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2. MACHINE LEARNING 

This Chapter begins with a brief introduction about machine learning, then some of the 

supervised learning techniques adopted in this work for pattern classification are presented. 

Naïve bayes classifier, Decision Tree Rule Induction, Artificial neural network and Support 

Vector Machine are explained in detail. Ensemble learning and LibD3C classifier is also 

explicated. 

Machine learning technique discovers patterns and trends from diverse datasets, expecting 

that machines can acquire knowledge from observed data, and aids people to explain and 

categorize their knowledge. To elucidate new unseen data, machine-learning technique embodies 

a wide range of procedures for discovering the rules, patterns and relationships in sets of data 

that result in a generalization of these relationships. The output of a learning scheme is some 

form of structural description of a dataset, acquired from examples of given data that summarize 

the knowledge learned by the system and can be represented in various means [65].  

Machine learning techniques can be applied in the fields such as machine perception, 

computer vision, syntactic pattern recognition, natural language processing, detecting credit card 

fraud, search engines, medical diagnosis, bioinformatics, brain-machine interfaces, 

cheminformatics, game playing, stock market analysis, classifying DNA sequences, speech and 

handwriting recognition, object recognition in computer vision, software engineering and robot 

locomotion. Machine learning provides the basis of data mining which is used to extract 

information from the raw data in databases, information that is expressed in a comprehensible 

form and can be used for a variety of purposes [66]. 

Machine learning involves in searching a very large space of possible hypotheses to decide 

which the best fits on the observed data. Machine learning algorithms have proven to be of great 

practical value in a variety of application domains. They are especially useful in (a) data mining 

problems where large databases may contain valuable implicit regularities that can be discovered 

automatically (b) poorly understood domains where humans might not have the knowledge 

needed to develop effective algorithms and (c) domains where the program must dynamically 

adapt to  changing conditions. Machine learning retrieves ideas from a various set of disciplines, 

that includes artificial intelligence, control theory, probability and statistics, computational 

complexity, philosophy, information theory, psychology and neurobiology [67]. 
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 A well-specified task, performance metric, and source of training experience is required 

by a well-defined learning problem. Design choices involved in designing a machine learning 

approach are (a) to choose the type of training experience, (b) the target function to be learned, 

(c) a representation for this target function, (d) an algorithm for learning the target function from 

training examples.  

Inductive and deductive are the two types of learning where, inductive learning methods 

extract rules and patterns out of massive data sets. Learning/training and prediction are the core 

tasks of machine learning. The primary goal is to automatically, acquire effective and accurate 

model from the training data that provides the domain knowledge which are the characteristics of 

the domain from which the examples are drawn. When the training set is larger high quality of 

model is generated [68, 69]. 

One of the phase in machine learning is prediction, wherein the set of inputs is mapped into 

the corresponding target values. Creating a model, with good predictive performance on test data 

is the main challenge of machine learning. Machine learning algorithms are classified into 

supervised learning, unsupervised learning, semi-supervised learning, reinforcement learning. 

The function of a supervised learning algorithm is to maps inputs to desired outputs. Each 

example is associated with a label. If the label is discrete, then the task is classification. If the 

label is a real value then the task becomes regression problem. The target function is used to 

predict the label for a new case. Hence, learning is not only a task of remembering examples in 

the training set but also of generalization of unseen cases [70]. 

In unsupervised learning the patterns are mined without any explicit description of the 

target labels. Semi-supervised learning combines both examples to generate an appropriate 

function. Reinforcement learning learns a rule that where the actions are made based on the 

observations specified. Transduction predict outputs based on training inputs, training outputs, 

and test inputs like supervised learning but an explicit model is not constructed. 

The primary goal of machine learning research is to develop general purpose algorithms of 

practical value. The amount of data that is required by the learning algorithm is a precious 

resource in the context of learning. The reason is that machine learning algorithms are data 

driven, and are able to examine large amounts of data.  
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Supervised Learning for Classification 

Supervised learning concentrates on modeling input or output relationships which learns 

automatically. The goal of supervised learning is to identify an optimal functional mapping 

between the input data X, to the output variable i.e., a class label Y such that   Y = f(X). This is 

performed based on a sample of observations of the input variables X, which are the 

characteristics of the examples for a given problem. 

The task of supervised learning is to built a classifier with a set of classified training 

samples. A pair consisting of an object and its associated class label is called as a labeled 

example. The set of labeled examples provided to the learning algorithm is called the training 

set. The classifier is constructed based on training data supplied to the classification algorithm. 

The key challenge of the supervised learning algorithm is generalization i.e., the ability to predict 

the correct label on unseen data. 

The performance of the classifier is evaluated by employing a different set of labeled 

examples called the test set. The reason for using a separate test set for evaluating the classifier is 

that the most learned classifiers can accurately predict the class label of the training examples, 

not the new examples. Hence, it is more appropriate to use a different data set for testing the 

ability of the learned model to generalize new data points. The percentage of correctly classified 

test examples is called as the classification rate or prediction accuracy. The classification rate 

estimate is more accurate when the test dataset is larger. 

Machine Learning (ML) divides classification tasks onto binary, multi-class, multi-labeled, 

and hierarchical tasks. In binary, the input is to be classified into one of two non-overlapping 

classes. In the binary classification, multi-class categorization can be objective or subjective, 

well-defined or ambiguous. Assigned categories can be objective, independent of manual 

evaluation or subjective, dependent on manual evaluation. Classes can be well-defined, 

ambiguous, or both. In Multi-class, the input is to be classified into one of several non-

overlapping classes.  

In Multi-labeled case, the input is to be classified into several of non-overlapping classes. 

Classification of functions of yeast genes, identifying scenes from image data or text-database 

alignment and word alignment in machine translation are some of the examples. Multi-label 

classification methods are evaluated on OHSUMED, a collection of medical references in text 

mining domain that holds medical information. Hierarchical, problem reports on relations among 



38 
 

categories which includes their structure into learning targets. The input is to be classified into 

one and the classes are divided into subclasses or grouped into super classes. The hierarchy is 

defined and cannot be changed during classification. Text classification and bioinformatics 

supply many examples such as protein function prediction.  

