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3. PROBLEM MODELLING 

 
The primary focus of this research is to propose an efficient solution for identifying the 

ASD causing genes, their susceptibility and mutations.  The research problem of identifying 

ASD causing genes, their susceptibility and mutations is formulated as a multi- class 

classification problem and suitable solution is derived using traditional machine learning and 

contemporary deep learning approaches. This chapter describes the strategies applied for 

problem modeling in order to meet the objectives. The overall framework of the modeling 

process is depicted in Fig.3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Architecture of the Proposed System 

As the mutated gene sequences are not readily available, CDNA sequences of the ASD 

genes responsible for syndromic and asyndromic ASD are first collected from HGMD database 

[79]. The mutational information about these genes is collected from SFARI gene database [80]. 

Diseased gene sequences are then simulated by inducing mutations with the help of this 
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information and the corpus is built with 1000 mutated gene sequences accounting for ten types of 

ASD genes and four types of mutations.  

The research work is carried out in three stages using conventional machine learning and 

the contemporary deep learning methods for building the predictive models. In the first stage, the 

traditional learning approach is employed for building the prediction models and the key idea 

here is to identify and extract distinctive features from synthetic gene sequences. Various 

descriptors like codon measures, mutation features and gene susceptibility features are defined 

and captured from the mutated gene sequences. Four independent datasets with these features are 

prepared and used in the development of traditional machine learning models to predict the ASD 

causing genes, their susceptibility and the underlying mutations. 

In the second stage, the deep learning approach is employed for building the prediction 

models and the key idea here is to explore the self- learning capability of deep models and to 

avoid feature engineering. The same datasets are used for enabling representation learning of the 

user defined features by different deep architectures and deep models are built to predict the 

ASD causing genes, their susceptibility and the underlying mutations. 

In the last stage, two types of encoding schemes are proposed for deep learning and the 

key idea here is to exploit the self-learning power of deep learning models by utilizing the gene 

sequences as raw input data and thereby avoid the time consuming task of feature engineering. 

Two datasets based on two mapping schemes are developed and utilized for the development of 

deep learning models to predict the ASD causing genes. 

3.1 CORPUS DEVELOPMENT 

Data collection refers the systematic process of accumulating and evaluating information 

on variables of interest to enable answering of research questions, testing hypotheses and 

evaluating results. The primary focus of data collection is to capture quality evidence that 

permits analysis to formulate reliable answers to the problems. Accurate prediction of gene 

sequences is a complicated task as the pattern of the gene sequence varies for every ASD 

affected individual and the unavailability of diseased gene sequences also poses a challenge. 

Initially the genes associated with syndromic and asyndromic ASD as discussed in Section 1.3 

are examined. The syndromes with ASD prevalence of about 0.5% - 2% given in Table III are 
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taken for study whereas other syndromes in which ASD prevalence is very rare are not included. 

The syndromes like Fragile X syndrome, Rett syndrome, Timothy syndrome, Tuberous sclerosis 

complex, Phelan - McDermid syndrome and the respective 5 causative genes FMR1, MECP2, 

CACNA1C, TSC1, SHANK3 are taken for the research. The asyndromic ASD symptoms like 

repetitive behavior, speech and language abnormalities, developmental disabilities, cognitive and 

behavioral impairments were discussed in Section 1.3.3. The 5 genes responsible for these 

symptoms CHD8, CNTNAP2, FOXP2, GABRB3, HOXA1 are considered. Table V lists the ten 

genes that are key players for syndromic and asyndromic ASD considered for the study with 

their associated behavior.  

Table V ASD Causative Genes Taken for Study and their Associated Behavior 

Type  of 

ASD 

Genes taken 

for study 
Associated Behavior 

Syndromic  

ASD  

SHANK3  Impulsivity, social anxiety, biting, obsessive chewing  

TSC1 Behavioral deficits associated with ASD, 

hyperactivity, epilepsy  

MECP2  Gaze avoidance, limited facial expression, atypical 

socialization  

FMR1  Social withdrawal behaviors, anxiety, learning 

disability  

CACNA1C  Restricted and Repititive behaviors, Communication 

problems  

Asyndromic  

ASD  

CHD8  Anxiety, Repetitive behavior  

FOXP2  Speech and language abnormalities  

GABRB3  Unexplained Epilepsy and Intellectual or 

Developmental Disabilities  

HOXA1  Cognitive and behavioral impairments  

CNTNAP2 Language impairments, Aggression  

The reference genes are identified from OMIM database and its corresponding reference 

gene sequences are downloaded from National Center for Biotechnology Information (NCBI) 

