
164

7 MUSCULAR DYSTROPHY DISEASE IDENTIFICATION

THROUGH DEEP LEARNING APPROACH

This chapter demonstrates the self taught learning approach employed in building the muscular

dystrophy disease identification model using a TensorflowDeepNeuralNetwork algorithm. In this

work, deep learning approach is implemented using scikitflow, a machine learning framework

coded in python on tensorflow environment. The beginning of the chapter gives an introduction

about tensorflow, and then followed by the implementation of disease identification models on

deep neural network through nucleotide and codon mapping schemes, comparison of shallow net

and deep net in later sections.

Self-taught learning attempts automatically learn good features or representations based on

training data. A deep neural network approach learn complex and abstract features automatically

from unlabelled data and is employed in this research for identifying this genetic disease.

Muscular dystrophy disease identification problem is modeled as a classification problem with

self-extracted features, through deep neural network using Scikitflow in Tensor Flow

environment. The benefit of positional cloning approach in this experiment supports generating

the mutated gene sequences as portrayed in Chapter 4.

The trick to use deep learning models is to represent biological data, where in this work,

1000 diseased gene sequences are converted into 1-D representation in two schemes such as

nucleotide mapping and codon mapping. The data set with instances related to five categories of

muscular dystrophy that is Duchenne muscular dystrophy, Becker’s muscular dystrophy, Emery-

Dreifuss, Limb-girdle muscular dystrophy and Charcot Marie Tooth disease has been encoded

and deepnet models have been implemented. Deep neural network, which is a kind of

feedforward neural network, is used to build the muscular dystrophy disease identification

model. The disease gene sequences were converted into a numpy array based on the hardcoded

values and directly fed into tensorflow. The Tensorflow linear classifier and Tensorflow Deep

neural network are employed and their parameters were tuned to attain good results.

165

7.1 TensorFlow

Tensorflow is an open source software library for numerical computation using data flow graphs.

The mathematical operations are represented in the form of nodes in the graph, where the tensors

are multidimensional data arrays which are the edges communicated between them. This

architecture enables a distributed architecture where one or more CPUs are connected to a

network in a single API. Tensor Board is a supporting tool given by TensorFlow to handle the in-

depth visualization of the model. TensorFlow supports parallelization over multiple processors

using CPUs or GPUs of the single machine.

Tensorflow environment setup is done in windows operating system by installing it

through docker. The installation is made by connecting the windows machine and virtual

machine using docker. Python is a programming language to run in the tensorflow environment.

In this research work, the host machine is connected with the docker machine and the

parallelization is achieved by building disease identification models using Scikit flow in jupyter

notebook.

TensorFlow provides a good backbone for building different shapes of machine learning

applications. Data mining and Predictive analytics is made simple by using the scikitflow

interface in TensorFlow environment. Different shapes of ML models is built with single line

machine learning code using scikitflow. TensorFlow APIs make comfortable to fit or predict

models using deep learning approach. Scikitflow is a combination of scikitlearn and tensorflow

and therefore the GridSearch and Pipeline are used to tune the parameters achieve machine

learning in distributed framework.

Scikit-learn + TensorFlow = Scikit Flow

The machine learning in scikitflow is implemented in the Tensorflow 0.8.0 version that

includes the major packages such as estimators, pandas, contrib.learn and dataframes. Training

and testing on a deep neural classifier is done through TensorFlowDNNClassifier by explicitly

specifying the number of nodes and the number of hidden layers.

166

7.2 Disease Identification Model using Deep Learning With Nucleotide

Mapping Scheme

The first deep learning model aims in building the disease identification model by encoding the

gene sequences using nucleotide mapping scheme. Features are extracted automatically and

disease identification model is built using TensorflowDeepneuralnetwork classifier.

Nucleotide mapping

Gene sequence is a chain of categorical values. In the nucleotide mapping scheme, a genome

sequence is considered as a fixed length 1D sequence window with four channels (A, G, C, T).

Numerical representation of DNA sequences is necessary to apply a wide range of mathematical

tools, including most of signal processing. In the decimal system representation T is encoded as

0, C is encoded as 1, A is encoded as 2 and G is encoded as 3. In this nucleotide mapping each

base pair of the gene sequence is represented by its corresponding numeric code. Python script is

written for the representation of nucleotides into integer values.