 

2.1 Supervised Learning Algorithms 

An assortment of supervised algorithms was used for solving classification problems. Some of 

the supervised learning algorithms used in building muscular dystrophy disease identification 

problem here are Decision tree, Naïve Bayes classifier, Support vector machine and Artificial 

Neural network. These algorithms are described in this chapter. 

2.1.1 Decision tree Classifier 

Decision tree classifier is the essential representative in the category of machine learning 

techniques. The process of learning decision trees from the labeled training examples is termed 

as Decision tree learning. The output of a decision tree classification algorithm is a binary tree 

like structure called a decision tree, where the internal node specifies a test on an attribute, each 

branch denotes an outcome of the test and a class label is located at each leaf node or terminal 

node. The root node is the topmost node in a tree. The target variable is predicted based on the 

rules in decision tree model. The class label of a new instance is predicted by testing the attribute 

values of the instance against the decision tree. A path is traversed from the root to a leaf node, 

which gives the class label of that data. Decision trees can be easily transformed into 

classification rules [71].  

Tree Induction Algorithm: Input D – set of training instances 

 The tree starts with a single node N, representing the training instances in D 

 If all the instances in D belong to the same class, then node N becomes a leaf and is 

labeled with that class and the procedure is terminated. Otherwise an attribute ‘A’ is 

selected using attribute selection measure based on the splitting criterion and the node N 

is labeled with the splitting condition. A branch is grown from the node N for each of the 

decisions of the test condition  

 The instances in D are partitioned accordingly  
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 Apply the algorithm recursively to each of the subsets Di of D to form a decision tree 

such that the partitions are as pure as possible. 

 The recursive partitioning stops when one of the following conditions is satisfied. 

(i) All the instances in a partition Di belong to the same class 

(ii) There are no remaining attributes on which the node N may be further partitioned. 

Convert the node N into a leaf node and label it with most common class of the 

instances in Di.  

(iii) A partition Di is empty. A leaf node is created with the majority class in Di.   

An attribute selection measure is used for selecting the splitting criterion that splits a given 

data set D, of labeled training instances into individual classes. If D is divided into smaller 

partitions based on the outcomes of the splitting condition, then all the instances in a given 

partition would belong to the same class. The manner in which a given node is split are 

determined with the splitting rules which are also known to be attribute selection measures.  

Ranking for each attribute is provided with the attribute selection measure [72]. The 

splitting attribute for the given training set is chosen with the attribute having the highest rank. If 

the splitting attribute is continuous-valued, then the split point must be determined as a part of 

the splitting process. The node N created for a partition D is labeled with the splitting criterion, 

branches fan out for each outcome of the condition and the instances are partitioned accordingly. 

There are three possible cases. Let A be the splitting attribute and A has v distinct values, a1, a2, 

..av,  

 If A is discrete valued, branches are created for each value aj of A at node N and labeled with 

that value. Partition Dj corresponds to the subset of labeled instances in D having value aj for 

A. If all the instances in a given partition have the same value for A, then the attribute A need 

not be considered again for partitioning of the instances. 

 If A is continuous-valued, A split-point and A split-point are the two possible outcomes 

when testing at node N which has corresponding to the condition. Normally, the split-point, 

‘a’, is taken as the midpoint of two known adjacent values of A and therefore it may not be a 

pre-existing value of A from the training data. Two branches are grown from N one for each 

condition Asplit-point, Asplit-point and the resultant nodes are labeled accordingly. The 
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instances are partitioned such that D1 holds the partition of instances in D for which Asplit-

point, whereas D2 holds the remaining. 

 If A is discrete and binary valued, two branches are grown from N. The left branch of N is 

labeled as ‘yes’ such that D1 corresponds to the partition of instances in D that satisfy the 

test. The right branch of N is labeled ‘no’ so that the partition D2 contains instances of D that 

does not satisfy the test. 

An example decision tree is shown in Fig.2.1. 

 

Fig.2.1 Example Decision Tree 

There are three attribute selection measures namely information gain, gain ratio and gini 

index basically used in decision tree construction. The tree induction algorithm ID3 uses 

information gain as its attribute selection measure. 

Information Gain 

Splitting attribute for node N is chosen with the highest information gain, which minimizes the 

information that is needed to classify the instances in the resulting partitions. Such an approach 

 

A1<a11? 

Conclude 

 Class1 

 

A2<a21? 

Conclude 

 Class1 

Conclude 

 Class2 

yes no 

yes no 

 

 

  

  

 



41 
 

minimizes the expected number of tests needed to classify a given instance and guarantees that a 

simple tree is found. The expected information needed to classify an instance in D is given by 

i 2 i

i

Info(D) = - p log p  

             (2.1) 

where pi is the probability that an arbitrary instance in D belonging to class Ci. Info(D) is also 

known as the entropy of D. If D is partitioned into D1, D2 … Dv based on v distinct values a1, a2, 

a3…av of an attribute A, then Dj contains those instances in D that have value aj and these 

partitions correspond to the branches grown from node N. This partitioning produces the exact 

classification of the instances. The information needed to arrive at an exact classification after 

partitioning based on attribute A is given by 

v j
A jj=1

|D |
Info (D) =  x Info(D )

| |D
  

(2.2) 

The purity of the partitions is higher when the expected information required is smaller. The 

difference between the original information requirement and obtained after partitioning on A is 

termed as information gain. Thus the gain is  

AGain(A) =Info(D) - Info (D)  

(2.3) 

Domain knowledge is not required in the construction of a decision tree and hence it is 

more suitable for extracting the hidden predictive knowledge. The algorithm also scales well in 

case of high dimensional data. The learning and classification phases of decision tree induction 

are simple and fast. In general, decision tree classifiers show good accuracy. The speed of this 

learning algorithm is reasonably high, as is the speed of the resulting decision tree classification 

system.  
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2.1.2 Naïve Bayes Classifier 

The Naïve Bayes classifier (NB) is an effective classifier which is used in number of applications 

such as natural language processing and information retrieval. The Naïve Bayes Classifier 

technique works based on Bayesian theorem, which is suits in the environments where the 

dimensionality of the inputs is more. The effect of a variable value on a given class is 

independent of the values of other variable in Naïve Bayes classifiers. The Naïve-Bayes inducers 

compute conditional probabilities of the classes when the instance is given and the class with the 

highest posterior is picked up. Naïve Bayes classifiers can be trained very efficiently in a 

supervised learning setting, depending on the precise nature of the probability model.  