[81]. Online Mendelian Inheritance in Man (OMIM) is a freely available, complete, trustworthy 
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compendium of human genes and genetic phenotypes [82]. The full-text, referenced overviews in 

OMIM contain information on all known mendelian disorders and over 15,000 genes. OMIM 

highlights the relationship between phenotype and genotype. Each OMIM entry has a summary 

of a genetically determined phenotype or gene and has numerous links to other genetic databases 

like DNA and protein sequence, PubMed references and mutation databases. Information in 

OMIM can be retrieved by queries on OMIM number, disorder, gene name and gene symbol.  It 

is updated on a daily basis and the entries in it contain abundant links to other genetics resources. 

The diseased gene sequences will enable geneticists to exactly identify the reason behind 

the disorder. But the availability of this diseased gene sequences is a challenge and hence it is 

essential to generate synthetic gene sequences. Mutations are the key players that change the 

pattern of a gene sequence and so information about mutations are required for this process. The 

gene mutational information is collected from the Human Gene Mutational Database (HGMD). 

The Human Gene Mutation Database (HGMD) comprises a broad collection of published 

germline mutations in nuclear genes that lie behind human inherited disease. The database 

contains an excess of 203,000 different gene lesions identified in over 8000 genes manually 

curated from over 2600 journals. There are more than 17000 new mutation entries collected per 

annum and HGMD is the standard genotype - phenotype repository of heritable mutations. It is 

widely used by researchers, clinicians, diagnostic laboratories and genetic counsellors, and is an 

indispensable tool for the annotation of next-generation sequencing data. The public version of 

HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions 

and non-profit organizations.  

In this work four kinds of mutations such as missense, nonsense, frameshift and silent 

mutations are taken into account for building the corpus. The corresponding mutation records are 

identified and captured from the HGMD database by specifying the required information. The 

sample mutation information retrieved for SHANK3 gene from HGMD is shown in Fig.3.2. 
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Fig. 3.2 Mutation information retrieved for SHANK3 gene from HGMD 

SFARI gene is a growing database for the autism research community that is focused on 

genes associated in autism susceptibility. SFARI gene is a reliable, inclusive, and dynamic 

database that identifies the risk genes from the published literature. It enables autism researchers 

to know about the gene functions in humans and experimental organisms, with links to the 

primary literature and secondary database. Mutational information are collected from SFARI and 

HGMD databases. 

The raw cDNA sequence is obtained from HGMD and the reference sequences are 

downloaded from NCBI. Positional cloning is done using R script wherein the nucleotide base is 

altered based on the mutational information. R coding is executed to identify the nucleotide 

position and to replace with a different nucleotide specified in the mutational information. The 

nucleotide base variation in the gene sequences is done based on the mutational information 

involving Nonsense, Missense, Frameshift and Silent Mutations obtained from SFARI and 

HGMD database. The positional change of the nucleotide is done in cDNA sequence against the 

reference gene sequence.  
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For example, consider the missense mutational information for SHANK3 gene such as 

CGC > TGC in codon 12. This indicates that the nucleotide C in codon 12 is altered as 

nucleotide T and hence alters the protein from Arginine to Cysteine.  

For the cDNA sequence of the SHANK3 given below 

 

the mutation  induced in codon 12, replacing the nucleotide C with T, the result of mutated 

sequence is 

 

R script is written to identify the required position to be altered and to induce the mutation in the 

gene sequence. For SHANK3 gene sequence depicted in Fig.3.3 the mutated gene sequence 

generated by replacing the nucleotide C with T is illustrated in Fig.3.4. 