Consider LMNA gene sequence, for example

>gi|383792147|ref|NM_170707.3| Homo sapiens lamin A/C (LMNA), transcript variant 1,

mRNAATGGAGACCCCGTCCCAGCGGCGCGCCACCCGCAGCGGGGCGCAGGCCAGCTC

CACTCCGCTGTCGCCCACCCGCATCACCCGGCTGCAGGAGAAGGAGGACCTGCAGGA

GCTCAATGATCGCTTGGCGGTCTACATCGACCGTGTGCGCTCGCTGGAAACGGAGAAC

GCAGGGCTGCGCCTTCGCATCACCGAGTCTGAAGAGGTGGTCAGCCGCGAGGTGTCC

GGCATCAAGGCCGCCTACGAGGCCGAGCTCGGGGATGCCCGCAAGACCCTTGACTCA

GTAGCCAAGGAGCGCGCCCGCCTGCAGCTGGAGCTGAGCAAAGTGCGTGAGTTTAAG

GAGCTGAAAGCGCGCAATACCAAGAAGGAGGGTGACCTGATAGCTGCTCAGGCTCGG

CTGAAGGACCTGGAGGCTCTGCTGAACTCCAAGGAGGCCGCACTGAGCACTGCTCTC

AGTGAGAAGCGCACGCTGGAGGGCGAGCTGCATGATCTGCGGGGCCAGGTGGCCAAG

CTTGAGGCAGCCCTAGGTGAGGCCAAGAAGCAACTTCAGGATGAGATGCTGCGGCGG

GTGGATGCTGAGAACAGGCTGCAGACCATGAAGGAGGAACTGGACTTCCAGAAGAAC

ATCTACAGTGAGGAGCTGCGTGAGACCAA

import numpy as np

def freq_numpy(dna_list):

frequency_matrix = np.zeros((4, len(dna_list[0])), dtype=np.int)

base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}

for dna in dna_list:

for index, base in enumerate(dna):

frequency_matrix[base2index[base]][index] += 1

return frequency_matrix

167

After applying the nucleotide mapping the corresponding gene sequence is translated into array

of numeric values as shown below,

Fig.7.1 Translating Nucleotide into Numerical Values

Building the model

The 1-D array of nucleotides are converted into numpy arrays, as scikit – learn library

accepts only a numpy array in its implementation. The data frame is built with the numpy array.

For the unlabelled data used in the pre-training process, the numerically mapped sequences with

decimal values are combined and the label information is removed to obtain the unlabelled data.

Appropriate hyper-parameters such as the number of units per layer, learning rate and the epochs

of iteration are determined for learning the deep neural network. The algorithm performs better if

the sizes for all the hidden layers are closely same.

When the neural network becomes deeper, the feature level becomes higher. So a large

amount of unlabelled data is expected to contribute to the feature detector. To explore the effect

of the unlabelled data set size on our method’s performance, the corresponding experiments are

conducted. Considering both accuracy and efficiency n-layered DNN architecture with number

of hidden units ranging from 20 to 100 are framed. The number of hidden layers ‘n’ is varied

from 3 to 8, and the results are observed. The deep learning method used in this work was the

fully connected multi-layer perceptron with 1000 input nodes for disease gene sequence with

nucleotide and codon mapping schemes. The experiment shows that the best combination of

parameters was 3 hidden layers with 70, 80 and 70 in each with sigmoid activation function.

2322323233033323023222232302233023133031332312132333033323013033322312302202

0022022033123022023130012013231122322131030132033212123231323122000322020032

3022231232331132301303320213120020221221302332320221213322301300223323310320

2233202313222201233323002033311203130210233002202323233323312302312202312023

0002123212021110022023120002323230010330020022022212033120102312313022313223

1200220331220223131231200313300220223323031202303123131302120200232303231220

2223202312301201312322223302212233002311202230233310221202233002002300311302

2012020123123223222122012312020030223123020330120022022003122031133020020030

1310302120220231232120203300232332130120203332031221220201120300122200230232

1202111202023322312232201232312302200312322233302301202203302212202302101002

00220231220200203110113123300231

168

With 0.5 as dropout rejection rate the DNN was tested for 20% and 80% of sequences at each

layer. The script for building the classifier is shown below

Script for Tensorflow Linear Classifier:

Script for TensorflowDeepNeuralNetworkClassifier

from numpy import genfromtxt

my_data = genfromtxt('deep_new1_1.csv', delimiter=',')

from sklearn.cross_validation import train_test_split

X = my_data[:,-1]

y = my_data[:,1]

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,rand

om_state=0)

classifier = skflow.TensorFlowLinearClassifier(n_classes=5)

classifier.fit(X_train,y_train)

score = metrics.accuracy_score(y, classifier.predict(X))

print("Accuracy: %f" % score)

from numpy import genfromtxt

my_data = genfromtxt('deep_new1.csv', delimiter=',')

from sklearn.cross_validation import train_test_split

X = my_data[:,-1]

y = my_data[:,1]

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)

from sklearn import metrics

classifier = skflow.TensorFlowDNNClassifier(hidden_units=[70,80,70],

n_classes=5)

classifier.fit(X_train,y_train)

score = metrics.accuracy_score(y, classifier.predict(X))

print("Accuracy: %f" % score)

169

Performance Evaluation

The performance of the TensorFlowDeep neural network classifier is evaluated with

predictive accuracy and training loss. 96.33% predictive accuracy is observed for the deep model

built with nucleotide mapping. Also, its efficiency is compared against the linear classifier and

the comparative results are tabulated in Table 7.1and shown in Fig.7.2, Fig.7.3, Fig.7.4.

Table 7.1 Predictive Performance of the Classifiers with

Nucleotide Mapping

Model Accuracy
(%)

100 Iterations
Average Training Loss

200 Iterations
Average Training Loss

Linear
Classifier

75 1.22664 1.02551

Deep Neural
Network
Classifier

96.33 1.20413 0.77192

Fig.7.2 Performance of Classifiers with

Tensorflow Deep Neural Network

0

10

20

30

40

50

60

70

80

90

100

Linear Classifier Deep Neural
Network Classifier

Accuracy (%)

170

Fig.7.3 Performance of Classifiers in Average Training Loss with

Tensorflow Deep Neural Network

Fig.7.4 Average Training Loss of the Classifiers with

Nucleotide Mapping

Findings

The deep neural network classifier outperforms well than linear classifier and gained an

accuracy of 96.33% when nucleotide mapping scheme is adopted and the average loss also seem

to be reduced.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 Iterations
Average Training

Loss

200 Iterations
Average Training

Loss

Linear Classifier

Deep Neural Network
Classifier

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 Iterations
Average Training Loss

200 Iterations
Average Training Loss

Linear Classifier

Deep Neural
Network Classifier

171

7.3 Disease Identification Model using Deep Learning with Codon Mapping

Scheme

The gene sequences code for a specific amino acid by translating it into its corresponding

codons. A change in a codon reflects in protein folding or function which leads to disease.

Hence, codon level mapping scheme is proposed in this experiment to built disease identification

model using deep learning approach under Tensorflow environment.

Codon Mapping

The novel idea proposed in this work is to convert the DNA sequence into codon sequence with

the codon-mapping scheme by splitting up the sequence into codons and the decimal values are

bound into its matching 64 codons. Python script is written to translate the diseased gene

sequences into its corresponding codon sequence. Converted decimal sequence forms an input

array. This method converts array values into a sequence of decimal values for codons without

losing position information of each nucleotide in sequences. Table 7.2 shows the codon and its

corresponding integer identifiers.

Table 7.2 Codon and its Integer Identifiers

Codon(C) Value(Vj) Codon(C) Value(Vj) Codon(C) Value(Vj) Codon(C) Value(Vj)

AAA 1 CAC 17 GAC 33 TAT 49

AAC 2 CAG 18 GAG 34 TCA 50

AAG 3 CAT 19 GAT 35 TCC 51

AAT 4 CCA 20 GCA 36 TCG 52

ACA 5 CCC 21 GCC 37 TCT 53

ACC 6 CCG 22 GCG 38 TGC 54

ACC 7 CCT 23 GCT 39 TGT 55

ACT 8 CGA 24 GGA 40 TTA 56

AGA 9 CGC 25 GGC 41 TTC 57

AGC 10 CGG 26 GGG 42 TTG 58

AGG 11 CGT 27 GGT 43 TTT 59

AGT 12 CTA 28 GTA 44 ATG 60

ATA 13 CTC 29 GTC 45 TGG 61

172

ATC 14 CTG 30 GTG 46 TGA 62

ATT 15 CTT 31 GTT 47 TAA 63

CAA 16 GAA 32 TAC 48 TAG 64

For example, consider the following gene sequence S

Triplet of size 3

S = CGTTAAATGCAAACGCTG

Codon

Gene sequence is converted into codon sequence as

S = CGTTAAATGCAAACGCTG

Mathematical modeling of codon mapping is stated below

C (i) = Vj

Cm = ai(C (i))

