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7 MUSCULAR DYSTROPHY DISEASE IDENTIFICATION 

THROUGH DEEP LEARNING APPROACH 

This chapter demonstrates the self taught learning approach employed in building the muscular 

dystrophy disease identification model using a TensorflowDeepNeuralNetwork algorithm. In this 

work, deep learning approach is implemented using scikitflow, a machine learning framework 

coded in python on tensorflow environment.  The beginning of the chapter gives an introduction 

about tensorflow, and then followed by the implementation of disease identification models on 

deep neural network through nucleotide and codon mapping schemes, comparison of shallow net 

and deep net in later sections.  

Self-taught learning attempts automatically learn good features or representations based on 

training data. A deep neural network approach learn complex and abstract features automatically 

from unlabelled data and is employed in this research for identifying this genetic disease. 

Muscular dystrophy disease identification problem is modeled as a classification problem with 

self-extracted features, through deep neural network using Scikitflow in Tensor Flow 

environment. The benefit of positional cloning approach in this experiment supports generating 

the mutated gene sequences as portrayed in Chapter 4.  

The trick to use deep learning models is to represent biological data, where in this work, 

1000 diseased gene sequences are converted into 1-D representation in two schemes such as 

nucleotide mapping and codon mapping. The data set with instances related to five categories of 

muscular dystrophy that is Duchenne muscular dystrophy, Becker’s muscular dystrophy, Emery-

Dreifuss, Limb-girdle muscular dystrophy and Charcot Marie Tooth disease has been encoded 

and deepnet models have been implemented.  Deep neural network, which is a kind of 

feedforward neural network, is used to build the muscular dystrophy disease identification 

model. The disease gene sequences were converted into a numpy array based on the hardcoded 

values and directly fed into tensorflow. The Tensorflow linear classifier and Tensorflow Deep 

neural network are employed and their parameters were tuned to attain good results.  
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7.1 TensorFlow 

Tensorflow is an open source software library for numerical computation using data flow graphs. 

The mathematical operations are represented in the form of nodes in the graph, where the tensors 

are multidimensional data arrays which are the edges communicated between them. This 

architecture enables a distributed architecture where one or more CPUs are connected to a 

network in a single API. Tensor Board is a supporting tool given by TensorFlow to handle the in-

depth visualization of the model. TensorFlow supports parallelization over multiple processors 

using CPUs or GPUs of the single machine. 

Tensorflow environment setup is done in windows operating system by installing it 

through docker. The installation is made by connecting the windows machine and virtual 

machine using docker. Python is a programming language to run in the tensorflow environment. 

In this research work, the host machine is connected with the docker machine and the 

parallelization is achieved by building disease identification models using Scikit flow in jupyter 

notebook.  

TensorFlow provides a good backbone for building different shapes of machine learning 

applications. Data mining and Predictive analytics is made simple by using the scikitflow 

interface in TensorFlow environment. Different shapes of ML models is built with single line 

machine learning code using scikitflow. TensorFlow APIs make comfortable to fit or predict 

models using deep learning approach. Scikitflow is a combination of scikitlearn and tensorflow 

and therefore the GridSearch and Pipeline are used to tune the parameters achieve machine 

learning in distributed framework.  

Scikit-learn + TensorFlow = Scikit Flow 

The machine learning in scikitflow is implemented in the Tensorflow 0.8.0 version that 

includes the major packages such as estimators, pandas, contrib.learn and dataframes. Training 

and testing on a deep neural classifier is done through TensorFlowDNNClassifier by explicitly 

specifying the number of nodes and the number of hidden layers. 
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7.2 Disease Identification Model using Deep Learning With Nucleotide 

Mapping Scheme  

The first deep learning model aims in building the disease identification model by encoding the 

gene sequences using nucleotide mapping scheme. Features are extracted automatically and 

disease identification model is built using TensorflowDeepneuralnetwork classifier. 

Nucleotide mapping 

Gene sequence is a chain of categorical values. In the nucleotide mapping scheme, a genome 

sequence is considered as a fixed length 1D sequence window with four channels (A, G, C, T). 

Numerical representation of DNA sequences is necessary to apply a wide range of mathematical 

tools, including most of signal processing. In the decimal system representation T is encoded as 

0, C is encoded as 1, A is encoded as 2 and G is encoded as 3. In this nucleotide mapping each 

base pair of the gene sequence is represented by its corresponding numeric code. Python script is 

written for the representation of nucleotides into integer values.  