 

 

 

 

 

 

 

 

 

Fig. 3.3 cDNA sequence of SHANK3 Gene 

 

 

 

 

ATGGACGGCCCCGGGGCCAGCGCCGTGGTCGTGCGCGT 

ATGGACGGCCCCGGGGCCAGCGCCGTGGTCGTGTGCGT 

>ATGGACGGCCCCGGGGCCAGCGCCGTGGTCGTGCGCGTCGGCATCCCGGACCTGCAGCAGAC

GAAGTGCCTGCGCCTGGACCCGGCCGCGCCCGTGTGGGCCGCCAAGCAGCGCGTGCTCTGCGC

CCTCAACCACAGCCTCCAGGACGCGCTCAACTATGGGCTTTTCCAGCCGCCCTCCCGGGGCCGCG

CCGGCAAGTTCCTGGATGAGGAGCGGCTCCTGCAGGAGTACCCGCCCAACCTGGACACGCCCCT

GCCCTACCTGGAGTTTCGATACAAGCGGCGAGTTTATGCCCAGAACCTCATCGATGATAAGCAG

TTTGCAAAGCTTCACACAAAGGCGAACCTGAAGAAGTTCATGGACTACGTCCAGCTGCATAGCA

CGGACAAGGTGGCACGCCTGTTGGACAAGGGGCTGGACCCCAACTTCCATGACCCTGACTCAGG

AGAGTGCCCCCTGAGCCTCGCAGCCCAGCTGGACAACGCCACGGACCTGCTAAAGGTGCTGAA

GAATGGTGGTGCCCACCTGGACTTCCGCACTCGCGATGGGCTCACTGCCGTGCACTGTGCCACA

CGCCAGCGGAATGCGGCAGCACTGACGACCCTGCTGGACCTGGGGGCTTCACCTGACTACAAG

GACAGCCGCGGCTTGACACCCCTCTACCACAGCGCCCTGGGGGGTGGGGATGCCCTCTGCTGTG

AGCTGCTTCTCCACGACCACGCTCAGCTGGGGATCACCGACGAGAATGGCTGGCAGGAGATCCA

CCAGGCCTGCCGCTTTGGGCACGTGCAGCATCTGGAGCACCTGCTGTTCTATGGGGCAGACATG

GGGGCCCAGAACGCCTCGGGGAACACAGCCCTGCACATCTGTGCCCTCTACAACCAGGAGAGCT

GTGCTCGTGTCCTGCTCT 

TCCGTGGAGCTAACAGGGATGTCCGCAACTACAACAGCCAGACAGCCTTCCAGGTGGCCATCAT

CGCAGG 

GAACTTTGAGCTTGCAGAGGTTATCAAGACCCACAAAGACTCGGATGTTGTACCATTCAGGGAA

ACCCCC 
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Fig. 3.4 Mutated SHANK3 Gene 

In each category of ASD genes taken for study 100 synthetic mutated gene sequences are 

generated and a corpus comprising of 1000 gene sequences for all 10 genes is developed. These 

synthetic gene sequences are stored as fasta files.  

3.2 DESIGN OF FEATURES AND DATASETS 

Data preparation is a crucial step as it transforms the initial raw data into a final dataset 

that is vital for the development of reliable models that have high accuracy and efficiency. 

Feature extraction is one of the important steps in data analysis, mainly influencing the 

accomplishment of any machine learning task. Feature engineering plays a vital role in 

determining the accuracy of the model in traditional machine learning. The key idea of feature 

engineering in this work is to extract distinguishing features from synthetic gene sequences for 

building the prediction models.  

To facilitate traditional machine learning and to provide appropriate solution for the 

objectives under consideration, four different datasets have been developed.  

 

 

Codon Change : CGC –TGC  
Amino Acid  Change : Arg –Cys  
Codon number: 12 
>ATGGACGGCCCCGGGGCCAGCGCCGTGGTCGTGTGCGTCGGCATCCCGGACCTGCAGCAGACGA