A Naïve Bayes classifier is a simple probabilistic classifier based on Bayes theorem with 

strong independence assumptions. Below given is the formulation of Naïve bayes classifier, 

 

 

 

(2.4) 

Bayesian classification model is given by, 

 The prior probability reflects knowledge of the relative frequency of instances of a class 

 The likelihood is a measure of the probability that a measurement value occurs in a class 

 The  evidence is a scaling term 

 

 

(2.5) 

 

      The classification of unseen data x is performed by calculating P (Ci / x) for each class and 

assigning x to class i if P (Ci / x) > P (Cj / x) for all i ≠ j [73]. 
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The probability model for a classifier is a conditional model on several feature variables F1 

through Fn is given by p(C | F1,….Fn) over a dependent class variable C with a small number of 

outcomes or classes. If the number of features is large or if a feature can take on a large number 

of values, then arises an issue where basing such a model on probability tables is not feasible and 

therefore the model is reformulated as below, 

 

      (2.6) 

Using Bayesian Probability terminology, the above equation can be written as 

 

(2.7) 

Building a classifier from the probability model 

The naive Bayes classifier combines this probability model with a decision rule such as the 

maximum posteriori or MAP decision rule that picks up the hypothesis, which is most probable. 

The corresponding classifier, a Bayes classifier, is the function defined as follows: 

  (2.8) 

Parameter estimation and event models 

 A class prior is calculated by assuming equally probable classes such as  priors = 1 / (number of 

classes), or by calculating an estimate for the class probability from the training set  

 prior for a given class = (number of samples in the class) / (total number of samples) 

 To estimate the parameters for a feature's distribution, assume a distribution or generate 

nonparametric models for the features from the training set. The event model of the Naive Bayes 

classifier are the assumptions on distributions of features. For discrete features encountered in 

document classification, multinomial and Bernoulli distributions are popular.  

In naive Bayes classifiers, every feature plays a role in determining the label to a given 

input value. To select a label for an input value, the naive Bayes classifier begins by computing 
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the prior probability of each label that is determined by examining frequency of each label in the 

given training set. The impact of each feature is then combined with this prior probability to 

estimate likelihood for each label. The highest likelihood estimate is then assigned to the input 

value. 

To create a labeled input, the model a label is chosen first and each of the input's features is 

generated based on that label. Every feature is expected to be entirely independent of every other 

feature, given the label. Based on this assumption, calculate an expression for P(label|features), 

the probability that an input will have a particular label given that it has a particular set of 

features.  

                              P(label|features) = P(features, label)/P(features) 

In the next case, P(features) will be the same for every choice of label, and it simple for 

finding the most likely label, it serves to calculate P(features, label), which is called as the label 

likelihood. 

                                P(features) = Σl in| labels P(features, label) 

The label likelihood is extended out as the probability of the label times the probability of 

the features given the label 

                               P(features, label) = P(label) × P(features|label) 

The features are all independent of one another separate the probability of each individual 

feature: 

                    P(features, label) = P(label) × Prodf in| featuresP(f|label) 

2.1.3 Artificial Neural Network 

Artificial Neural network is one of the supervised learning algorithm that analyzes the training 

data and produces an inferred function, which is called a classifier. The classifier is then used for 

predicting the accurate output value for any valid unseen input object. 

An Artificial Neural Network is a computational model that is stimulated by the biological 

nervous system. Dendrites, soma, axon and synapses are the four components of biological 

neuron that receive signals from other neurons. Synapses regulate the signals and forward the 

signals to axon. Axon directs signals away from the cell body to other neurons. The biological 

neuron structure is shown in Fig.2.2.    
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Fig.2.2 Biological Neuron 

The artificial neuron inspired from biological neuron is represented in Fig 2.2.      

 

Fig.2.3 A Perceptron 

In artificial neuron, the inputs that are the features are received using dendrites. As 

synapses modulate in biological neurons, the inputs are multiplied by its weight and the product 

is cumulated and fed into the transfer function to produce the output.  

 

Multiplayer Perceptron 

Multilayer Perceptron network (MLP) is the general purpose, flexible, nonlinear models which  

consists of a number of units organized into multiple layers. By varying the number of layers and 

the number of units in each layer the complexity of the MLP network is reduced. With sufficient 

hidden units and enough data, it has been shown that MLPs can approximate virtually any 
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function to any desired accuracy. MLPs are appropriate in problems when knowledge about the 

form of the relationship between input vectors and their corresponding outputs is not known 

explicitly. 

Activation function 

If a multilayer perceptron has a linear activation function in all neurons, then it is proved with 

linear algebra that number of layers can be reduced to the standard two-layer input-output model. 

Multilayer perceptron is different by, each neuron uses a nonlinear activation function which was 

developed to model the frequency of action potentials. This function is modeled in several ways, 

but must always be normalizable and differentiable. 

At present, the applications uses the two main activation functions where both are sigmoid, 

and are described by 

   (2.9) 

The first function is a hyperbolic tangent that ranges from -1 to 1, and the second one is the 

logistic function, ranges from 0 to 1.  is the output of the th node and  is the weighted sum 

of the input synapses. include radial basis functions is more specialized activation function that 

are used in another class of supervised neural network models. 

Layers 

The multilayer perceptron consists of three or more layers such as an input and an output layer 

with one or more hidden layers of nonlinearly activating nodes. Each node in one layer connects 

with a certain weight  to every node in the next layer.  

