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4. SUPERVISED LEARNING MODELS TO PREDICT ASD CAUSING

 GENES AND MUTATIONS 

Deleterious gene identification and the underlying mutations is an important research 

problem in biomedical domain.  It is complicated to identify a single gene causing ASD as a 

multitude of genes and their variants lie beneath this disorder. Hence, there is a vital need for 

efficient approaches to further reveal the genetic basis of ASD which will enable better filtering 

and specific therapies. This chapter illustrates the development of predictive models to identify 

causative genes and the triggering mutations causing syndromic and asyndromic ASD using 

pattern learning algorithms. This chapter also elaborates the multi-dimensional machine learning 

approach to predict the ASD candidate genes and mutations by classifying them concurrently 

using the discriminating features.  The performance of the models are evaluated using precision, 

recall, accuracy, F-measure and the result analysis is also presented in this chapter. 

 

4.1 MODEL TO PREDICT THE ASD CAUSATIVE GENES  

The genetic ground of a comprehensive developmental disability like ASD is 

complicated to research and existing methods require further developments to augment 

perceptions of the genetic cause of the disorder. Development of machine learning models is 

crucial as they are valuable in a clinical disease risk predictive situation. This work focuses on 

spotting the diseased genes associated with ASD using machine learning approaches. Supervised 

machine learning techniques have been effectively used to resolve various important biomedical 

problems like inference of gene regulatory networks [43], classification of microarray data [44], 

prediction of drug-target and discovery of gene-gene interaction in disease data [45]. In 

particular, they have been applied to recognize disease linked genes. The problem of gene 

identification is formulated as a supervised classification problem wherein the learned classifier 

is built through knowledge gained from the training data and is then used to forecast the type of 

gene causing ASD. 

Methodology 

In this work an ASD causative gene discriminative model is constructed by training the 

system with genetic blueprints from a labeled set of instances that will offer accurate predictions 
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in unseen cases with similar genetic conditions. The task of identifying ASD gene sequences is 

modeled as a multi- class classification problem. Disease gene sequences are simulated and used 

in this multi-class classification problem. The coding regions of diseased gene sequences are 

utilized as features to train the model. This work utilizes supervised learning techniques such as 

Decision Tree, Multi Layer Perceptron and Support Vector Machines to build models that predict 

genes causing ASD. The model includes three components namely dataset creation, model 

building and performance evaluation of gene classification models and the architecture is 

depicted in Fig.4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Proposed Framework to Identify ASD Causing Genes 

The first component deals with the creation of corpus and establishment of the dataset.   

Ten genes namely FMR1, MECP2, TSC1, CACNA1C, SHANK3, CHD8, FOXP2, CNTNAP2, 

GABRB3 and HOXA1 have been considered. Four types of mutations namely missense, 

nonsense, synonymous and frameshift have been considered for generating mutated sequences. 
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CDNA sequences of the ASD genes responsible for syndromic and asyndromic ASD are 

collected from HGMD database and the mutational information about these genes are collected 

from SFARI gene database. R coding is used for simulating these mutations with the help of 

mutation information. The corpus is developed as described in Chapter 3 with 1000 mutated 

gene sequences accounting for ten types of ASD genes and four types of mutations. 

The coding measures are dissimilar in different gene families and hence this trait is a 

well-chosen descriptor for specifying different gene families. To facilitate learning the gene 

patterns, various features such as nucleotide composition, GC content, Rho values of biwords, Z 

scores of biwords, Alignment score, Number of exons, Number of donor sites, Number of 

acceptor sites, CpG percent, ratio of CpG percent / expected are identified and described below. 

Nucleotide composition: The number of occurrence of individual nucleotides exhibit noteworthy 

variations in eukaryotic genes. Each nucleotide in DNA is formed by a nucleobase, a 

deoxyribose sugar and a phosphate group. The nucleotide bases are generally composed of 

Adenine, Guanine, Cytosine and Thymine. The nucleotides are bound in a strand by a covalent 

bond between a sugar of one nucleotide with phosphate group of the next nucleotide. The 

nucleotide in one strand is attached to a nucleotide from another strand by a hydrogen band to 

make a double strand DNA. The A, C, G, T nucleotide variations are extracted as features since 

such dissimilarity result from differential mutational pressures and from the incidence of specific 

regulatory motifs like transcription sites.  

GC Content: GC content is an essential property of a genome sequence, which indicates the 

portion of the sequence which contains Gs and Cs. The GC content of most species does tend to 

stay close to 50%. Coding regions of the genome that hold a higher percentage of guanine and 

cytosine  are called GC-rich and those areas of GC content less than 50%  are called GC-poor. 

Thus, just like GC content between species can be used to identify species, GC content of a 

snippet of DNA from a known species when tested can discriminate if that DNA may belong to a 

gene. GC content is calculated as given in equation 4.1. 

GC content = (count of Gs + count of Cs)*100 / (genome length)  (4.1) 
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The variations in GC content inside the genome sequence can provide motivating information 

like biases in mutation. Hence GC content is considered as an important feature in identifying the 

gene type. 

Rho and Z – scores: The work also investigates DNA words that are two nucleotides long and 

are over-represented or under-represented. If a DNA word is over-represented in a sequence, 

probably it occurs many more times in the sequence than expected whereas when it is under-

represented in a sequence, it is present less number of times in the sequence than expected. 

Statistical measures Rho and Z- scores are used to measure over-representation or under-

representation of a particular DNA word which also contributes in classifying the genes. For a 

DNA word that is two nucleotides long, Rho and Z-score is calculated using equations 4.2 and 

4.3. 