AGTGCCTGCGCCTGGACCCGGCCGCGCCCGTGTGGGCCGCCAAGCAGCGCGTGCTCTGCGCCCTCA

ACCACAGCCTCCAGGACGCGCTCAACTATGGGCTTTTCCAGCCGCCCTCCCGGGGCCGCGCCGGCAA

GTTCCTGGATGAGGAGCGGCTCCTGCAGGAGTACCCGCCCAACCTGGACACGCCCCTGCCCTACCTG

GAGTTTCGATACAAGCGGCGAGTTTATGCCCAGAACCTCATCGATGATAAGCAGTTTGCAAAGCTTC

ACACAAAGGCGAACCTGAAGAAGTTCATGGACTACGTCCAGCTGCATAGCACGGACAAGGTGGCAC

GCCTGTTGGACAAGGGGCTGGACCCCAACTTCCATGACCCTGACTCAGGAGAGTGCCCCCTGAGCC

TCGCAGCCCAGCTGGACAACGCCACGGACCTGCTAAAGGTGCTGAAGAATGGTGGTGCCCACCTGG

ACTTCCGCACTCGCGATGGGCTCACTGCCGTGCACTGTGCCACACGCCAGCGGAATGCGGCAGCAC

TGACGACCCTGCTGGACCTGGGGGCTTCACCTGACTACAAGGACAGCCGCGGCTTGACACCCCTCTA

CCACAGCGCCCTGGGGGGTGGGGATGCCCTCTGCTGTGAGCTGCTTCTCCACGACCACGCTCAGCT

GGGGATCACCGACGAGAATGGCTGGCAGGAGATCCACCAGGCCTGCCGCTTTGGGCACGTGCAGC

ATCTGGAGCACCTGCTGTTCTATGGGGCAGACATGGGGGCCCAGAACGCCTCGGGGAACACAGCCC 

TCCGTGGAGCTAACAGGGATGTCCGCAACTACAACAGCCAGACAGCCTTCCAGGTGGCCATCATCG

CAGG 

GAACTTTGAGCTTGCAGAGGTTATCAAGACCCACAAAGACTCGGATGTTGTACCATTCAGGGAAACC

CCC 
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Codon Measures Dataset   

Identification of harmful genes causing ASD is a complex research problem as numerous 

genes underlie this disorder. Hence it is essential to develop machine learning models to 

recognize the diseased genes associated with ASD using gene characteristics. The coding 

measures are dissimilar in different gene families and hence this trait is a well-chosen descriptor 

for identifying different gene types. Hence a dataset that includes attributes that describe a gene 

on different aspects was developed. The study investigated a total of 43 attributes in both 

intrinsic and extrinsic categories which are the contributing features for representing the mutated 

gene sequences. The features taken into consideration for gene identification are nucleotide 

composition, GC content, Rho values of biwords, Z-scores of biwords, Alignment score, Number 

of exons, Number of donor sites, Number of acceptor sites, CpG percent, ratio of CpG percent / 

expected. 

Intrinsic content sensors use the measures like GC content, frequency of k-mers, base 

occurrence periodicities based on the content of the sequences to identify a region as protein 

coding or not. Nucelotide composition and codon composition varies with regard to protein and 

non-protein coding regions. Extrinsic content sensors exploit the similarity between a genomic 

sequence region and a DNA sequence present in a database to establish whether the region is 

transcribed or coding. Local alignment tool BLAST is used for detecting this similarity. To find 

biwords that are over-represented or under-represented rho values and z-scores are used. The 

count of exons, donor site and acceptor site are also examined as they are essential discriminators 

of a gene. 

In summary, a total of 43 features including intrinsic and extrinsic properties of each 

gene sequence are defined. The training set for the multi-class classification problem includes 

1000 feature vectors with a dimension 43. As ten genes namely SHANK3, TSC1, MECP2, 

FMR1, CACNA1C, CHD8, FOXP2, GABRB3, HOXA1, CNTNAP2 are considered for the 

study, the feature vectors are assigned class labels from 1 to 10.  

The detailed description of the feature extraction and dataset creation is given in Section 

4.1 of Chapter 4. 
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Mutation Dataset   

In a clinical environment to enable the ASD patients for precise genetic tests, it is 

indispensable to identify the kind of genetic mutations that are the causal factors of the 

phenotype. Change or mutation in the gene sequence alters the structure of the sequence which 

implies the cause of disease. These structural changes are captured as characteristics from 

mirrored sequences to learn the prediction model. The gene code for making a protein is altered 

by the mutation which causes the protein to malfunction. When a mutation alters a protein that 

has a major role in the body, it can interrupt normal development or cause a disorder. It is rather 

a complex task of classifying mutations in complex syndromic ASD genes taking into account 

the genetic variations due to synonymous and non-synonymous nucleotide polymorphisms. To 

distinguish mutations in ASD gene sequences, gene specific features (GS), substitution matrix 

features (SM), amino acid residue changes (AARC) are vital. Hence a dataset that includes 15 

attributes that describe a mutation on different aspects was designed. These attributes can be 

categorized into 5 gene specific, 6 features extracted from published substitution scoring 

matrices and 4 features related to amino acid residue changes. The attributes of this dataset are 

described below. 