Learning through back propagation 

The perceptron learns the inputs by changing connection weights after each piece of data is 

processed, based on the amount of error in the output compared to the expected result. This is an 

example of supervised learning, and is carried out through backpropagation, a generalization of 

the least mean squares algorithm in the linear perceptron. 

It represent the error in output node in the th data point by 

, where is the target value and is the value produced by the perceptron. Corrections to the 

weights of the nodes are made and based on those corrections the error is minimized in the entire 

output and is formulated as, 
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   (2.10) 

Using gradient descent, the change in each weight will be 

   

       (2.11) 

Where  is the output of the previous neuron and  is the learning rate, which is carefully 

selected to ensure that the weights converge to a response fast enough, without any fluctuations. 

This parameter normally ranges from 0.2 to 0.8 in programming applications. 

 

2.1.4 Support Vector Machine 

Support vector machines (SVM) are learning systems that implements a learning bias derived 

from statistical learning theory which use a hypothesis space of linear functions in a high 

dimensional feature space, trained with a learning algorithm from optimization theory. Learning 

classification and regression rules from data are learned using the support vector machine 

training algorithm.   

The geometrical elucidation of support vector classification is that the algorithm searches 

for the optimal separating surface, which is the hyper plane that is equidistant from the two 

classes and can be extended to multi-class problems. In order to construct non-linear decision 

surfaces kernel functions are introduced [74]. 

The techniques of mathematical programming and kernel functions are two key elements 

in the implementation of SVM.  The parameters are found by solving a quadratic programming 

problem with linear equality and inequality constraints. The kernel functions used in case of non 

linear SVM are Polynomial, Gaussian, Neural networks. 

Standard linear and non-linear Support vector Machine 

Implementations of statistical inference principles are learning machine algorithms. Normally, 

the machine is presented with a set of training examples, (xi, yi) where the xi is the real world 

data instances and the yi are the labels indicating which class. For the two class pattern 
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recognition problem, yi = +1 or yi = -1. A training example (xi, yi) is called positive if yi = +1 and 

negative otherwise.  

An optimal hyper plane between two classes of examples is constructed by the support 

vector machine using the geometric point of view, which given by w T x -   = 0. A vector of 

weights w and a threshold value  are the parameters and W is orthogonal to the hyper plane. 

Margin is a quantity that separates hyper plane from each training example. i= yi (w T x -

) is the functional margin. The hyper plane correctly classifies the data point when I>0. The 

geometric margin measures the distance of data points from the hyper plane in Euclidean space 

when the weight vector w of the functional margin is normalized (w=w/||w||). The maximum 

geometric margin over all possible hyper planes is referred using the expression margin of a 

training set. A maximal margin hyper plane is defined by the maximum geometric margin which 

has a unique hyper plane.  

The two planes parallel to the hyper plane, if w is weight vector recognizing functional 

margin 1 on the positive point X+ and on the negative point X- , that passes through one or more 

points called bounding hyper planes and are given by, 

w T x -   = 1 

w T x -   = -1 

Distance of the bounding plane, w T x -   = 1 from the origin is elucidated as  |-  + 1|/||w|| 

and the distance of the bounding plane, w T x -   = -1 from the origin is summarized as |-  - 

1|/||w||.  

Support vectors are the points falling on the bounding planes that are vital in the theory. 

The data points x belonging to two classes A+ and A- are classified based on the condition  

 

(2.14) 
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These disproportion constraints can be united to give, where Dii = 1 for A+ and Dii=-1 for 

A- . An optimal hyper plane is found as the learning problem <w, >, w T x -   = 0 which 

separates A+ from A- by maximizing the distance between the bounding hyper planes. 

The above explained optimization problem is solved using Lagrangian duality and the 

Lagrangian is given as 

 

(2.15) 

where ui is the lagrange multiplier. The clarification to this quadratic programming problem is 

given by maximising L with respect to u  and minimising with respect to w.   

For a given u, the problem is solved using Lagrangian duality to find values of w and   

which minimizes L( , , )w u . The decision function of the quadratic programming problem yields 

sui  and is given by  

Tsign( ) w x =

m
T

i 1

sign( )i i iu d


  x x  

(2.16) 
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Fig. 2.4 Linear Support Vector Machine 

Where   is calculated for 0iu and by holding a point on the margin. Corresponding to each 

data point ix , there is a dual variable iu . Since, the decision function f(x) is a function of data 

points, most of those points of iu s are zero and when the data points corresponding to nonzero 

iu s then those are called support vectors. 

SVM formulation with soft margin  

The situation of noisy data is depicted in Fig.2.5, where it is tedious to identify a separating 

plane, where region A+, and A-  are totally separated and poor generalisation occurs when 

training error is zero. The only probable way is to catch a maximally separating plane with a few 

number of points that fall on the wrong side.  Error is the deviation of such a point from the 

respective bounding plane.  
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                    Fig.2.5 Data which require Linear SVM Formulation with Soft Margin 

SVM looks for a classifier through training where the margin between the bounding planes 

is maximum and the number of points that contributes error is minimum.  Error is caused with 

more points in the maximum margin. A control parameter C controls the two contradicting 

requirements using  the weight assigned.  

The amount of violation of the constraints introduced is measure using a vector of slack 

variables ξi and is termed as SVM with soft margin and the construction is as follows, 
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(2.17) 

Non-linear SVM and Kernel Trick 

The elucidation of SVM requires Q, d and C where Q is attained from T
A* A  and T

d * d .  

 Use of very powerful kernels 

 Causes over fitting 

Class +1 

Class -1 

Dataset with noise 
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The ( , )i j th  element of T
AA  is

T

i jx x and is called the linear kernel matrix which infers that 

the information necessary for training is taken in the form of dot products of the training vectors.  

A function (.) is used to map each data point ix in to a higher dimensional space when the data 

is not linearly separable as shown if Fig.2.6, which tries to find a maximally separating hyper 

plane in that space as a classifier.  

The SVM training requires ) )T

i j( ( x x  for all  and  i j when such a separation is done.  

The kernel trick is used for obtaining such dot products without explicitly mapping the data 

points into higher dimensional space. Training algorithm as same as that of the linear classifier, 

the problem of ‘curse of dimensionality’ is tackled in a simple way are the advantages of non-

linear SVM classifiers. 