 

 

 

 

 

 

 

 

 

Consider LMNA gene sequence, for example 

 

 

 

 

 

 

 

>gi|383792147|ref|NM_170707.3| Homo sapiens lamin A/C (LMNA), transcript variant 1, 

mRNAATGGAGACCCCGTCCCAGCGGCGCGCCACCCGCAGCGGGGCGCAGGCCAGCTC

CACTCCGCTGTCGCCCACCCGCATCACCCGGCTGCAGGAGAAGGAGGACCTGCAGGA

GCTCAATGATCGCTTGGCGGTCTACATCGACCGTGTGCGCTCGCTGGAAACGGAGAAC

GCAGGGCTGCGCCTTCGCATCACCGAGTCTGAAGAGGTGGTCAGCCGCGAGGTGTCC

GGCATCAAGGCCGCCTACGAGGCCGAGCTCGGGGATGCCCGCAAGACCCTTGACTCA

GTAGCCAAGGAGCGCGCCCGCCTGCAGCTGGAGCTGAGCAAAGTGCGTGAGTTTAAG

GAGCTGAAAGCGCGCAATACCAAGAAGGAGGGTGACCTGATAGCTGCTCAGGCTCGG

CTGAAGGACCTGGAGGCTCTGCTGAACTCCAAGGAGGCCGCACTGAGCACTGCTCTC

AGTGAGAAGCGCACGCTGGAGGGCGAGCTGCATGATCTGCGGGGCCAGGTGGCCAAG

CTTGAGGCAGCCCTAGGTGAGGCCAAGAAGCAACTTCAGGATGAGATGCTGCGGCGG

GTGGATGCTGAGAACAGGCTGCAGACCATGAAGGAGGAACTGGACTTCCAGAAGAAC

ATCTACAGTGAGGAGCTGCGTGAGACCAA 

 

import numpy as np 

def freq_numpy(dna_list): 

frequency_matrix = np.zeros((4, len(dna_list[0])), dtype=np.int) 

base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3} 

for dna in dna_list: 

for index, base in enumerate(dna): 

frequency_matrix[base2index[base]][index] += 1 

return frequency_matrix 
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After applying the nucleotide mapping the corresponding gene sequence is translated into array 

of numeric values as shown below, 

 

 

 

 

 

 

 

 

 

Fig.7.1 Translating Nucleotide into Numerical Values 

 

Building the model 

The 1-D array of nucleotides are converted into numpy arrays, as scikit – learn library 

accepts only a numpy array in its implementation. The data frame is built with the numpy array. 

For the unlabelled data used in the pre-training process, the numerically mapped sequences with 

decimal values are combined and the label information is removed to obtain the unlabelled data. 

Appropriate hyper-parameters such as the number of units per layer, learning rate and the epochs 

of iteration are determined for learning the deep neural network. The algorithm performs better if 

the sizes for all the hidden layers are closely same.  

When the neural network becomes deeper, the feature level becomes higher. So a large 

amount of unlabelled data is expected to contribute to the feature detector. To explore the effect 

of the unlabelled data set size on our method’s performance, the corresponding experiments are 

conducted. Considering both accuracy and efficiency n-layered DNN architecture with number 

of hidden units ranging from 20 to 100 are framed. The number of hidden layers ‘n’ is varied 

from 3 to 8, and the results are observed. The deep learning method used in this work was the 

fully connected multi-layer perceptron with 1000 input nodes for disease gene sequence with 

nucleotide and codon mapping schemes. The experiment shows that the best combination of 

parameters was 3 hidden layers with 70, 80 and 70 in each with sigmoid activation function. 
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With 0.5 as dropout rejection rate the DNN was tested for 20% and 80% of sequences at each 

layer.  The script for building the classifier is shown below 

Script for Tensorflow Linear Classifier: 

 

 

 

 

 

 

 

 

 

 

 

 

Script for TensorflowDeepNeuralNetworkClassifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from numpy import genfromtxt 

my_data = genfromtxt('deep_new1_1.csv', delimiter=',') 

from sklearn.cross_validation import train_test_split 

X = my_data[:,-1] 

y = my_data[:,1] 