The features like mutation start position, mutation end position, length of mutation, 

length of cDNA sequence, the type of mutational variation i,e Nonsense, Missense, Frameshift, 

Silent Mutations are characteristics extracted from a gene. In sequence alignment, scoring 

matrices are used to decide the relative score made by matching two characters. They are 

computed as the log-odds of the probability of two characters that are derivatives of a common 

ancestral character. Many types of scoring matrices exist for nucleotide sequences, codon 

sequences and amino acid sequences derived by aligning the known homologous sequences [84]. 

These alignments are then used to determine the likelihood of one character being at the same 

position in the sequence as another character. 

This work utilizes the values of 6 scoring matrices namely (i) WAC matrix constructed 

from amino acid comparative profiles, (ii) Log-odds scoring matrix collected in 6.4-8.7 PAM , 

(iii) BLOSUM80 substitution matrix, (iv) PAM-120 matrix, (v) Substitution matrix obtained by 
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maximum likelihood estimation and (vi) Mutation matrix for initially aligning which are 

collected from the AAIndex database. 

The mutated sequences are translated to generate protein sequences which in turn provide 

the amino acid observed values whereas the amino acid expected value is extracted from SFARI 

autism database. The 2-gram encoding method extracts different patterns of two consecutive 

amino acid residues in a protein sequence and counts the number of occurrences of the extracted 

residue pairs. There are 20
2 

combinations of 2-grams which is huge and hence the standard 

deviation and the mean z-score between the values of the 400 bigrams with respect to the protein 

sequence are calculated. 

The dataset with a total of 15 features for distinguishing the mutations is developed with 

1000 feature vectors with a dimension 15. There are four types of mutations considered for the 

study namely Nonsense, Missense, Frameshift, Silent Mutations and hence the feature vectors 

are assigned four different class labels.  

The detailed description of the feature extraction and dataset creation is given in Section 4.2 of 

Chapter 4. 

Pooled Mutation Dataset (PMDS) 

In most of the candidate ASD genes, the actual mutations that increase the risk for autism 

have not been identified. There is a need for a more comprehensive learning approach that 

exploits the correlations between ASD genes and the mutations that underlie them. In order to 

identify the ASD genes and the co-occurring mutations which exhibit dependency among them, 

multi-dimensional approach is attempted. To address this need, a dataset reflecting both gene 

characteristics and mutation aspects is designed. The gene specific features like nucleotide 

composition, Rho values of biwords, Z scores of biwords, Alignment score, count of exons, 

donor sites, acceptor sites are pooled with the mutation features such as mutation features (GS), 

substitution matrix features (SM) and amino acid change residues (AARC) and 1000 instances of 

dimension 58 are created.  

The dataset with features contributing to the gene – mutation identification is developed 

with 1000 feature vectors with a dimension 58. There are two class labels assigned for this 
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dataset namely the gene class and mutation class. The gene class has ten class labels as there are 

ten genes taken for the study. There are four types of mutations considered for the study and 

hence the dataset consists of four class labels for mutation class.  

The detailed description of the feature extraction and dataset creation is given in Section 4.3 of 

Chapter 4. 

Gene Susceptibility Dataset 

The exploration for genetic factors underlying ASD has led to the identification of 

hundreds of genes containing mutations that differ in the mode of inheritance, frequency and 

function. Each of the mutations has its own associated risk to ASD and hence it is challenging to 

assess the collective substantiation for the gene‟s susceptibility to the disorder. It is necessary to 

perfrom a systematic evaluation of a gene‟s susceptibility to ASD by considering different types 

of genetic variants implicated in ASD. To address this need, a dataset with significant attributes 

representing the gene susceptibility is developed. The approach is based on an integrated 

assessment involving multiple attributes of gene, mutation, conserved protein domains, gene 

expression profiles and pathway interactions.   