Rho(xy) = f(xy) / (fx*fy)  (4.2) 

Z-score= µ(xy) / σ (xy)  (4.3) 

The Z - score of biwords is computed by finding the difference between the mean divided by the 

standard deviation. For a single gene sequence, 16 Rho values and 16 Z - score values are 

obtained. 

Alignment score: One of the non-consensus properties, alignment score is used to compare the 

simulated gene sequences with a library of sequences and to spot library sequences that is similar 

to the query sequence.  BLAST (Basic local alignment search tool) algorithm is used to match 

the biological sequence information, like the amino-acid sequences of proteins or the nucleotides 

of DNA or RNA sequences [83]. BLAST search is used to compare a query sequence with a 

library or database of sequences, and discover library sequences that are similar above a certain 

threshold. The similarity score from BLAST alignment is computed and utilized for building the 

model.  

Exon Count: Exons encode for the amino acid sequence for protein and actually are the coding 

element of the nucleotide sequence. After post-transcriptional alteration, exons are transcribed 

and transformed into mature mRNA. They are translated into proteins in the cytoplasm and are 

the extremely conserved sequence. Their presence in DNA and mature mRNA is well marked. 

Thus the number of expressed sequences, exons is also employed as descriptors.  
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Donor site and Acceptor site: The mature mRNA contains only coding sequences and the 

intronic ones are removed from the transcript during the splicing process. Splicing requires a 

donor site and an acceptor site within introns. Donor site is the splicing site at the beginning of 

an intron 5' left end. Acceptor site is the splicing site at the end of an intron 3' right end. Thus, 

the biological process of removing introns from its 5′ splice site to its 3′ splice site in pre-mRNA 

and connecting exons to form mRNA plays an important role in gene regulation and expression. 

Hence the number of donors and acceptors are recognized as essential discriminators.  

CpG Island: The incidence of a CpG island is used to help in the prediction and annotation of 

genes. The CpG sites are DNA portions where a guanine nucleotide occurs after a cytosine 

nucleotide in the linear sequence of bases along its 5' → 3' direction. The observed-to-expected 

CpG ratio is computed using equations 4.4 and 4.5. 

Observed CpG = No. of CpG (4.4) 

Expected CpG = No. of C * No. of G / Length of sequence (4.5) 

The summary of the above features are depicted below. 

Features Count Features Count 

Nucleotide composition 4 Number of donor sites  1 

GC content 1 Number of acceptor sites  1 

Rho values of biwords 16 CpG percent  1 

Z scores of biwords 16 Ratio of CpG percent / expected  1 

Alignment score 1 Number of exons  1 
 

Thus a total of 43 features are extracted from each mutated sequence. For the sample mutated 

sequence given in Fig. 3.4, the features obtained are given below. 

 

 

 

As ten genes are considered for building the ASD causative gene identification model, 

the class labels are designated as 1 to 10 for all the respective instances. The feature values are 

all normalized using min-max normalization and finally the dataset with 1000 feature vectors of 

dimension 43 is developed and named as Codon Measures dataset (CMDS). The sample dataset 

is shown in Appendix A. 
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-4.75 7.17 -3.72 4.16  5.27 -13.4 5.8 1.5  0.19  2.54 -5.1 

-8.32 -2.15 6.91 2.77 13130   2        15        13  0.149 1.003 
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In the second phase of this methodology, three independent gene identification models 

are built by training the normalized CMDS dataset using pattern recognition algorithms namely 

Decision Tree, Multi Layer Perceptron and Support Vector Machines.  

Finally, 10 - fold cross-validation technique is used to evaluate the performances of the 

three models using various metrics such as precision, recall, F- measure, accuracy, specificity 

and ROC area.  

Experiment and Results 

Experiments have been carried out by implementing standard supervised learning 

techniques namely Decision tree induction, Multilayer Perceptron and Support Vector Machine 

(SVM) algorithms with codon measures dataset (CMDS) using the Scikit learn tool.  Scikit-learn 

is an open source machine learning library in Python. It contains a lot of efficient tools for 

machine learning and statistical modeling. It features various classification, regression and 

clustering algorithms and is built on top of NumPy, SciPy and Matplotlib libraries. The standard 

10- fold cross-validation technique is used to estimate the impact on the predictive performance 

for unknown samples. The results obtained from the learned classifiers are analyzed through 

performance measures namely precision, recall, F- measure, accuracy, specificity and ROC area. 

The results of various measures are tabulated in Table VII. 

Table VII Performance Results of ASD Gene Classifiers 

Classifier 
Multilayer 

Perceptron 

Support 

Vector 

Machines 

Decision 

Tree 

Precision 0.65 0.68 0.72 

Recall 0.72 0.70 0.75 

F Measure 0.66 0.69 0.73 

Accuracy 68% 72% 75% 

Kappa statistic 0.675 0.714 0.767 

Mean absolute error 0.4176 0.3233 0.2812 

Correctly classified instances 341 362 376 

Specificity 0.78 0.80 0.82 

Mathew correlation coefficient 0.76 0.75 0.87 

ROC Area 0.62 0.71 0.76 
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The results indicate that decision trees fares well when compared with other techniques. 

The highest precision and recall of 0.72 and 0.75 respectively was achieved by decision tree 

classifier. Decision tree has correctly classified 376 instances and its accuracy is 75% whereas 

MLP and SVM have an accuracy of 68% and 72% respectively. The mean absolute error of 

Decision tree is 0.2812 which is least when compared to other techniques. SVM attained the 

mean absolute error of 0.3233 whereas it is 0.4176 for MLP. Kappa statistics of the three 

classifiers MLP, SVM and Decision tree are 0.675, 0.714 and 0.767 respectively. When 

evaluating specificity, decision tree gives a prominent score value of 0.82 whereas SVM and 

MLP have 0.80 and 0.78. Matthews Correlation coefficient of Decision tree is 0.87 and its ROC 

area is 0.76 which are comparatively higher than the other two classifiers. The performance 

results of the ASD causative gene identification models with respect to various metrics are 

depicted from Fig.4.2 to Fig.4.6. 