Where Cm is Codon mapping array, a is an array of sequence, C - corresponding codon values

and i = 1 to 64, j = 1 to 64]

Hence, Cm for S will be

Cm(S) = [27, 63, 60, 16, 7, 30]

Numpy array will be [27636016730]

Consider an example of diseased gene sequence,

The equivalent codon Sequence is

>gi|383792147|ref|NM_170707.3| Homo sapiens lamin A/C (LMNA), transcript variant 1,

mRNAATGGAGACCCCGTCCCAGCGGCGCGCCACCCGCAGCGGGGCGCAGGCCAGCTCCACTCCG

CTGTCGCCCACCCGCATCACCCGGCTGCAGGAGAAGGAGGACCTGCAGGAGCTCAATGATCGCTT

GGCGGTCTACATCGACCGTGTGCGCTCGCTGGAAACGGAGAACGCAGGGCTGCGCCTTCGCATCA

CCGAGTCTGAAGAGGTGGTCAGCCGCGAGGTGTCCGGCATCAAGGCCGCCTACGAGGCCGAGCT

CGGGGATGCCCGCAAGACCCTTGACTCAGTAGCCAAGGAGCGCGCCCGCCTGCAGCTGGAGCTG

AGCAAAGTGCGTGAGTTTAAGGAGCTGAAAGCGCGCAATACCAAGAAGGAGGGTGACCTGATAG

CTGCTCAGGCTCGGCTGAAGGACCTGGAGGCTCTGCTGAACTCCAAGGAGGCCGCACTGAGCACT

GCTCTCAGTGAGAAGCGCACGCTGGAGGGCGAGCTGCATGATCTGCGGGGCCAGGTGGCCAAGC

TTGAGGCAGCCCTAGGTGAGGCCAAGAAGCAACTTCAGGATGAGATGCTGCGGCGGGTGGATGC

TGAGAACAGGCTGCAGACCATGAAGGAGGAACTGGACTTCCAGAAGAACATCTACAGTGAGGAG

CTGCGTGAGACCAA

173

64 codon representation for a sequence is given below

Numerical representation of the given sequence is

Fig.7.5 Translating Codon Sequence into Numerical Array

Building the Model

To build the deep model, the 1D arrays formed using Codon mapping scheme are further

converted into numpy arrays. The data frame is built with the numpy array. Appropriate hyper-

parameters such as the number of units per layer, learning rate and the epochs of iteration are

chosen similar to first experiment (refer section 7.2) for learning the deep neural network. Here,

Number of layers = 3

Hidden layers = 70, 80, 70

Drop out rate = 0.5

Epochs of iteration = 100

The script for building the classifier is shown below.