Various characteristics determine the gene‟s vulnerability to a disorder. Initially 

publication evidences collected from PubMed are considered along with gene properties like 

exon count, protein length, whether protein altered or not, conserved domains. Mutation specific 

properties like mutation type, start, end position, inheritance pattern, rare or common variant are 

studied. The association of a gene with biological processes and cellular components related to 

ASD are included. The presence of a gene in ASD linked pathways indicates its link to the 

disorder and so axon guidance, neuronal system, interaction of neurexin and neuroligin at 

synapses, developmental biology and synaptic transmission are investigated. A consolidated 

score by summing the various features are generated for each individual variant of an ASD-

implicated gene leading to a clear understanding of their relevance to the disorder.  

Finally one of the three class labels low (score < 0.5), medium (score >=0.5 and < 0.8), 

high(score >=0.8) is assigned  to the gene depending on the range. Thus the Gene Susceptibility 

Dataset (GSDS) dataset is designed with 1000 instances of dimension 25. The detailed 

description of the feature extraction and dataset creation is given in Chapter 5. 
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Table VI summarizes the training dataset used in both conventional machine Learning and 

contemporary deep learning approaches. 

Table VI Summary of Training Datasets 

 

 

 

 

 

 

 

 

To facilitate deep learning through representation learning and to provide appropriate 

solution for gene type identification, mutation prediction and gene susceptibility identification, 

the three datasets namely CMDS, MDS, GSDS can be used. 

For next level research, two types of encoding schemes are proposed and two different 

datasets are designed to utilize the self learning power of deep architectures.   

Codon Encoded Dataset 

Codons are good differentiators of genes and hence the synthetic gene sequences are 

converted into categorical values ranging from 1 to 64. The diseased gene sequences are 

converted into a one dimensional representation by encoding technique. Among the genes 

considered, CHD8 has the maximum number of 2582 codons . Hence the length of each record is 

taken as 2582 timesteps of a feature vector which is the maximum number codons in a gene 

sequence. The Codon Encoded Dataset (CEDS) consisting of the encoded feature vectors is 

created with 1000 instances of dimension 2582 where each instance is assigned with one hot 

encoded class label ranging from 1 to 10.  

 

Measures 

Codon 

Measures 

Dataset 

(CMDS) 

Mutation 

Dataset 

 

(MDS) 

Pooled 

Mutation 

Dataset 

(PMDS) 

Gene 

Susceptibility 

Dataset 

(GSDS) 

Gene sequences  1000 1000 1000 1000 

Genes considered 

for study  
10 10 10 10 

Number of 

features  
43 15 58 25 

Class Labels  10 4 10 3 

Dataset size 1000 x 43 1000 x 15 1000 x 58 1000 x 25 
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One Hot Encoded Dataset 

Another encoding mechanism of one-hot encoding is attempted to give binary 

representation for the input sequences without losing positional information of each nucleotide. 

The simulated mutated sequences undergo the process of one hot encoding where each input 

sequence of length l is transformed into a 4 × l representation. The nucleotide bases adenine (A), 

cytosine (C), guanine (G), thymine (T) match the components from top to bottom respectively. If 

one of the nucleotide appears, the corresponding component is set to one and the others are set to 

0. All sequences are not of the same length, but in order to make it uniform, 0 padding is done to 

make them equal in length. The One Hot Encoded Dataset (OHEDS) consisting of encoded 

feature vectors is created with 1000 instances of dimension 7746 x 4 where each instance is 

assigned with one hot encoded class labels ranging from 1 to 10 for the ten possible genes.  

These two datasets are utilized for the development of deep learning models to predict the 

ASD causing genes. The detailed description of the above two datasets is given in Chapter 8. 

3.3 TRAINING AND TESTING 

The training datasets mentioned in the previous sections are used to train the classifiers 

for multi classification task as the problem objectives are to identify ASD causing genes, their 

susceptibility and mutations. The algorithm learns from the observations in the training set which 

forms the experience. Each observation in supervised learning problems consists of an observed 

output variable and one or more observed input variables. The machine learning algorithms like 

Decision trees, SVM and MLP are employed to construct the models employing CMDS, MDS, 

GSDS datasets. In contemporary method, Deep Neural Network (DNN), Recurrent Neural 

Network (RNN) variants namely Bidirectional Recurrent Neural Network (BRNN), Long Short 

Term Memory (LSTM) and Gated Recurrent Units (GRU) are employed to build the prediction 

models. 