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,rand

om_state=0) 

classifier = skflow.TensorFlowLinearClassifier(n_classes=5) 

classifier.fit(X_train,y_train) 

score = metrics.accuracy_score(y, classifier.predict(X)) 

print("Accuracy: %f" % score) 

 

from numpy import genfromtxt 

my_data = genfromtxt('deep_new1.csv', delimiter=',') 

from sklearn.cross_validation import train_test_split 

X = my_data[:,-1] 

y = my_data[:,1] 

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0) 

from sklearn import metrics 

classifier = skflow.TensorFlowDNNClassifier(hidden_units=[70,80,70], 

n_classes=5) 

classifier.fit(X_train,y_train) 

score = metrics.accuracy_score(y, classifier.predict(X)) 

print("Accuracy: %f" % score) 
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Performance Evaluation 

The performance of the TensorFlowDeep neural network classifier is evaluated with 

predictive accuracy and training loss. 96.33% predictive accuracy is observed for the deep model 

built with nucleotide mapping. Also, its efficiency is compared against the linear classifier and 

the comparative results are tabulated in Table 7.1and shown in Fig.7.2, Fig.7.3, Fig.7.4. 

 

Table 7.1 Predictive Performance of the Classifiers with  

Nucleotide Mapping 

 

Model Accuracy 
(%) 

100 Iterations 
Average Training Loss 

200 Iterations  
Average Training Loss 

Linear 
Classifier 

75 1.22664 1.02551 

Deep Neural 
Network 
Classifier 

96.33 1.20413 0.77192 

 

 

Fig.7.2 Performance of Classifiers with  

Tensorflow Deep Neural Network 
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Fig.7.3 Performance of Classifiers in Average Training Loss with  

Tensorflow Deep Neural Network 

 

 

Fig.7.4 Average Training Loss of the Classifiers with  

Nucleotide Mapping 

 

Findings 

The deep neural network classifier outperforms well than linear classifier and gained an 

accuracy of 96.33% when nucleotide mapping scheme is adopted and the average loss also seem 

to be reduced. 
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7.3 Disease Identification Model using Deep Learning with Codon Mapping 

Scheme  

The gene sequences code for a specific amino acid by translating it into its corresponding 

codons. A change in a codon reflects in protein folding or function which leads to disease. 

Hence, codon level mapping scheme is proposed in this experiment to built disease identification 

model using deep learning approach under Tensorflow environment. 

Codon Mapping 

The novel idea proposed in this work is to convert the DNA sequence into codon sequence with 

the codon-mapping scheme by splitting up the sequence into codons and the decimal values are 

bound into its matching 64 codons. Python script is written to translate the diseased gene 

sequences into its corresponding codon sequence. Converted decimal sequence forms an input 

array. This method converts array values into a sequence of decimal values for codons without 

losing position information of each nucleotide in sequences. Table 7.2 shows the codon and its 

corresponding integer identifiers. 

Table 7.2 Codon and its Integer Identifiers 

Codon(C) Value(Vj) Codon(C) Value(Vj) Codon(C) Value(Vj) Codon(C) Value(Vj) 

AAA 1 CAC 17 GAC 33 TAT 49 

AAC 2 CAG 18 GAG 34 TCA 50 

AAG 3 CAT 19 GAT 35 TCC 51 

AAT 4 CCA 20 GCA 36 TCG 52 

ACA 5 CCC 21 GCC 37 TCT 53 

ACC 6 CCG 22 GCG 38 TGC 54 

ACC 7 CCT 23 GCT 39 TGT 55 

ACT 8 CGA 24 GGA 40 TTA 56 

AGA 9 CGC 25 GGC 41 TTC 57 

AGC 10 CGG 26 GGG 42 TTG 58 

AGG 11 CGT 27 GGT 43 TTT 59 

AGT 12 CTA 28 GTA 44 ATG 60 

ATA 13 CTC 29 GTC 45 TGG 61 
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ATC 14 CTG 30 GTG 46 TGA 62 

ATT 15 CTT 31 GTT 47 TAA 63 

CAA 16 GAA 32 TAC 48 TAG 64 

 

For example, consider the following gene sequence S 

Triplet of size 3 

S = CGTTAAATGCAAACGCTG 

Codon 

Gene sequence is converted into codon sequence as 

S = CGTTAAATGCAAACGCTG 

Mathematical modeling of codon mapping is stated below 

C (i) = Vj 

Cm = ai(C (i)) 

