added to the cell state by using 

the tanh function, which outputs values from -1 to +1.   

c. Multiplying the value of the regulatory filter to the created vector and then adding this useful 

information to the cell state via addition operation. 

Output Gate 

There are three steps in the functioning of an output gate   

a. Creating a vector after applying tanh function to the cell state, thereby scaling the values to 

the range -1 to +1. 

b. Making a filter using the values of h_t-1 and x_t, such that it can regulate the values that 

need to be output from the vector created above. This filter again employs a sigmoid 

function. 

c. Multiplying the value of this regulatory filter to the vector created in step 1, and sending it 

out as a output and also to the hidden state of the next cell. 
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Benefits of LSTM 

RNNs are prone to vanishing gradients as they can remember information for a short 

duration of time only. This is addressed with a better architecture like a Long Short-Term 

Memory (LSTM) that resolves issues of vanishing gradients. LSTMs are clearly designed to 

evade the long-term dependency crisis and can retain information for long periods of time [75].  

Since the output is based on previous computations, it is vital to remember previous inputs. A 

standard RNN can look back a few time steps only, which is not enough to produce the most 

accurate results when more parameters are added. An LSTM, on the other hand, can look back 

many time steps and are considered best suited for applications like sequence predictions, 

language translation, speech to text and for any information rooted in time like video. An LSTM 

can forget and remember patterns selectively for a long duration of time. The LSTM has the 

ability to remove or add information to the cell state, carefully regulated by structures called 

gates. It understands which data is important and should be retained in the network and this 

makes LSTM competitive over simple RNNs and feed forward neural networks. 

Limitations of LSTM 

LSTMs have an update gate and forget gate which makes them more sophisticated but at 

the same time more complex as well. It is more costly to compute the network output and apply 

back propagation. The explicit memory adds several more weight to each node, all of which 

must be trained which increases the dimensionality of the problem, and potentially makes it 

harder to find an optimal solution. It takes much time and resources to run this model. 

2.7 GATED RECURRENT UNITS (GRU) 

GRU addresses the vanishing problem by replacing hidden nodes in traditional RNN by 

GRU node. The core idea of GRUs is that the gradient chains do not disappear due to the length 

of sequences as values are passed completely through the cells. Fig.2.10 shows the architecture 

of GRU. Each GRU node consists of two gates, update gate Zt and reset gate rt . GRU has two 

gates, a reset gate and an update gate.  The reset gate decides how to merge the new input with 

the previous memory, and the update gate identifies how much of the previous memory to keep 

around [76]. When reset is set to all 1‟s and update gate to all 0‟s again arrive at our plain RNN 

model. 



73 

 

Reset Gate: Essentially, this gate is used from the model to decide how much of the past 

information to forget while calculating present information.  

Update Gate: The update gate zt helps the model to determine how much of the past information 

from previous time steps need to be passed to the future. It is really influential as the model can 

decide to copy all the information from the past and eliminate the risk of vanishing gradient 

problem.  

Update gate determines how much the unit modifies its activation, or content. It is 

computed in equation 2.3. Reset gate allows the unit to forget the previously computed state and 

is calculated by equation 2.4. The hidden layer is computed by equation 2.6 using ht which in 

turn is calculated by equation 2.5. The network computes ht that holds information for the current unit 

and sends it down to the network. The update gate determines what to collect from the current memory 

content and previous memory content. The model keeps a majority of the previous information by 

learning to set the vector zt close to 1. At this time step zt will be close to 1 and 1 - zt will be close 

to 0 and so big portion of the current content and vice versa will be ignored. 

 

Fig. 2.10 Gated Recurrent Unit 

 

The update functions are calculated as follows: 

zt = σ(Wzxt + Uzht−1 + bz) (2.3) 

rt = σ(Wrxt + Urht−1 + br) (2.4) 

ht = tanh(Wxt + U(rt ht−1) + b)  (2.5) 

ht = (1 − zt) ht−1 + zt. ht (2.6) 

 

where matrices Wz, Wr, W, Uz, Ur, U and vectors bz, br, b are model parameters. 
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Difference between LSTM and GRU 

GRU is a simplified version of LSTM where both state vectors are merged into a single 

vector ht. Both the forget gate and the input gate are controlled by a single gate controller. The 

forget gate is open and the input gate is closed when the gate controller outputs a 1. It is vice 

versa if it outputs a 0. There is no output gate in GRU and the full state vector is output at every 

time step. But there is a new gate controller that controls which part of the previous state will be 

shown to the main layer. Though there are a few key differences, the primary idea of using a 

gating mechanism to learn long-term dependencies similar to LSTM. There are two gates in a 

GRU whereas an LSTM has three gates. GRUs do not possess an internal memory that is 

different from the exposed hidden state [77]. The output gate that is present in LSTMs is not 

there in GRU. The input and forget gates are coupled by an update gate z and the reset gate r is 

applied directly to the previous hidden state. Thus, the responsibility of the reset gate in a LSTM 

is really split up into both r and z. 

Benefits of GRU 

GRUs with their internal memory capability are valuable to store and filter information 

using the update and reset gates. The issues faced by RNNs are eliminated and GRU offers a 

powerful tool to handle sequence data. The gates allow a GRU to carry forward information over 

many time periods in order to influence a future time period [78]. In other words, the value is 

stored in memory for a certain amount of time and at a critical point is pulled out and used with 

the current state to update at future. 

The success of GRU is due to the gating network signals that control how the present 

input and previous memory are used to update the current activation and produce the current 

state. These gates possess sets of weights that are adaptively recomputed in the learning phase. 

The GRU unit controls the flow of information without having to use a memory unit. GRU is 

relatively new, and the performance is on par with LSTM, but computationally more efficient. 

Compared to LSTMs, GRUs train faster and perform better on less training data.  They are 

simpler and thus easier to modify, for example adding new gates in case of additional input to the 

network. It is computationally easier than LSTM since it has only two gates. 
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Limitations of GRU  

Though these models ensure learning in RNN, they introduce an increase in 

parameterization through their gated networks. GRUs expose the entire cell state to other units in 

the network and are difficult to train. 

SUMMARY 

Deep architectures have the potential to integrate diverse data sets across heterogeneous 

data types because of their hierarchical learning structure. They also provide greater 

generalization given the focus on representation learning and not simply on classification 

accuracy. Various deep learning architectures, the concepts behind deep learning approaches, 

their benefits and limitations are presented in detail in this chapter. The rapid developments in 

the design of deep architecture models have opened avenues for the application of these models 

in research. These deep learning architectures are able to extract automatically useful structures 

from input patterns. The different architectures of deep learning namely DNN, RNN variants 

BRNN, LSTM and GRU which are elaborated in this chapter have been used to build ASD 

predictive models.  

 

 

 

 

 

 

 

 

 

 

 

 