Various experiments have been carried out using Sci-kit learn and Keras with Tensorflow 

as backend for implementing the traditional machine learning and deep learning approaches 

respectively. Training the features of ASD for different types of genes helps to create the learned 

model. In the training phase, the set of class labeled tuples is presented and the model is trained 
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by pairing the input with expected output. The test set is used to estimate how well the model has 

been trained and to estimate classification errors for classifiers, recall and precision.  

The common techniques to assess the accuracy of a classifier are hold-out, k - fold cross 

validation and leave one out cross validation. The hold-out method is the simplest kind of cross 

validation where the dataset is separated into training set and test set. The training set is used by 

function approximator to fit a function and then it predicts the output values for data in the test 

set. The test error is used to evaluate the model and the errors are accumulated to give the mean 

absolute test set error.  Cross validation is mainly used in machine learning to estimate the skill 

of a machine learning model on unseen data. In this technique the entire data set is not used to 

train a learner and some of the data is removed before training begins. The data that was 

removed during training can be used to test the performance of the learned model on new data.  

To determine the accuracy of a learning algorithm in predicting untrained data leave one out 

cross validation is used. In this method the learning algorithm is trained multiple times using all 

but one of the training set data points.  

 K-fold cross validation  evaluates the data across the entire training set, but it does so by 

dividing the training set into K folds and then training the model as many times as K. During 

each iteration a different fold of the training data is left out and is used as a validation set. At the 

end, the performance metric is averaged across all K tests. Lastly, as before, once the best 

parameter combination has been found, the model is retrained on the full data. As can be seen, 

every data point gets to be in a validation set exactly once, and gets to be in training set K-1 

times. This significantly reduces bias as most of the data is used for fitting, and also significantly 

reduces variance as most of the data is also being used in validation set. To add to the 

effectiveness of this method, interchanging of the training and test sets can also be done. As a 

common rule and empirical evidence usually K = 5 or 10 is ideal.  

In this work, the value of K is fixed as 10 and the entire dataset is divided into 10 folds 

out of which 9 folds are used for training and 1 for testing in each iteration. 10 fold cross 

validation is performed to test the performance of the prediction models. 
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Performance Evaluation Measures 

The performances of the models are evaluated using 10 fold cross validation with various 

metrics like precision, recall, accuracy and F-measure. During performance evaluation the 

number of observations correctly identified are denoted by True positive (TP) whereas the 

number of observations correctly rejected are indicated by True Negative (TN). False Positive 

(FP) gives the number of observations incorrectly identified by the model and False Negative 

(FN) refers the number of observations which are incorrectly rejected by the model. 

Accuracy 

The proportionate number of times the predictive model is right when applied to data is 

measured by accuracy. Accuracy can be calculated from formula given in equation 3.1. 

Accuracy = TP +TN / (TP + TN + FP + FN)  (3.1) 

Precision 

It is the proportion of the samples which truly have class z among all those which were 

classified as class z. Precision can be calculated from formula given in equation 3.2. 

Precision =   TP / (TP + FP )  (3.2) 

Recall 

It is the ratio of samples of a particular class z correctly classified as belonging to that class z.  

Recall can be calculated from formula given in equation 3.3. 

Recall = 
  
TP / (TP+TN)  (3.3) 

F-measure comparison 

 F-measure is used to decide the accurate classification of document labels within 

dissimilar classes. It measures the efficacy of the algorithm on a single class and higher values 

indicate better results. It is defined as given in equation 3.4.  

F = 2 * (Precision * Recall) / (Precision + Recall)  (3.4) 
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SUMMARY 

 The core research component of problem modeling has been elucidated in detail in this 

chapter with various tasks such as corpus development, features and dataset preparation, training 

and testing. The process of corpus development was described and the design of different 

datasets was presented. A note on training and testing of the models was also given. The method 

of performance evaluation and the metrics used have been mentioned in this chapter. Various 

models built using the traditional machine learning algorithms trained by CMDS, MDS, and 

PMDS datasets will be described in Chapter 4. The gene susceptibility prediction model built by 

training pattern recognition algorithms using GSDS dataset will be discussed in Chapter 5. The 

models built using deep learning approach with CMDS, MDS, GSDS datasets for predicting the 

type of ASD causing gene, their susceptibility and mutations will be presented in Chapter 6 and 

7. The deep models built using encoding schemes to predict the type of ASD causing gene will 

be described in Chapter 8. 

 

 

 

 

 

 

 

 

 