Where Cm is Codon mapping array, a is an array of sequence, C - corresponding codon values 

and i = 1 to 64, j = 1 to 64] 

Hence, Cm for S will be 

Cm(S) = [27, 63, 60, 16, 7, 30] 

Numpy array will be [27636016730] 

Consider an example of diseased gene sequence, 

 

 

 

 

 

 

 

 

The equivalent codon Sequence is 

>gi|383792147|ref|NM_170707.3| Homo sapiens lamin A/C (LMNA), transcript variant 1, 

mRNAATGGAGACCCCGTCCCAGCGGCGCGCCACCCGCAGCGGGGCGCAGGCCAGCTCCACTCCG

CTGTCGCCCACCCGCATCACCCGGCTGCAGGAGAAGGAGGACCTGCAGGAGCTCAATGATCGCTT

GGCGGTCTACATCGACCGTGTGCGCTCGCTGGAAACGGAGAACGCAGGGCTGCGCCTTCGCATCA

CCGAGTCTGAAGAGGTGGTCAGCCGCGAGGTGTCCGGCATCAAGGCCGCCTACGAGGCCGAGCT

CGGGGATGCCCGCAAGACCCTTGACTCAGTAGCCAAGGAGCGCGCCCGCCTGCAGCTGGAGCTG

AGCAAAGTGCGTGAGTTTAAGGAGCTGAAAGCGCGCAATACCAAGAAGGAGGGTGACCTGATAG

CTGCTCAGGCTCGGCTGAAGGACCTGGAGGCTCTGCTGAACTCCAAGGAGGCCGCACTGAGCACT

GCTCTCAGTGAGAAGCGCACGCTGGAGGGCGAGCTGCATGATCTGCGGGGCCAGGTGGCCAAGC

TTGAGGCAGCCCTAGGTGAGGCCAAGAAGCAACTTCAGGATGAGATGCTGCGGCGGGTGGATGC

TGAGAACAGGCTGCAGACCATGAAGGAGGAACTGGACTTCCAGAAGAACATCTACAGTGAGGAG

CTGCGTGAGACCAA 
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64 codon representation for a sequence is given below 

 

 

 

 

Numerical representation of the given sequence is 

 

 

 

 

 

Fig.7.5 Translating Codon Sequence into Numerical Array 

Building the Model 

To build the deep model, the 1D arrays formed using Codon mapping scheme are further 

converted into numpy arrays. The data frame is built with the numpy array. Appropriate hyper-

parameters such as the number of units per layer, learning rate and the epochs of iteration are 

chosen similar to first experiment (refer section 7.2) for learning the deep neural network. Here, 

Number of layers = 3 

Hidden layers = 70, 80, 70 

Drop out rate = 0.5 

Epochs of iteration = 100 

The script for building the classifier is shown below. 

ATGGAGACCCCGTCCCAGCGGCGCGCCACCCGCAGCGGGGCGCAGGCCAGCTCCACTCCGCTGTC

GCCCACCCGCATCACCCGGCTGCAGGAGAAGGAGGACCTGCAGGAGCTCAATGATCGCTTGGCGG

TCTACATCGACCGTGTGCGCTCGCTGGAAACGGAGAACGCAGGGCTGCGCCTTCGCATCACCGAGT

CTGAAGAGGTGGTCAGCCGCGAGGTGTCCGGCATCAAGGCCGCCTACGAGGCCGAGCTCGGGGAT

GCCCGCAAGACCCTTGACTCAGTAGCCAAGGAGCGCGCCCGCCTGCAGCTGGAGCTGAGCAAAGT

GCGTGAGTTTAAGGAGCTGAAAGCGCGCAATACCAAGAAGGAGGGTGACCTGATAGCTGCTCAGG

CTCGGCTGAAGGACCTGGAGGCTCTGCTGAACTCCAAGGAGGCCGCACTGAGCACTGCTCTCAGTG

AGAAGCGCACGCTGGAGGGCGAGCTGCATGATCTGCGGGGCCAGGTGGCCAAGCTTGAGGCAGCC

CTAGGTGAGGCCAAGAAGCAACTTCAGGATGAGATGCTGCGGCGGGTGGATGCTGAGAACAGGCT

GCAGACCATGAAGGAGGAACTGGACTTCCAGAAGAACATCTACAGTGAGGAGCTGCGTGAGACCA

AA 

 