 

Fig.2.6 Data that require Non linear classifier 
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A function in input space is given by the Kernel function ( i j, )K x x and the advantage in 

using kernel function ( i j, )K x x  is a mapping ( ) x is avoided. For given training data vectors in 

an input space, the required scalar products in a feature space
T

i j( ) ( ) x x , are considered 

directly by computing kernels ( i j, )K x x . An SVM that operates in an infinite dimensional space 

can be constructed by using the chosen kernel ( i j, )K x x . A function K is a kernel when, 

( T

i j i j, )= ( ) ( ) K x x x x  

(2.18) 

 

 

Fig.2.7 Non-linear Mapping into Feature space 

Linear, Polynomial, Radial Basis Function (RBF) are the possible kernels and the simplest 

is a linear kernel is given as ( i j, )K x x =
T

i j( ) ( )x x . The polynomial kernel takes the form 

( , y)K x =
T dy+1)(x

. 

The RBF kernel is given by ( , )k x y = 
2

exp( ) x - y  where   is a positive parameter 

controlling the radius. A dot product in a high-dimensional space is the kernel trick used by the 

Mercer’s condition that states that any positive semi-definite kernel K (x, y) can be stated. 
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Normalization of kernels 

The training of support vector machines very challenging when the number of variables is hefty, 

and the value of the kernel may become very little or too large [76]. Each variable and the kernel 

is normalized to overcome this issue. Variables can be normalized to the [0,1] or  [-3 , +3 ] range 

by using the formula   /i i ix   , where i  and i  are  the mean and standard deviation of the 

ith predictor variable. The maximum value of the kernel is if each variable is normalized in the 

range [0, 1]. Maximum values k( ,x x)  for a polynomial kernel is  1
p

n  when  data points has 

all its variable values as 1, then the normalized kernel values are found as
y+1

k( ,y
1

p
T

n

 
 

 

x
x ) = , 

where the degree of the polynomial kernel p., the maximum value of 
2

x - y is n for an RBF 

kernel. So, a normalized kernel may be computed as
2

k( , )exp(-
n


x y) = x - y . 

SVM Formulation of Non-linear Kernels with Soft Margin  

The SVM formulation for Non-linear kernels with  soft margin can be given as: 

 

, ,
1

1
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2

subject to ( ( ) ) 1 0, 1
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 (2.19) 

The optimization problem can be solved using lagrangian duality and the dual problem in matrix 

form is written as below: 

  Minimize DL ( ) u T T1

2
u u - e uQ  

(2.20) 

  Td u =0, C 0 u e   
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Where Q = DKD and K is kernel matrix.  Q  can be computed as TK *( * )Q = d d   

For linear SVM, the dual formulation is:  

1
min ( )  ( )

2

subject to 0

T T T

T

L
C

  



 0

u

I
u u D AA Du e u  

d u

u

 

(2.21) 

So for a non-linear kernel, the dual formulation is: 

1
min ( )  ( )

2

subject to 0

T T

T

L
C

  



 0

u

I
u u D K Du e u  

d u

u

 

Or,  

1
min ( )  

2

subject to 0

T T

T

L  



 0

u
u u Qu e u  

d u

u

 

Q can be computed as =( / ).*( * )TCQ K I d d  

(2.22) 

Multiclass Support Vector Machine 

Multi Classification is a typical data mining task, with origins in machine learning which 

categorize the data into a set of known classes. A set objects whose class label is known and a 

classification model is constructed based on the features of data in the training set. A 

combination of classification rules is generated from the classification model, which can be used 

to classify future data and develop a better understanding of each class in the database. 

Multiclass classification is applied in many real world applications. The formulation to 

solve multi-class SVM problems in one step has variables proportional to the number of classes. 

Therefore, for either multiclass SVM methods, several binary classifiers have to be constructed 

or a larger optimization problem is needed. Hence, in general it is computationally more 
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expensive to solve a multi-class problem than a binary problem with the same number of data. 

Up to now experiments are limited to small data sets. 

SVM is basically a binary classifier where the formulation of SVM was based on a two-

class problem. To regulate the K-class pattern classification problem, several different schemes 

can be applied to the simple SVM algorithm. The K-class pattern classification problem is given 

below: 

 For i=1… l is a feature vector of length d and the class label for data point. 

 Find a classifier with the decision function, f(x) such that y=f(x, where y is the class label 

for x. 

The performance of the classifier is assessed in terms of the total classification error over a 

set of testing data that is similar to that of the binary classifier. 

The schemes which have been used for solving the multi-class problem are as listed below: 

 Using k one-to-rest classifiers. 

 Using k(k-1)/2 pair wise classifiers with one of the voting scheme listed below: 

 Majority voting 

 Pair wise coupling 

 Extending the formulation of SVM to support the k-class problem. 

 Construct the decision function by considering all classes at once. 

 Construct a decision function for each class by only considering the training data 

points belong to that particular class. 
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2.2  Ensemble learning 

Learning algorithms that build a set of classifiers and categorizes new data points with a 

weighted vote of their predictions are termed as Ensemble methods. In order to create a stronger 

overall prediction, ensemble learning combines multiple predictions that is derived from various 

techniques [76]. For example, the combination of predictions of a random forest, a support 

vector machine, and a simple linear model will create a stronger final prediction set. Models can 

be varied from each other for a range of reasons, from the population they are built upon to the 

modeling used for building the model. are Difference in population, Difference in hypothesis, 

Difference in modeling technique, Difference in initial seed are the top four reasons for a model 

to be distinct.  