 

 

Fig. 4.2 Precision, Recall, F Measure, Accuracy of ASD Gene Classifiers 
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Fig. 4.3 Precision of ASD Gene Classifiers 

 

Fig. 4.4 Recall of ASD Gene Classifiers 

 

 

Fig. 4.5 Mean Absolute Error of ASD Gene Classifiers 
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Fig. 4.6 ROC of  Decision Tree Classifier 

The comparative performance of the classifiers illustrated in Fig.4.2 shows that the 

decision tree outperforms the other models. The curve of precision as shown in Fig.4.3 is steep 

for decision tree whereas it is declining for MLP and SVM. The recall of decision tree classifier 

is 0.75 which is 0.05 higher than that of Multilayer Perceptron as observed in Fig.4.4. Fig.4.5 

depicts that the error associated with decision tree classifier is comparatively less than the other 

two classifiers. ROC curve depicted in Fig.4.6 shows that class 0 has a high area under ROC 

curve of 0.93 whereas class 8 has it low with 0.61. The macro - average ROC curve area is 0.76 

whereas the micro – average area is 0.7. 

Findings 

The comparative results point out that decision tree based classification model shows 

better performance when compared to other models and is more appropriate for classifying the 

ASD causing genes. The features extracted from the gene sequences are highly contributive in 

discriminating the ASD genes. Given a diseased gene sequence the decision tree model is able to 

identify one of the ten gene types with high accuracy and precision. This model is capable of 

identifying the significant features and the pattern of relationships existing in the gene sequences. 
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The error associated with prediction is much less for the decision tree model and hence it is 

reliable in a clinical risk prediction environment.  

4.2 MODEL TO PREDICT ASD CAUSING MUTATIONS  

Mutations are the key molecular players in the cause of ASD and it is essential for 

developing effective therapeutic strategies that target these mutations. The development of 

computational tools to recognize ASD causing genetic mutations is vital to help the progress of 

disease-specific targeted therapies. Mutations cause changes in the genetic code leading to the 

disorder and therefore it is proposed to build an accurate model to predict the type of mutations 

by capturing the structural changes and training the model using these mutational features. It is 

intended to employ supervised machine learning techniques for constructing the ASD triggering 

mutation recognition model. 

Methodology 

It is rather a complex task of classifying mutations in ASD genes taking into account the 

genetic variations due to synonymous and non-synonymous nucleotide polymorphisms 

underlying the autistic phenotypes. In this work supervised machine learning techniques are 

employed to learn feature representations, model their sequential dependencies and finally 

distinguish the triggering mutations. Simulated disease gene sequences are used in this multi-

class pattern classification problem. The proposed model consists of the three phases namely 

corpus and dataset creation, model building, performance evaluation of the model and the 

architecture is depicted in Fig.4.6. 
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Fig. 4.7 Architecture of ASD Causing Mutation Prediction Model 

In the first phase CDNA sequences of the ASD genes responsible for syndromic and 

asyndromic ASD are collected from HGMD database and the mutational information about these 

genes are collected from SFARI gene database. R coding is used for simulating these mutations 

with the help of mutation information. The corpus is developed using 1000 mutated gene 

sequences accounting for ten types of ASD and the four types of mutations, missense, nonsense, 

synonymous and frameshift mutations as described in Chapter 3. 

Various descriptors that recognizes the pattern of mutations in gene sequences with 

respect to different aspects including 5 gene specific, 6 features from published substitution 

scoring matrices (SSM), 4 features related to amino acid (AA) residue changes are incorporated 

here to facilitate learning the mutation prediction model. These attributes are described below. 

Gene Specific Features: The features like mutation start position, mutation end position, length 

of mutation, length of cDNA sequence, the type of mutational variation i,e Nonsense, Missense, 

Frameshift, Silent Mutations are characteristics extracted from a gene. Consider the SHANK3 
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The gene specific features for the above mentioned gene sequence will be Mutation start 

position -612, mutation end -612, mutation lengrh-1,length of CDNA sequence-7113, mutation 

type-2. 

Substitution Matrix Features: In a sequence alignment scoring matrices are used to decide the 

relative score made by matching two characters. They are computed as the log-odds of the 

probability of two characters that are derivatives of a common ancestral character. Many types of 

scoring matrices exist for nucleotide sequences, codon sequences and amino acid sequences 

derived by aligning the  known homologous sequences [84]. These alignments are then used to 

determine the likelihood of one character being at the same position in the sequence as another 

character. 

This work utilizes the values of 6 scoring matrices namely (i) WAC matrix constructed 

from amino acid comparative profiles, (ii) Log-odds scoring matrix collected in 6.4-8.7 PAM , 

(iii) BLOSUM80 substitution matrix, (iv) PAM-120 matrix, (v) Substitution matrix obtained by 

maximum likelihood estimation and (vi) Mutation matrix for initially aligning which are 

collected from the AAIndex database. 

(i) WAC matrix is computed entirely from differences in the observed average environment 

surrounding amino acids without respect to any multiple alignments. A mutation in which an 

amino acid is replaced by one with similar physio - chemical properties is more likely to be 

accepted than one in which the new environment disrupts the protein's conformation. The amino 

acid micro environment data is used to construct the WAC amino acid similarity matrix. 