124826241840565430265458643240305818252482022265410265684048444846840486414

554432143410465316542084728484231648545541026481747481614585448161862104430

303448304866445305444265461915304448543054840848858431653481444884332544126

444448614681129294029568444684829884218444830318582529657484454288486248837

4585662401630 

124826241840565430265458643240305818252482022265410265684048444846840486414

554432143410465316542084728484231648545541026481747481614585448161862104430

303448304866445305444265461915304448543054840848858431653481444884332544126

444448614681129294029568444684829884218444830318582529657484454288486248837

4585662401630 
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Script for TensorflowDeepNeuralNetworkClassifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance Evaluation 

The performance of the TensorFlowDeep neural network classifier based on codon 

mapping is evaluated with predictive accuracy and training loss. 96% predictive accuracy is 

observed for the deep model built with nucleotide mapping. In addition, its efficiency is 

compared against the linear classifier and the comparative results are tabulated in Table 7.3 and 

shown in Fig.7.6, Fig.7.7, Fig.7.8. 

 

import tensorflow as tf 

import numpy as np 

from numpy import genfromtxt 

 

# Load datasets 

my_data = genfromtxt('codon.csv', delimiter=',') 

from sklearn.cross_validation import train_test_split 

X = my_data[:,-1] 

y = my_data[:,1] 

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0) 

from sklearn import metrics 

 

# Build 3 layer DNN with 70, 80, 70 units respectively. 

classifier = skflow.TensorFlowDNNClassifier(hidden_units=[70,80,70], n_classes=5) 

 

# Fit model. 

classifier.fit(X_train,y_train) 

score = metrics.accuracy_score(y, classifier.predict(X)) 

 

# Evaluate accuracy. 

print("Accuracy: %f" % score) 
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Table 7.3 Predictive Performance of the DNN with  

Codon Mapping 
 

Model Accuracy 
(%) 

100 Iterations 
Average Training 

Loss 

200 Iterations 
Average Training 

Loss 

Linear Classifier 70 1.23040 1.04786 
Deep Neural 

Network Classifier 
96 1.11547 0.46410 

 

 

Fig.7.6 Performance of Deep net using Codon Mapping 

 

 

Fig.7.7 Performance of DNN with Average Training loss using  

Codon Mapping 
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Fig.7.8 Average Training loss of the Classifiers with 

 Codon Mapping 

 

Findings 

In this research, improvements are achieved by using deep neural network, with the high 

power of representing a complicated problem like disease identification from gene sequences. 

Two kind of mapping schemes are used to represent sequences, so that the specific position 

information of each individual nucleotide in sequences can be preserved.  The proposed 

approach can learn complex and abstract features at higher layers representation by greedy layer-

wise training auto-encoders with large amount of data. Through the results of several 

experiments, it was recognized that the hyper-parameters significantly improves the prediction 

performance of the model. 

Classifying the type of diseases by transforming gene sequences into numeric array based 

on mapping techniques is never attempted in literature. It is confirmed that Deep Neural Network 

in tensor flow environment with the hidden layer architecture extract features on their own and 

achieved an intensified results for predicting the disease from the mutated gene sequences. It was 

also found that the appropriate increase in depth of the network can stimulate the performance of 

DNN. Parallelization is achieved with the tensor flow environment that aids in improving the 

performance of the CPU in windows environment. The experimental results show that DNN 

approach can achieve better performance than linear classifier. 
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7.4  Comparison of Models based on ANN and DNN  

To enhance the performance of the shallow learning model, deep architectures are designed with 

additional hyper parameter such as the learning rate of the auto encoder. The main difference in 

training the DNN and NN is the parameter initialization. Only small weights are assigned in NN 

whereas the DNN weights are generated pretraining to autoencoder. Also the number of network 

layers is limited to 3 in NN and the performance degrades when the depth of the layer increases. 

With the increase of the network layers in the shallow architecture the performance of NN 

gradually reduces. The performance of DNN increases when the network layer increases from 

two to four. When the network layer increases to five, the performance remains stable. 3-NN 

denotes the NN with three layers and 3-DNN denotes the three layered DNN, and so on. The 

increase of the network depth will helps in increasing the network capacity.  