ATGGAGACCCCGTCCCAGCGGCGCGCCACCCGCAGCGGGGCGCAGGCCAGCTCCACTCCGCTGTC

GCCCACCCGCATCACCCGGCTGCAGGAGAAGGAGGACCTGCAGGAGCTCAATGATCGCTTGGCGG

TCTACATCGACCGTGTGCGCTCGCTGGAAACGGAGAACGCAGGGCTGCGCCTTCGCATCACCGAGT

CTGAAGAGGTGGTCAGCCGCGAGGTGTCCGGCATCAAGGCCGCCTACGAGGCCGAGCTCGGGGAT

GCCCGCAAGACCCTTGACTCAGTAGCCAAGGAGCGCGCCCGCCTGCAGCTGGAGCTGAGCAAAGT

GCGTGAGTTTAAGGAGCTGAAAGCGCGCAATACCAAGAAGGAGGGTGACCTGATAGCTGCTCAGG

CTCGGCTGAAGGACCTGGAGGCTCTGCTGAACTCCAAGGAGGCCGCACTGAGCACTGCTCTCAGTG

AGAAGCGCACGCTGGAGGGCGAGCTGCATGATCTGCGGGGCCAGGTGGCCAAGCTTGAGGCAGCC

CTAGGTGAGGCCAAGAAGCAACTTCAGGATGAGATGCTGCGGCGGGTGGATGCTGAGAACAGGCT

GCAGACCATGAAGGAGGAACTGGACTTCCAGAAGAACATCTACAGTGAGGAGCTGCGTGAGACCA

AA

124826241840565430265458643240305818252482022265410265684048444846840486414

554432143410465316542084728484231648545541026481747481614585448161862104430

303448304866445305444265461915304448543054840848858431653481444884332544126

444448614681129294029568444684829884218444830318582529657484454288486248837

4585662401630

124826241840565430265458643240305818252482022265410265684048444846840486414

554432143410465316542084728484231648545541026481747481614585448161862104430

303448304866445305444265461915304448543054840848858431653481444884332544126

444448614681129294029568444684829884218444830318582529657484454288486248837

4585662401630

174

Script for TensorflowDeepNeuralNetworkClassifier

Performance Evaluation

The performance of the TensorFlowDeep neural network classifier based on codon

mapping is evaluated with predictive accuracy and training loss. 96% predictive accuracy is

observed for the deep model built with nucleotide mapping. In addition, its efficiency is

compared against the linear classifier and the comparative results are tabulated in Table 7.3 and

shown in Fig.7.6, Fig.7.7, Fig.7.8.

import tensorflow as tf

import numpy as np

from numpy import genfromtxt

Load datasets

my_data = genfromtxt('codon.csv', delimiter=',')

from sklearn.cross_validation import train_test_split

X = my_data[:,-1]

y = my_data[:,1]

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)

from sklearn import metrics

Build 3 layer DNN with 70, 80, 70 units respectively.

classifier = skflow.TensorFlowDNNClassifier(hidden_units=[70,80,70], n_classes=5)

Fit model.

classifier.fit(X_train,y_train)

score = metrics.accuracy_score(y, classifier.predict(X))

Evaluate accuracy.

print("Accuracy: %f" % score)

175

Table 7.3 Predictive Performance of the DNN with

Codon Mapping

Model Accuracy
(%)

100 Iterations
Average Training

Loss

200 Iterations
Average Training

Loss

Linear Classifier 70 1.23040 1.04786
Deep Neural

Network Classifier
96 1.11547 0.46410

Fig.7.6 Performance of Deep net using Codon Mapping

Fig.7.7 Performance of DNN with Average Training loss using

Codon Mapping

0

20

40

60

80

100

120

Linear classifier Deep neural network classifier

Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 Iterations Average Training Loss 200 Iterations Average Training Loss

Linear classifier Deep neural network classifier

176

Fig.7.8 Average Training loss of the Classifiers with

 Codon Mapping

Findings

In this research, improvements are achieved by using deep neural network, with the high

power of representing a complicated problem like disease identification from gene sequences.

Two kind of mapping schemes are used to represent sequences, so that the specific position

information of each individual nucleotide in sequences can be preserved. The proposed

approach can learn complex and abstract features at higher layers representation by greedy layer-

wise training auto-encoders with large amount of data. Through the results of several

experiments, it was recognized that the hyper-parameters significantly improves the prediction

performance of the model.

Classifying the type of diseases by transforming gene sequences into numeric array based

on mapping techniques is never attempted in literature. It is confirmed that Deep Neural Network

in tensor flow environment with the hidden layer architecture extract features on their own and

achieved an intensified results for predicting the disease from the mutated gene sequences. It was

also found that the appropriate increase in depth of the network can stimulate the performance of

DNN. Parallelization is achieved with the tensor flow environment that aids in improving the

performance of the CPU in windows environment. The experimental results show that DNN

approach can achieve better performance than linear classifier.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Model 100 Iterations Average
Training Loss

200 Iterations Average
Training Loss

177

7.4 Comparison of Models based on ANN and DNN

To enhance the performance of the shallow learning model, deep architectures are designed with

additional hyper parameter such as the learning rate of the auto encoder. The main difference in

training the DNN and NN is the parameter initialization. Only small weights are assigned in NN

whereas the DNN weights are generated pretraining to autoencoder. Also the number of network

layers is limited to 3 in NN and the performance degrades when the depth of the layer increases.