(ii) Log odd scoring matrix express the probabilities of transformation in what are called log-

odds scores. The scores matrix S is defined as given in equation 4.6. 

S = log (pi. M i,j /pi. pj) =  log( M i,j / pj) = log (observed frequency / expected frequemcy)   (4.6) 

where M i,j is the probability that amino acid i transforms into amino acid j, and pi. pj are the 

frequencies of amino acids i and j. 

ATGGACGGCCCCGGGGCCAGCGCCGTGG…………….GCGGCAGC 

ATGGACGGCCCCGGGGCCAGCGCCGTGG…………….GCGGCAGA 
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(iii) BLOSUM (Block Substitution Matrix Block) is a small contiguous interval of multiple 

aligned sequences. The blocks of conserved sequences found in multiple protein alignments are 

considered when computing the probabilities used in the matrix calculation. As these conserved 

sequences are functionally important within related proteins, they are assigned lower substitution 

rate than less conserved regions. Clustering of segments in a block with a sequence identity 

above a certain threshold is done to reduce bias from highly related sequences on substitution 

rates [85]. The threshold was set at 62% for the BLOSUM62 matrix. 

(iv) PAM matrices are a common family of score matrices. PAM (Point Accepted Mutation) 

matrix was developed in the 1970s. PAM units are used to evaluate the amount of evolutionary 

distance between any two amino acid sequences. Two sequences S1 and S2 are said to be one 

PAM unit diverged if a series of accepted point mutations has converted S1 to S2 with an 

average of one accepted point‐mutation event per 100 amino acids.PAM matrices contain 

positive and negative values. If the alignment score is greater than zero, the sequences are 

considered to be related and if the score is negative, it is assumed that they are not related. 

Values from PAM 120 matrix is taken in this study. 

(v) Substitution matrix obtained by maximum likelihood estimation is given below. VTML 

matrices are built by iteratively calculating evolutionary distances and substitution rates from a 

set of pairwise sequence alignments using a maximum likelihood estimator. They offer a more 

reliable detection of remote homologs. The substitution matrix feature for the protein alteration 

Asp to Glu represented by letters D and E will be 3. 
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 (vi) Mutation Matrix : An amino acid mutation matrix is generally 20 × 20 numerical values 

representing similarity of amino acids numerical values, used for sequence alignments and 

similarity searches. An important feature of amino acids that can be 

Amino Acid Features: The mutated sequences are translated to generate protein sequences 

which in turn provide the amino acid observed values whereas the amino acid expected value is 

extracted from SFARI autism database. The 2-gram encoding method extracts different patterns 

of two consecutive amino acid residues in a protein sequence and count the number of 

occurrences of the extracted residue pairs.  Wang et al. has shown a good enough performance 

by using 2-gram features alone in a similar research. There are 20
2 

combinations of 2-grams 

which is huge and hence the standard deviation and the mean z-score between the values of the 

Substitution matrix (VTML160) obtained by maximum likelihood estimation 

M rows = ARNDCQEGHILKMFPSTWYV, cols = ARNDCQEGHILKMFPSTWYV 
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400 bigrams with respect to the protein sequence are calculated using the formulae in 4.7 and 

4.8. 

Standard deviation= √∑(i=1) ^ 400 (x-µ) / (n-1) (4.7) 

Mean Z-score = √∑(i=1) ^ 400 ( (x-µ) /σ) / n (4.8) 

where µ is the mean value of the occurrence of the 2-gram , 1<i<400 , in the dataset and σ is its 

standard deviation.  

The summary of MDS features and their count are depicted below. 

Features Count Features Count 

Mutation start position 1 Mutation end  1 

Mutation length 1 Length of sequence  1 

Mutation type 1 WAC matrix  1 

Log-odd scoring matrix  1 BLOSUM80 substitution matrix  1 

PAM-120 matrix 1 Substitution matrix (VTML160)  1 

Mutation matrix 1 Standard deviation of bigrams  1 

Mean z-score of bigrams 1 Amino acid observed, expected value 2 

 

Thus a total of 15 features are extracted from each mutated sequence. For the sample 

mutated sequence given in Fig.3.4, the features obtained are given below. 

 

 

 

As four mutations are considered for building the ASD causative mutation identification 

model, the class labels are designated as 1 to 4 for all the respective feature vectors. Min-max 

normalization is used to normalize the feature values and finally the dataset is developed with 

1000 feature vectors of dimension 15 and named as Mutation dataset (MDS). The sample dataset 

is shown in Appendix A. 

The second phase involves the construction of three independent mutation identification 

models built by training the normalized MDS dataset using supervised machine learning 

algorithms namely Decision tree, Support Vector Machine and Multilayer Perceptron. The model 

is able to learn associations between consecutive signals and identify any type of regularity in the 

input. 

898 898 1 7113 0 -1 -6 -0.4 -3 -4 -2.2  2    

 5 7.23     -2.76   
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In the concluding phase, 10 - fold cross-validation technique is applied and the predictive 

performance of the three models are evaluated using various metrics such as precision, recall, F - 

measure, accuracy, specificity and ROC area. 

Experiment and Results  

In this experiment, the training dataset MDS comprising of 1000 instances of ten types of 

ASD genes involving four types of genetic mutations has been used to build the classifiers. The 

standard supervised classification algorithms namely Decision tree induction, Multilayer 

Perceptron, SVM were used to build the models using Scikit learn. The validation technique 

namely 10 - fold cross-validation was used to estimate their predictive performance. The results 

obtained from the classifiers were analysed through precision, recall, F- measure, accuracy, 

specificity and ROC area which is tabulated in Table VIII and Table IX. 