Three fundamental reasons that represent an ensemble work better than a single classifier 

are Statistical, Computational and Representational [77]. Statistical is the first reason where, to 

identify the best hypothesis in the space, a learning algorithm can be viewed as searching a space 

H of hypotheses. This problem arises when the amount of training data available is too small 

compared to the size of the hypothesis space. The algorithm can average their votes by 

constructing an ensemble out of all of the precise classifiers and risk is reduced by choosing the 

wrong classifier which is depicted in Fig.2.8. The hypothesis space H is denoted with the outer 

curve. The set of hypotheses on the training data is given in the inner curve. The point labeled f 

is the true hypothesis, and it is shown that by averaging the accurate hypotheses. 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

Statistical Computational 

 

H H 

 

 

 

 

h2 

h1 

  

h1 f f 

h4 h3  h2 

 

 

h3 

 

  

 

 

Representational 

H 

 

 

h1  

      h2  f 

 h3 

 

 

 

Fig.2.8 Modeling Techniques of Ensemble Classifier 

The next reason is computational where many learning algorithms are worked by executing 

local search that may be caught in local optima. To minimize an error function over the training 

data, Neural Network algorithms employ gradient descent and greedy splitting rule is employed 

by decision tree algorithms to raise the decision tree. in cases when sufficient training data is not 

exists, the statistical problem will be absent. An enhanced approximation to the accurate 

unknown function is constructed by running the local search from many different starting points. 

The third reason is representational, where in maximum applications of machine learning the true 
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function f cannot be represented by any of the hypotheses in H, by forming weighted sums of 

hypotheses drawn from H it may be possible to expand the space of representable functions. 

The three most popular methods for combining the predictions from different models are: 

Bagging: Bagging, finds a average of all the predictions and tries to implement similar learners 

on small sample populations. In simplified bagging, to reduce the variance error different 

learners can be used on different population. The term bagging means bootstrap aggregation. 

 Working of bagging for a Given set, D, of d tuples. For iteration i (i = 1, 2,..., k), a 

training set, Di , of d tuples is sampled with replacement from the original set of tuples, D. Each 

training set is a bootstrap sample because sampling with replacement is used, some of the 

original tuples of D may not be included in Di , and some may occur beyond once.  

For each training set, Di a classifier model, Mi is learned. Each classifier, Mi, returns its 

class prediction, to classify an unknown tuple, X. Bagging can be applied to the prediction of 

continuous values by taking the average value of each prediction for a given test tuple. The 

algorithm is summarized below. 

Algorithm: 

The bagging algorithm—create an ensemble of models (classifiers or predictors) for a learning 

scheme where each model gives an equally-weighted prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: D, a set of d training tuples; 

k, the number of models in the ensemble; 

a learning scheme (e.g., decision tree algorithm, backpropagation, etc.) 

Output: A composite model, M*. 

Method: 

for i = 1 to k do // create k models: 

create bootstrap sample, Di, by sampling D with replacement; 

use Di to derive a model, Mi; 

end for 

To use the composite model on a tuple, X: 

 if classification then 

let each of the k models classify X and return the majority vote; 

if prediction then 

let each of the k models predict a value for X and return the average predicted value; 
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The accuracy attained by the bagged classifier is pointedly larger than a single classifier derived 

from the original training data D. The accuracy is increased occurs because the composite model 

reduces the variance of the individual classifiers. It was proven that a bagged predictor will 

always have better accuracy against a single predictor that is derived from D, for predicting a 

variable. 

Boosting: Boosting works on iterative method where the weight of an observation is adjusted 

based on the classification that is made recently. When an incorrect classification is made, it tries 

to increase the weight of this observation and vice versa. Boosting in general builds strong 

predictive models and the bias error is decreased.  

Weights are assigned to each train a tuple to get work with boosting algorithm. A sequence 

of k classifiers is iteratively learned and after a classifier Mi is learned, the weights are updated 

to allow the subsequent classifier, Mi+1, to pay more attention to the training tuples that were 

misclassified by Mi. The weight of each classifier’s vote is a function of its accuracy and the 

final boosted classifier, M*, combines the votes of each individual classifier. The boosting 

algorithm can be extended for the prediction of continuous values. In the classification of tuples, 

the widely used boosting algorithm is AdaBoost. 

Stacking: Stacking is used to combine models where a learner is used to combine output from 

different learners. Depending on the combining learner, bias or variance error can be decreased.  

An ensemble with two techniques that are alike will not perform well such as Bayesian 

model combination and stacking, that attempts to weight the models before combining them. The 

hybrid approach has been an emerging research area in machine learning, to gain a better 

accuracy of classification or prediction problems over a single learning approach. Combining 

two different machine learning techniques is termed as Hybridization.  The motivation of the 

hybrid model is that a hybrid classification model can be composed of one unsupervised learner 

to preprocess the training data and one supervised learner to learn the clustering result. 

In machine learning, the hybrid approach has been an active research area for improving 

classification or prediction performance over a single learning approach. In general, 

hybridization is based on combining two different machine learning techniques. The rationale 

behind the hybrid model is that a hybrid classification model can be composed of one 

unsupervised learner to preprocess the training data and one supervised learner to learn the 

clustering result. The pruned sub-ensemble was built by first modifying the order in which the 
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classifiers were aggregated in the ensemble and then selecting the first classifiers in the ordered 

sequence. The double pruning algorithm was used to reduce the storage requirements, speed up 

the classification process and improve the performance of the parallel ensembles. Most of the 

previous work focused on the improvement of selective ensemble techniques,while little 

attention has been devoted to the development of the hybrid approach of selective ensemble 

techniques. Motivated by the performance of the hybrid model, an approach that integrates two 

types of elective ensemble techniques is proposed and called dynamic selection and circulating 

combination-based clustering (D3C) [78]. 

Dynamic selection and circulating combination 

This approach is presented in terms of the adaptive framework of selective ensemble learning. In 

[79], a framework with selective ensemble learning based on a complementarily factor was 

proposed, and the experimental results of handwritten digit recognition showed that it was more 

flexible and efficient compared to other classifier selection methods. In this paper, the 

framework with the sequential methods is proposed, and the sequential methods include 

sequential forward search (SFS) and sequential backward search (SBS).  

In the beginning, the performance in the overproduction phase is used to rank all of the 

classifiers that were obtained by ensemble pruning based on k-means clustering. With the aim of 

improving the final performance the most accurate classifier is added from the selected subset by 

SFS and the least accurate classifier is deleted by SBS iteratively. At each step, only one or a few 

classifiers is added or deleted and as a result, the complexity of the search is not high which is 

efficient even for large-scale problems [80]. 