With the increase of the network layers in the shallow architecture the performance of NN

gradually reduces. The performance of DNN increases when the network layer increases from

two to four. When the network layer increases to five, the performance remains stable. 3-NN

denotes the NN with three layers and 3-DNN denotes the three layered DNN, and so on. The

increase of the network depth will helps in increasing the network capacity.

 The performance of the disease identification models built using Deep neural network with

two kinds of mapping schemes is compared with the results of supervised disease identification

model built using Artificial Neural Network (refer Chapter 5) and the performances are analysed

with respect to various measures. The performance comparison between shallow net and deep

net are depicted in Table 7.3, Table 7.4, Table 7.5 and Fig.7.9, Fig.7.10, Fig.7.11, Fig.7.12.

 In nearly all cases, DNN performs better when the network layer increases from three to

four. A speculative inspiration for deep architectures denotes that deep architectures were much

more efficient than shallow architectures, in terms of computational components that are

required to characterize certain functions. Therefore, in this work depth of DNN is tested from

varying the number of hidden layers from three to eight.

Table 7.4 Predictive Performance of the ANN Classifier

Performance criteria Artificial Neural Network

Correctly classified Instance 829

Incorrectly classified instance 171

Prediction accuracy 82.9%

Precision 0.829

Recall 0.82

F1 Score 82.1

Cohen’s Kappa 0.83

Time taken to build the model (in

sec)

9.7

178

Table 7.5 Performance Comparison of Shallow Net with Deep Net

(with hidden layers ranging from 3 to 8 in Nucleotide Mapping Scheme)

Performance

Criteria

2-NN 3-NN 3- DNN 4-DNN 5-DNN 6-DNN 7- DNN 8-DNN

Precision 71.43 72.14 79.7 86.7 84.52 83.5 81.98 80.23

Recall 80.2 82 89.4 91.89 90.1 89.7 87.98 85.98

F-Score 75.56 66.86 84.3 89.21 87.22 85.99 84.7 83.98

Accuracy 82.1 79.3 83.4 92.33 91.3 90.7 89.8 88.7

Fig.7.9 Comparison on Predictive Accuracy Nucleotide Mapping

179

Fig.7.10 Performance of Evaluation Measures in

Nucleotide Mapping

Table 7.6 Performance Comparison of Shallow Net with Deep Net

 (with hidden layers ranging from 3 to 8 in Codon Mapping Scheme)

Performance

Criteria

2 -NN 3- NN 3-DNN 4-DNN 5-DNN 6-DNN 7-DNN 8-DNN

Precision 71.43 72.14 80.7 85.3 83.12 82.15 81.54 80.37

Recall 80.2 82 90.4 91.2 89.78 88.17 87.28 86.84

F-Score 75.56 66.86 85.3 88.15 87.32 86.49 85.37 84.18

Accuracy 82.1 79.3 86.8 91 90.84 89.17 88.58 87.67

180

Fig.7.11 Comparison on Predictive Accuracy

(Codon mapping)

 Fig.7.12 Performance of Evaluation Measures in

Codon Mapping

Findings

Improvements are achieved by using deep neural network, with the high power of

representing a complicated problem like disease identification from gene sequences. Two kind of

mapping schemes proposed here aids in identifying the mutations occurred in the gene sequence

by retrieving the specific position information of each individual nucleotide and thereby enabling

accurate disease identification. The proposed approach can learn complex and abstract features at

181

higher layers representation by greedy layer-wise training auto-encoders with large amount of

unlabeled data. Through the results of these experiments, it was observed that the proper

selection of hyper-parameters significantly improves the prediction performance of the models. It

is confirmed that Deep neural network in tensor flow environment with the hidden layer

architecture extract features on their own and achieved an intensified results for predicting the

disease from the mutated gene sequences.

7.5 Summary

This chapter portrayed the modeling of muscular dystrophy disease identification model through

deep neural network. Diseased gene sequences have been encoded into decimal format through

nucleotide and codon mapping schemes. Self extraction of features from the gene sequences is

done through stacked auto encoder. Models were built using deep neural network in tensorflow

environment. Tensorflow deep neural network classifier facilitates a better improvement in

predictive accuracy when compared with Artificial Neural Network.

Remarks

1. Paper titled, "Nucleotide and codon mapping schemes for deep learning to diagnose muscular

dystrophy", has been accepted for publication in Frontiers in Biosciences (SCIE Indexed)