Table VIII Performance Results of the Mutation Classifiers 

Classifier Precision Recall F-Measure Accuracy Specificity ROC area 

SVM 0.72 0.73 0.73 0.73 0.78 0.79 

MLP 0.65 0.74 0.68 0.69 0.75 
0.64 

 

Decision 

Tree 
0.75 0.78 0.76 0.77 0.85 0.82 

 

Table IX Classwise Performance Results of Decision Tree Classifier 

Statistics by Class: Class: 1 Class: 2 Class: 3 Class: 4 

Sensitivity 0.7600   0.7143   0.8444   0.8371 

Specificity 0.8711 0.8288 0.8412 0.8530 

Positive Predictive Value          0.7104 0.7712 0.7535 0.8020 

Negative Predictive Value          0.8800 0.7977   0.7800    0.8836 
 

The comparative analysis shows that decision tree achieves high accuracy of 0.77 than 

the other classifiers SVM and MLP with 0.73 and 0.69 respectively. The precision and recall 

values of decision tree are 0.75 and 0.78 clearly outperforming the other two classifiers. Receiver 

Operating Characteristic (ROC) curve can be used to estimate classifier performance. The ROC 

area of decision tree is 0.82 which is comparatively higher than MLP with 0.64 and SVM with 
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0.79. The classwise performance analysis of decision tree classifier is depicted in Table XIII. 

The sensitivity value for Class 3 is 0.8444 which shows that most of the relevant instances of this 

class have been retrieved over total relevant instances. The specificity is high for classes 1 and 4. 

The performance analysis of the models with respect to various measures is illustrated in Fig.4.8 

to Fig.4.11.  

 

Fig. 4.8 Precision of Mutation Classifiers  

 

Fig. 4.9 Recall of Mutation Classifiers 
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Fig. 4.10 Performance Comparison of Mutation Classifiers 

 

Fig. 4.11 ROC Curve of Decision Tree Classifier 

As Fig.4.8 depicts, decision tree model achieves high precision while MLP has a dip in 

its precision value. Fig.4.9 clearly portrays that, SVM and MLP classifiers have almost equal 

recall of 0.73 and 0.74 but decision tree has a better value of 0.78. The comparative performance 

of classifiers depicted in Fig.4.10 shows that decision tree clearly outperforms other two models 
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in terms of precision, recall, accuracy, F-measure and specificity. The SVM model competes 

well with the decision tree but has less specificity and accuracy values. ROC curve depicted in 

Fig.4.11 shows that class 0 has a high area under ROC curve of 0.94 whereas class 1 has it low 

with 0.71. The macro - average ROC curve area is 0.82 whereas the micro – average area is 0.7. 

Findings 

The idea of combining gene specific features and amino acid changes along with 

substitution matrix features designed for building the classifier is found to be decisive in 

identifying the mutations. The comparative performance analysis shows that the decision tree 

classifier with MDS dataset yields high accuracy in distinguishing the mutations.  Decision tree 

has an upper edge over the other pattern recognition methods of SVM and MLP. The SVM 

model finds the optimized hyperplane involving substantial computations The decision tree 

model performs implicit feature selection and is able to identify the contributive features by 

pruning unwanted features without the need of much computations. 

4.3 MULTI - DIMENSIONAL MODEL TO PREDICT ASD GENES AND MUTATIONS  

Multi-dimensional approach has its advantages with regard to predictive accuracy and 

time taken to build the model.  The search for candidate genes of ASD is complicated as it 

involves significant interactions among mutations in several genes. Hence this work is aimed at 

employing multi-dimensional machine learning approach to predict the ASD candidate genes 

and mutations by classifying them concurrently based on the contributing features. The insightful 

association between genes and mutations is modeled as a multi-label problem since the 

dependencies between them can be captured.  

Multidimensional Classification 

In machine learning, single label classification is a learning problem where the goal is to 

learn from a set of instances, each associated with a unique class label from a set of disjoint class 

labels L. The problem can be identified as binary classification (when Lj = 2) or multi-class 

classification (when Lj > 2) problem based on the total number of disjoint classes in L. A multi-

label classification is the learning task in which the instances are associated with more than one 

class. The objective in multi-label classification is to learn from a set of instances where each 
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instance belongs to one or more classes in L. Multi dimensional classification (MDC) or multi-

target classification is a generalization of Multi-label classification. The applications of Multi 

dimensional classification are varied in real-world domains like medical diagnosis, 

bioinformatics, robotics, text, image and audio processing.    

Conventional binary and multi-class problems both can be considered as specific cases of 

multi-label problem. But the generality of multi-label problems makes it more difficult than the 

others. MDC is concerned with learning from examples, where each data instance is associated 

with multiple target variables, and each variable takes multiple values. In MDC, each class 

variable |Yj| = Kj, where j = 1, 2……d and d is the number of class variables, K is the number of 

values each of these variables may take.  

Multi-label classification algorithms are often grouped into two categories namely 

problem transformation and algorithm adaptation. Problem transformation transposes the 

problem to multiple single-label classification tasks and by training a set of any single-label 

classifiers the problem can be solved. Some of the problem transformation methods are binary 

relevance, label powerset, Rakel, pairwise methods etc. Algorithm adaptation is based on single-

label classification approaches that are adapted to handle multi- label data directly and thereby 

address the full problem. Boosting, Decision trees, k-NN, Bayesian, Probabilistic Classifier 

Chain are some of the Algorithm adaptation methods.  Multi-label classification approach solves 

classification problems in which instances described by a number of features are assigned to 

multiple classes simultaneously. The three problem transformation techniques Bayesian classifier 

chains (BCC), Nearest Set Replacement (NSR), class relevance (CR) and algorithm adaptation 

method Ensemble of classifier chains (ECC) incorporated in multi label modeling are stated 

below. 