The selection criterion is very important for sequential search. Furthermore, the inter rater 

agreement κ mentioned above can be the selection criterion. However, there is no explicit theory 

that shows a measure of diversity that is as straightforward as accuracy. In addition, majority 

voting (MV), which only works with nominal classes, is utilised as the combination. κ acts as a 

selection criterion. In practical applications, the majority voting error is the most common 

selection criterion and is a measure for the majority voting error rate.  

Assuming that t classifiers vote for the instance(𝑋⃗𝑗, 𝑤𝑗), each classifier classifies the 

instance and outputs the probability distribution for the instance. Suppose that there is a set of 

class labels Ω = {1, … . . , 𝑐}   and the probability distribution of the instance is a vector 𝑃⃗⃗ = {p1, 

….pc}. Then, the label with the highest probability obtains a vote. If multiple labels have the same 
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probability, then all of those labels receive a vote. Once all of the classifiers cast the vote, the 

label with the most votes is selected as the label for the test instance. If multiple labels have the 

same number of votes, then one of those labels will be selected at random. The MVE can be 

formulated as 

MVE = 1 −
1

𝑚
∑ 𝑀𝑉𝑚

𝑗=1 (𝑋⃗𝑗, 𝑤𝑗)     

         (2.33) 

Where MV(𝑋⃗𝑗, 𝑤𝑗)represents the correct/incorrect decision of the majority voting and is an 

oracle type of output. 

The sequential search method is embedded into the frame-work. This method can be seen 

as a multilayer sequential search method. In addition, the multilayer classifier subset selection 

can take full advantage of each base classifier and preserve more useful information than a 

selective ensemble that obtains only one optimal selection as an ensemble result. The whole 

framework is composed of many layers. In this framework, the selective ensemble method of one 

layer can be seen as a multimodal optimization problem where each layer will generate an 

output, and the search method of the current layer is based on the output of the previous layer. In 

this situation, each classifier will have the opportunity to participate in one ensemble. A 

schematic diagram of a multilayer search method is shown in Fig.2.9 and the algorithm is shown 

in 2.10. 
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Fig. 2.9 Multilayer Search Method Schematic Diagram 
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Fig. 2.10 The Framework of Dynamic Selection and  

Circulating Combination 

 

The popular ensemble learning methods used for classification problems are bagging, 

boosting and random forests. The principal impulse is the production of multi-level models that 

can be perceived by humans. A model shared subspace boosting algorithm was constructed to 
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reduce the information redundancy within multi-label learning, [81] which automatically finds 

shared subspace models, where every model was made to learn from the random feature 

subspace, bootstrap data and combined a number of base models through multiple labels. 

Ensemble classification is a technique that combines multiple basic classifiers that each has 

its own decision-making capacity. The prediction ability of an ensemble classifier is tremendous 

to that of a single classifier because the ensemble classifier can address the differences produced 

by the single classifier more efficiently with different problems when challenged.  

LibD3C Classifier 

LibD3Cis an ensemble classifier, based on hybrid model of ensemble pruning approach. This 

kind of classifier is based on k-means clustering and the framework of dynamic selection and 

circulating in combination with a sequential search method. Ensemble classifier pruning 

becomes useful in some applications, where the number of independent classifiers that are 

needed to achieve reasonable accuracy is enormously large [82]. 

LibD3C is a kind of ensemble classifiers with a clustering and dynamic selection strategy. 

A method that blends two types of discriminating ensemble techniques called as dynamic 

selection and circulating combination-based clustering (D3C).  LibD3C employs two types of 

selective ensemble techniques, such as ensemble pruning based on k-means clustering and 

dynamic selection and circulating combination. LibD3C is a selective ensemble classifier, where 

various candidate classifiers are trained, and a set of classifiers that are accurate and diverse are 

selected to rectify the problem [83]. 

 

2.3 Training and Testing 

A training set is used to fit the models and the validation set or development test set used to 

estimate test error for model selection. The test set or evaluation test set used for assessment of 

the generalization error of the finally chosen model [84]. In supervised learning the induced 

function is usually evaluated on a separate set of inputs and function values for them called the 

testing set. A hypothesized function is said to generalize when it guesses well on the testing set. 

Both mean squared error and the total number of errors are common measures. In this research 

work, the dataset is trained using supervised learning algorithms namely Decision tree classifier, 

Naïve bayes classifier, artificial neural network, Support Vector Machine and LibD3C classifier. 
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Testing and Evaluating Classifier Accuracy 

Accuracy estimate is used to measure, how accurately a given classifier will be able to 

identify the class label of the future data. Accuracy estimates also help in the comparison of 

different classifier. The accuracy of a classifier on a given test set is the percentage of test 

instances that are correctly classified by the classifier. Error rate is the proportion of errors made 

over the number of testing instances. When the test dataset is more, estimating the error will be 

more accurate. The common techniques to assess the accuracy of a classifier are, 

 Hold-Out Method. 

 Cross-Validation Method. 

 K-fold cross validation Method. 

 Leave-one-out cross validation Method. 

Hold-Out Method 

The holdout method is the simplest kind of cross validation where the data set is separated 

into two sets, called the training set and the testing set. Using the training set, the function 

approximator fits a function and then the function approximator is asked to predict the output 

values for the data in the testing set. The test error is used to evaluate the model and the errors 

are accumulated as before to give the mean absolute test set error. The advantage of this method 

is that it is usually preferable to the residual method and takes no longer to compute. The 

evaluation may depend heavily on which data points end up in the training set and which end up 

in the test set, and thus the evaluation may be significantly different depending on how the 

division is made. 

Cross-Validation Method 

 Cross validation is a model evaluation method that is better than residuals. The problem 

with residual evaluations is that one does not give an indication of how well the learner will do 

when it is asked to make new predictions for data it has not already seen. One way to overcome 

this problem is to not use the entire data set when training a learner. Some of the data is removed 
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before training begins. Then when training is done, the data that was removed can be used to test 

the performance of the learned model on ``new'' data. This is the basic idea for a whole class of 

model evaluation methods called cross validation. 