 The performance of the disease identification models built using Deep neural network with 

two kinds of mapping schemes is compared with the results of supervised disease identification 

model built using Artificial Neural Network (refer Chapter 5) and the performances are analysed 

with respect to various measures. The performance comparison between shallow net and deep 

net are depicted in Table 7.3, Table 7.4, Table 7.5 and Fig.7.9, Fig.7.10, Fig.7.11, Fig.7.12. 

 In nearly all cases, DNN performs better when the network layer increases from three to 

four. A speculative inspiration for deep architectures denotes that deep architectures were much 

more efficient than shallow architectures, in terms of computational components that are 

required to characterize certain functions. Therefore, in this work depth of DNN is tested from 

varying the number of hidden layers from three to eight.  

Table 7.4 Predictive Performance of the ANN Classifier 

Performance criteria Artificial Neural Network 

Correctly classified Instance  829 

Incorrectly classified instance  171 

Prediction accuracy  82.9% 

Precision  0.829 

Recall  0.82 

F1 Score  82.1 

Cohen’s Kappa  0.83 

Time taken to build the model (in 

sec)  

9.7 
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Table 7.5 Performance Comparison of Shallow Net with Deep Net 

(with hidden layers ranging from 3 to 8 in Nucleotide Mapping Scheme) 
 

Performance 

Criteria 

2-NN  3-NN 3- DNN 4-DNN 5-DNN 6-DNN 7- DNN 8-DNN 

Precision 71.43 72.14 79.7 86.7 84.52 83.5 81.98 80.23 

Recall 80.2 82 89.4 91.89 90.1 89.7 87.98 85.98 

F-Score 75.56 66.86 84.3 89.21 87.22 85.99 84.7 83.98 

Accuracy 82.1 79.3 83.4 92.33 91.3 90.7 89.8 88.7 

 

 

Fig.7.9 Comparison on Predictive Accuracy Nucleotide Mapping 
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Fig.7.10 Performance of Evaluation Measures in  

Nucleotide Mapping 

 

Table 7.6 Performance Comparison of Shallow Net with Deep Net  

 (with hidden layers ranging from 3 to 8 in Codon Mapping Scheme) 
 

Performance 

Criteria 

2 -NN 3- NN 3-DNN 4-DNN 5-DNN 6-DNN 7-DNN 8-DNN 

Precision 71.43 72.14 80.7 85.3 83.12 82.15 81.54 80.37 

Recall 80.2 82 90.4 91.2 89.78 88.17 87.28 86.84 

F-Score 75.56 66.86 85.3 88.15 87.32 86.49 85.37 84.18 

Accuracy 82.1 79.3 86.8 91 90.84 89.17 88.58 87.67 
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Fig.7.11 Comparison on Predictive Accuracy  

(Codon mapping) 
 

 

 Fig.7.12 Performance of Evaluation Measures in  

Codon Mapping 

Findings 

Improvements are achieved by using deep neural network, with the high power of 

representing a complicated problem like disease identification from gene sequences. Two kind of 

mapping schemes proposed here aids in identifying the mutations occurred in the gene sequence 

by retrieving the specific position information of each individual nucleotide and thereby enabling 

accurate disease identification. The proposed approach can learn complex and abstract features at 
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higher layers representation by greedy layer-wise training auto-encoders with large amount of 

unlabeled data. Through the results of these experiments, it was observed that the proper 

selection of hyper-parameters significantly improves the prediction performance of the models. It 

is confirmed that Deep neural network in tensor flow environment with the hidden layer 

architecture extract features on their own and achieved an intensified results for predicting the 

disease from the mutated gene sequences. 

 

7.5 Summary 

This chapter portrayed the modeling of muscular dystrophy disease identification model through 

deep neural network. Diseased gene sequences have been encoded into decimal format through 

nucleotide and codon mapping schemes. Self extraction of features from the gene sequences is 

done through stacked auto encoder. Models were built using deep neural network in tensorflow 

environment. Tensorflow deep neural network classifier facilitates a better improvement in 

predictive accuracy when compared with Artificial Neural Network. 

 

Remarks 

1. Paper titled, "Nucleotide and codon mapping schemes for deep learning to diagnose muscular 

dystrophy", has been accepted for publication in Frontiers in Biosciences (SCIE Indexed) 

 

 

  