Bayesian classifier chains (BCC)   

Given a multidimensional classification problem with d classes, a Bayesian Chain Classifier 

(BCC) uses d classifiers, one per class, linked in a chain. The objective of this problem can be 

posed as finding a joint distribution of the classes C = (C1, C2, . . . , Cd) given the attributes x = 

(x1, x2, . . . , xl) as given in  equation 4.9. 
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P(C | x)    = П P(C i | pa(C i), x)    (4.9) 

where pa(Ci) represents the parents of class Ci and i=1 to d.                                                                     

Nearest Set Replacement (NSR) 

NSR is a multi-target version of Pruned Set. The nearest sets are used to replace outliers, 

rather than subsets.  Pruned set is a multi-label method that treats each label set as a single-label, 

prunes away the infrequent sets and decomposes these sets into frequent sets. NSR reduces the 

number of values associated with each class in the training data. 

Class relevance (CR) 

It is also known as one versus rest and a straightforward problem transformation method. 

CR decomposes the problem to a set of q classification tasks, that is one for each different label 

in L. This is done by transforming the original training set into q data sets where each set 

contains all the instances from the original set, labeled according to the class based on whether 

the label is set or not. When classifying a new instance CR will output the union of the labels that 

are predicted by the q classifiers. 

Ensemble of classifier chains (ECC)    

ECC combines output vectors from each classifier by selecting the output value for each 

output that maximizes the scores given by each model to each possible value for that output. It 

takes votes using the confidence outputs of the base classifier. It maximizes each output 

separately, so the resulting output vector may not have been predicted by any sub-model. It also 

employs bagging with every sub-model in the ensemble. 

Few research works that have been carried out by researchers using multi dimensional 

classification approach are outlined below. Blessing Ojme[86] reported the findings of a study 

based on simultaneous identification of depression and physical illness using multidimensional 

Bayesian approach. Johan Brodin[87] has evaluated 17 configurations of different multi-label 

classifiers for classifying a music track into a set of core values. Results showed that problem 

transformation algorithm Label Powerset together with Sequential minimal optimization 

outperformed the other configurations. Julia Zaragoza [88] initiated a method for chaining binary 

Bayesian classifiers that united the strengths of classifier chains and Bayesian networks for multi 
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target classification. A chain of naive Bayes classifiers were tested on different benchmark 

multidimensional datasets and the new approach outperformed other state-of-the-art methods. 

Several researchers [89 -92] have worked on multi-dimensional Bayesian classifiers and also on 

choosing the efficient classifier for multiple labels [93 – 94].  An ensemble of pruned sets for 

multi-dimensional classification was attempted by J. Read [95]. The above research works 

motivate that the recognition of candidate ASD genes co-existing with mutations which can be 

carried out using multi dimensional approach.  

Methodology 

In a genetic disorder like ASD, mutations completely disable genes crucial to early brain 

development. Mutations causes change in the genetic code leading to genetic variation and the 

potential to develop a disease. Identifying a gene and mutation can be modeled as two different 

problems but the dependencies between them will be ignored. As there may be mutations 

involved in different sets of genes in different autistic individuals, it is essential to model the 

dependencies among them in order to learn what is probable. In this context MDC is appropriate 

as its primary task is to model the dependencies between multiple classes and to tackle the 

computational complexity involved in it. The aim is to learn a function that assigns to each 

instance represented by its feature vector, the most probable assignment of the class variables i,e. 

gene type and mutation. This large number of possible combination increases the complexity of 

MDC problems, making them more difficult to solve than single label classification problems. 

This work investigates the existing multi-dimensional approaches to identify the ASD 

genes and the co-occurring mutations which exhibit dependency among them. Given that a 

candidate ASD gene is affected by various mutations, the identification of gene - mutation from 

a set of features is modeled as a multi dimensional classification task. A multi-dimensional 

predictive model is constructed using problem transformation and algorithm adaptation to find 

the ASD causing genes and the triggering mutations. Here, the attributes of genetic sequences 

and the mutations which increase the risk of ASD are used to train the model. The proposed 

architecture of multi dimensional model for ASD gene - mutation prediction comprises of the 

three building blocks: feature engineering and dataset creation, model building, evaluation and is 

depicted in Fig.4.12.  
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      Fig. 4.12 Proposed Framework for Multi Dimensional Classification of Genes and 

Mutations 

In the initial phase the corpus described in Chapter 3 is used and the gene specific 

features like nucleotide composition, Rho values of biwords, Z scores of biwords, Alignment 

score, count of exons, donor sites, acceptor sites are pooled with the mutation features such as 

mutation features (GS), substitution matrix features (SM) and amino acid change residues 

(AARC) and 1000 instances of dimension 58 are created. The summary of the features are 

depicted below. 

Gene Specific features 

Nucleotide composition 4 Number of donor sites 1 

GC content 1 Number of acceptor sites 1 

Rho values of biwords 16 CpG percent 1 

Z scores of biwords 16 Ratio of CpG percent / expected 1 

Alignment score 1 Number of exons 1 
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Mutation features 

Mutation start position 1 Mutation end  1 

Mutation length 1 Length of CDNA sequence  1 

Mutation type 1 WAC matrix  1 

Log-odds scoring matrix  1 BLOSUM80 substitution matrix  1 

PAM-120 matrix 1 Substitution matrix  1 

Mutation matrix 1 Standard deviation of bigrams  1 

Mean z-score of bigrams 1 Amino acid observed, expected value  2 

For the sample mutated sequence given in Fig.3.4 the pooled instance obtained is given below. 