K-fold Cross-Validation Method 

K-fold cross validation is one way to improve over the holdout method. The data set is 

divided into k subsets, and the holdout method is repeated k times. Each time, one of the k 

subsets is used as the test set and the other k-1 subsets are put together to form a training set. 

Then the average error across all k trials is computed. The advantage of this method is that it 

matters less how the data gets divided. Every data point gets to be in a test set exactly once, and 

gets to be in a training set k-1 times. The variance of the resulting estimate is reduced as k is 

increased. The disadvantage of this method is that the training algorithm has to be rerun from 

scratch k times, which means it takes k times as much computation to make an evaluation.  

Leave-one-out Cross Validation Method 

Leave-one-out cross validation is used in the field of machine learning to determine how 

accurately a learning algorithm will be able to predict data that it was not trained on. When using 

the leave-one-out method, the learning algorithm is trained multiple times, using all but one of 

the training set data points. The form of the algorithm is as follows:  

 For k = 1 to R where R is the number of training set points  

 Temporarily remove the kth data point from the training set. 

 Train the learning algorithm on the remaining R - 1 point. 

 Test the removed data point and note your error. 

 Calculate the mean error over all R data points.  

Leave-one-out cross validation is useful because it does not waste data. When training, all but 

one of the points are used, so the resulting regression or classification rules are essentially the 

same as if they had been trained on all the data points. The main drawback to the leave-one-out 

method is that it is expensive - the computation must be repeated as many times as there are 

training set data points. Leave-one-out cross validation is K-fold cross validation taken to its 
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logical extreme, with K equal to N, the number of data points in the set. That means that N 

separate times, the function approximator is trained on all the data except for one point and a 

prediction is made for that point. 

In the proposed work the 10 fold cross validation is performed to test the performance of 

the muscular dystrophy disease identification models.  The cross validation models of the results 

are compared and discussed. 

A common practice in evaluating the performance of the classifiers is to divide the data 

into two parts, one for training the classifier, the aforementioned training set and a second part 

called test set that it used for testing it. This testing is done by using the classifier to predict the 

classes for the samples in the test set and comparing them to their actual classes. There are 

several measurements that can be used for comparison and in this thesis Accuracy, Precision, 

Recall and F – score, Cohen’s Kappa and Time taken to build the model are focussed. They are 

defined below as measurements for a specific class. 

Accuracy 

 Accuracy is the percentage of correctly classified instances over all classified instances 

and is calculated from formula given as follows 

 

Accuracy = 
𝐓𝐫𝐮𝐞𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 + 𝐓𝐫𝐮𝐞𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞

𝐓𝐫𝐮𝐞𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 + 𝐓𝐫𝐮𝐞𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞+𝐅𝐚𝐥𝐬𝐞𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞+ 𝐅𝐚𝐥𝐬𝐞𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞
 

 

 

Precision 

Precision for a given class is the ratio between the amount of the instances that were 

correctly predicted to it and the total amount of instances that were predicted to it. It is the 

proportion of the samples that truly have class A among all those which were classified as class 

A. Precision can be calculated from the formula given as follows 

 

Precision =   
𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 

𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞+𝐅𝐚𝐥𝐬𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞
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Recall 

Recall for a given class is the ratio between the amount of the instances that were correctly 

predicted to it and the total amount of instances that should belong to that class. It is the 

proportion of samples of a particular class A correctly classified as belonging to that class A. It is 

equivalent to True Positive Rate (TPR). Recall can be calculated from the formula., 

 

Recall = 
𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 

𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞+𝐅𝐚𝐥𝐬𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞
 

 

F-score 

F-measure discriminates the correct classification of document labels within different 

classes. In essence, the effectiveness of the algorithm is assessed on a single class, and the higher 

it is, the better is the clustering. It is defined as follows:  

F = 2*(Precision*Recall) / (Precision + Recall) 

 

Cohen’s Kappa 

Cohen’s Kappa statistic is used to measure the inter-annotator agreement. The score 

computed by this agreement is used to measure the level of agreement between two annotators 

on a classification problem.  

𝑲 = (𝒑𝟎 − 𝒑𝒆)/(𝟏 − 𝒑𝒆) 

 

where po is the empirical probability of agreement on the label assigned to any sample , 

and pe is the expected agreement when both annotators assign labels randomly. pe is estimated 

using a per-annotator empirical prior over the class labels. 

Precision- Recall Curve 

 The output of the binary classifier is typically studied with the Precision-recall curves. 

With the intention of extending the precision-recall curve and average precision to multi-class 

classification, it is essential to binarize the output of the classifiers. One curve can be drawn per 

label, and a precision-recall curve can be drawn by considering each element of the label 

indicator matrix as a binary prediction. In this multi-class classification work, the target attribute 
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values are binarized and the class values are shaped into 1. The precision- recall curve is 

computed by adding some noisy features and the micro-average ROC and ROC area is 

calculated. 

Receiver Operating Characteristic (ROC) Curve 

ROC analysis is performed to identify the presence of disease in response to classification 

tasks using sensitivity and specificity measures. ROC curves are also typically used in binary 

classification to study the output of the classifier. ROC curves typically feature true positive rate 

on the Y axis, and false positive rate on the X axis. The “steepness” of ROC curves is vital as it 

is perfect to maximize the true positive rate while minimizing the false positive rate. 

 

2.4  Summary 

This chapter presents a brief note on DataMining, Datamining in bioinformatics, Machine 

learning, Ensemble learning. Also, it describes various supervised algorithms like Decision tree 

classifier, Naïve bayes classifier, Artificial neural network, support vector machines, LibD3C 

classifier. In general the performance of the classifier depends greatly on the characteristics of 

the data to be classified. These learning algorithms are considered for building a muscular 

dystrophy disease classification model, since machine learning technique automatically learns by 

taking intelligent hints from the training data and predicts the output more accurately.  

 

 

  