 

 

 

 

 

 

There are two class labels assigned for this dataset namely the gene class and mutation 

class. The gene class has ten class labels as there are ten genes taken for the study. There are four 

types of mutations considered for the study and hence the dataset consists of four class labels for 

mutation class. Min-max normalization is used to normalize the feature values and finally the 

dataset with 1000 feature vectors of dimension 58 is developed and named as Pooled Mutation 

dataset (PMDS). The sample dataset is shown in Appendix A. 

The second phase consists of building multi-dimensional models for classifying the genes 

and mutations simultaneously. The dataset comprising both gene specific and mutation specific 

descriptors are run through different types of configurations focusing on finding an efficient and 

accurate way of building the model. The multi-dimensional model is built using three problem 

transformation techniques Bayesian classifier chains (BCC), NSR which is a multitarget version 

of pruned sets, class relevance (CR) two algorithm adaptation methods Ensemble of classifier 

chains (ECC) and Bagging(BAG) with three base classifiers Naive Bayes(NB), SMO and J48. In 

order to make the experiments reproducible, the algorithms are implemented using default 

1256 2521 2211 1125 0.6652 1.04 0.84 1.27 0.78 1.14  1.11 0.68 

1.21 1.06 1 1.07 0.79 0.51 0.92 1.28 1.17  0.75 -4.75 7.17 

-3.72 4.16 5.27 -13.42 5.8 1.5  0.19  2.54 -5.1 -8.32 -2.15 6.91 

 2.77 13130 2 15        13  0.149 1.003 898 898 1 7113 0 

 -1 -6           -0.4 -3 -4 -2.2  2 5 7.23 -2.76   
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parameters of the Explorer panel in the graphical user interface. The seed value, pruning value p 

and subsampling value n are set to default value of 0. 

In the last phase, 10- fold cross-validation technique is used to evaluate the models for 

their predictive performance using various metrics like Hamming loss, zero one loss, Hamming 

score, exact match and accuracy. 

Hamming Loss - Hamming loss gives the percentage of data predicted incorrectly on average 

and when hamming loss is equal to 0, best performance is reached. It measures accuracy by 

calculating the fraction of wrong labels with the total number of labels.  

Exact match - Exact match which is also called global accuracy gives the percentage of test 

dataset predicted exactly same as in the training dataset.  Exact match is one of the metrics that 

overlooks the fact that multi-label prediction has a notation of being partially correct and count 

only exact matches. 0 / 1 loss has its optimal value at 0 and since exact match only is its inverse, 

it has its optimal value at 1. 

Hamming score - Hamming score is given by the ratio of set of correct classes to union of 

predicted and correct classes. 

Zero one loss - It is one of the strictest metrics since it completely ignores the fact that multi-

label prediction has a notation of being partially correct and count only exact matches where all 

labels in the set for an instance is correctly predicted. The optimal value of this measure is at 0. 

Experiment and Results  

This experiment is conducted by learning the PMDS dataset with five different multi-

dimensional machine learning techniques BCC, NSR, CR, ECC and BAG along with three 

different base classifiers namely Naïve Bayes, SMO and J48 using MEKA. It is a popular Java 

library for multi-target classification. It is an open source ML framework which provides an 

extensible support for developing, running and evaluating multi-target classifiers. Since MEKA 

contains a more extensive library, it is the natural choice for this work which aims to compare 

several multi-label classification algorithms. The performance of the trained models was 

evaluated using 10-fold cross validation for its predictive accuracy. To investigate the 

effectiveness of gene- mutation prediction models empirical evaluation was carried out using the 
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evaluation measures namely Hamming loss, Zero One loss, Hamming score, Exact match and 

Accuracy and the results obtained with respect to these measures are tabulated in Table X. 

Table X Performance of Multi Dimensional Gene – Mutation Classifiers Based On Loss 

Measures 

Method 
Base 

Classifier 

Hamming 

score 
Exact Match Hamming loss 

Zero one 

loss 

BCC 

J48 

 

0.742 0.448 0.258 0.552 

ECC 0.642 0.388 0.358 0.612 

BAG 0.746 0.488 0.254 0.512 

NSR 0.668 0.288 0.332 0.712 

CR 0.752 0.488 0.248 0.512 

BCC 

SMO 

0.724 0.748 0.076 0.152 

ECC 0.623 0.744 0.078 0.156 

BAG 0.788 0.756 0.072 0.144 

NSR 0.712 0.744 0.078 0.156 

CR 0.624 0.728 0.076 0.152 

BCC 

NB 

0.688 0.736 0.082 0.164 

ECC 0.754 0.728 0.086 0.172 

BAG 0.718 0.636 0.182 0.364 

NSR 0.794 0.810 0.066 0.120 

CR 0.610 0.736 0.090 0.164 

 

The above comparative results show that the combination of Nearest Set Replacement 

(NSR) and Naïve Bayes(NB) had the lowest Hamming Loss (0.066) and Zero one loss(0.120). 

Similarly the BAG and SMO method is also found to be promising with Hamming Loss of 0.072 

and Zero one loss of 0.144. J48 with any combination has high levels of Hamming loss and Zero 

one loss. J48 and NSR have the maximum zero one loss of 0.712. NSR and NB attain an exact 

match of 0.81 whereas NSR and J48 have the worst match of 0.288. The configuration of SMO 

and BAG attains an exact match of 0.756 and its Hamming score is 0.788. Among all 

combinations NSR and NB achieves the highest Hamming score of 0.794. The performance of 

classifiers based on training time, test time and accuracy for the various configurations built is 

depicted in Table XI. 
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Table XI Training Time, Test Time, Accuracy for Each Configuration 

Classifier 
Base 

Classifier 

Training 

Time 

Test 

Time 

Accuracy 

for Gene 

class 

Accuracy 

for 

mutation 

class 

Average 

accuracy 

BCC 

J48 

0.019 0.002 0.788 0.806 0.797 

ECC 0.058 0.001 0.445 0.806 0.625 

BAG 0.059 0.002 0.681 0.806 0.743 

NSR 0.011 0.002 0.484 0.818 0.651 

CR.J48 0.006 0.001 0.588 0.802 0.695 

BCC 

SMO 

0.239 0.001 0.782 0.815 0.798 

ECC 2.212 0.008 0.771 0.795 0.782 

BAG 1.983 0.005 0.725 0.781 0.753 

NSR 0.101 0.002 0.672 0.772 0.722 

CR 0.147 0.001 0.727 0.766 0.746 

BCC. 

NB 

0.011 0.006 0.792 0.764 0.778 

ECC 0.036 0.034 0.819 0.756 0.787 

BAG 0.03 0.031 0.801 0.764 0.782 

NSR 0.003 0.006 0.807 0.826 0.816 

CR 0.006 0.002 0.811 0.784 0.797 

 

The results show that the accuracy of gene class is high for ECC and NB configuration 

with 0.819 whereas NSR with NB shows excellent accuracy of 0.826 for mutation class. ECC 

and Decision tree J48 has the least average accuracy of 0.625.On an average Nearest Set 

Replacement and Naïve Bayes outperformed other models with an average predictive accuracy 

of 0.816. The training time taken for this configuration is 0.003 which is comparatively less. The 

performance of individual classifiers based on average accuracy, training and testing time of the 

classifiers are presented in Table XII. 
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Table XII Average Accuracy, Training and Testing Time of the Gene-Mutation Classifiers 

Classifers Accuracy Avg. Training Time Avg. Test Time 

Multi dimensional classifiers 

BCC 0.791 0.089 0.003 

ECC 0.731 0.769 0.014 

BAG 0.759 0.691 0.013 

NSR 0.729 0.038 0.003 

CR 0.746 0.053 0.001 

Base Classifiers 

NB 0.792 0.017 0.016 

SMO 0.760 0.936 0.003 

J48 0.702 0.031 0.002 
 

The results prove that among multi dimensional classifiers, Bayesian Classifier chain 

combined with any base classifier had generally achieved good accuracy of 0.791 and the time 

taken for training and testing is 0.089 and 0.003. Among the base classifiers Naive Bayes 

combined with any problem transformation has accuracy of 0.792 which is better than SMO and 

J48. Naive Bayes utilizes the probability of a feature based on prior knowledge of conditions 

related to that feature which attributes to its highest accuracy. This probabilistic classier 

converges quickly than other classifiers and hence the time taken for training is comparatively 

less. SMO has a reasonable training time and accuracy whereas J48 has least accuracy of 0.702. 

The experimental results of multi-dimensional classifiers and base classifiers are illustrated in 

Fig 4.13 to Fig.4.16. 

 

 Fig. 4.13 Hamming Loss and Zero-One Loss of Gene-Mutation Classifiers 
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Fig. 4.14 Exact Match of Multidimensional Gene-Mutation Classifiers 

 

Fig. 4.15 Accuracy and Average Training Time of Multi-Dimensional Classifiers 

 

Fig. 4.16 Accuracy and Average Training Time of Base Classifiers 
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From the comparative results it is noticed that both Hamming loss and zero one loss is 

minimum for the combination of NSR and Naive Bayes as seen in Fig.4.13. The exact match of 

multi-dimensional classifiers depicted in Fig.4.14 shows that it is minimum for NSR and J48 

whereas it is maximum for NSR and Naïve Bayes. Among the multi-dimensional classifiers BCC 

has the highest accuracy whereas NSR has the lowest training time. The accuracy of NB is 

maximum and average training time is minimum for both J48 and NB. 

Findings 

The comparative performance of the multi-dimensional classifiers shows that the 

combination of NSR and NB has outperformed other configurations with high classification 

accuracy of 81.6%. This combination of classifiers is able to learn the gene and mutation patterns 

from the pooled feature set in a faster and efficient manner. In addition, this approach affords fast 

and highly scalable model building. Naive Bayes has few tunable parameters and is useful as a 

baseline for the classification of ASD gene – mutation problem. This advantage is effectively 

exploited when combining NSR with Naive Bayes than any other multi-dimensional classifiers.  

The pooled mutation dataset also plays a major role in enhancing the model performance.  

SUMMARY 

This chapter demonstrated the modeling of identifying ASD causing genes and mutations 

as two different multi class classification problems. The implementation of supervised machine 

learning techniques for identifying the ASD causing genes and the triggering mutations based on 

gene specific and mutation specific features have been described in detail. Three independent 

models were built for these tasks based on CMDS and MDS datasets. The results proved that 

decision tree based model is promising in both the cases when compared to other methods. 

Further the multi-targeted machine learning approach for gene - mutation concurrent 

classification through multi dimensional modeling has also been described. The experimental 

results of 15 different configurations were reported and the comparative analysis was presented. 

Various interpretations of the experimental results were summarized in this chapter. The 

development of machine learning model to identify the gene susceptibility to ASD will be 

discussed in the following chapter. 
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