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5. MUSCULAR DYSTROPHY DISEASE IDENTIFICATION MODELS 

THROUGH SHALLOW LEARNING 

This chapter details the implementation of a muscular dystrophy disease identification models 

using supervised learning algorithms. In this work, python is used as a programming language on 

the top of the scikit-learn machine-learning library. A brief description of the tools and libraries 

used are given at the beginning of the chapter, and the implementation of the muscular dystrophy 

disease identification models are followed later. Five independent experiments were carried out 

in this study based on various mutational features and are explained with the flow of events 

during training and predicting. The feature extraction process, building the model and the 

performance evaluation measures of the classifiers are explained in detail. 

Data driven systems solves the problem by developing own models based on the examples 

and experiences. These methods develop intelligent systems that discover patterns from large 

datasets based on computational analysis that provides concrete theory and predictions.The key 

idea in shallow learning approach using supervised learning algorithms is to extract hand crafted 

discriminative descriptors from diseased gene sequences associated with all types of mutations 

and to provide an effective solution for predicting the type of disease. Change or mutation in the 

gene sequence, alters the structure of the sequence which implies the cause of disease. These 

structural changes are captured as features of a mutational sequence to learn the prediction 

model.  

Four data driven supervised learning algorithms commonly used for classification task 

such as Decision tree, Naïve bayes, Artificial neural network and Support vector machine are 

employed in this research work of genetic disorder prediction.10 fold cross validation is used to 

test the models and results are analyzed. The autonomous models built in this research work are 

(i) Predicting Muscular dystrophy disease using features related to Missense and Non sense 

(Non-synonymous) mutations (ii) Predicting Muscular dystrophy disease using features related 

to silent (synonymous) mutations (iii) Predicting Muscular dystrophy disease using features 

related to Insertion and Deletion Mutations (iv) Predicting Muscular dystrophy disease using 

features related to Splicing Mutations (v) Predicting Muscular dystrophy using pooled features. 
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5.1 Tools and Libraries 

Scikit-learn is an open source machine learning library written in python which provides a range 

of supervised and unsupervised learning algorithms through a consistent interface in python. It is 

a google summer project developed by David cournapeau. Python is a powerful scripting 

language now applied in machine learning and it provides efficient tools for data analysis and 

data mining problems. Various machine learning techniques such as classification, regression 

and clustering algorithms including support vector machines, random forests, gradient boost, K-

means and DBSCAN are designed to work using the python with numerical and scientific 

libraries such as numpy and scipy.  

Scikit learn is largely written in python with some core algorithms written in python to 

achieve performance. Python is a widely used high-level, general-purpose, interpreted, dynamic 

programming language. Main advantages of using python than other programming languages 

such as C++ or Java is its code readability and its syntax to express concepts that requires only 

fewer lines of code. Python is a object-oriented, imperative and functional programming or 

procedural styles that ensures the multiple programming par diagram facility. The advantages of 

the python library is its dynamic type system and  automatic memory management. 

Python interpreters are available for many operating systems, allowing python code to run 

on a wide variety of systems. Python can be used along with the third-party tools like Py2exe or 

Pyinstaller, where the python code is combined into stand-alone executable programs and so the 

python based software is used in distributed environments without a python interpreter. Machine 

learning in python is, 

 Simple and efficient tools for data mining and data analysis. 

 Accessible to everybody and reusable in various contexts. 

 Built on Numpy, Scipy and matplotlib. 

 Opensource, commercially usable. 

Most of the algorithms are built based on the library packages such as pandas, numpy, 

scipy, and matplotlib.  

 

 

 

https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/Third-party_software_component
https://en.wikipedia.org/wiki/Py2exe
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Numpy 

 Numpy is one of the fundamental library in python that supports large n-dimensional 

arrays and matrices. This library has a collection of high level mathematical functions to operate 

on the arrays. It comprises of various packages and tools for integrating other programming 

languages code. Numpy libraries are useful for linear algebraic functions, fourier transform and 

random number capabilities. At the core of the NumPy package, is the ndarray object which n-

dimensional arrays of homogeneous data types, that performs well with the operations performed 

using compiled code. It is a table of numerical elements, all of the same type, indexed by a tuple 

of positive integers. In numpy, the dimensions are the axes. The number of axes is rank. 

Scipy 

Scipy is the fundamental library for scientific computing. Scipy has bindings to low-level 

numerical computations implemented in Fortran, which allows scikit-learn to be both fast and 

easy to use at the same time. SciPy builds on the NumPy array object and is part of the 

NumPystack, which includes tools like Matplotlib, pandas and SymPy, and an expanding set of 

scientific computing libraries. 

Pandas 

 Pandas is a data analysis toolkit based on Python, which makes it possible to access and 

edit tabular data in a fashion similar to that of a relational database. Pandas’ two basic data 

structures are Series and Dataframes, where series is for one dimensional and dataframes is for 

two-dimensional respectively. This library supports the operations in the relational database such 

as selection, insertion, grouping and joining the datasets based on the column values in the table.  

Matplotlib 

Matplotlib is the two dimensional plotting library coded in python that produces 

publication quality figures. Plots, histograms, power spectra, bar charts, error charts, scatter plots 

can be generated using this library with a few lines of code. It has a MATLAB-style 

programming interface with default plot styles. This library has a deep integration with Python.  

The learning problems covered in scikit-learn are Classification, Regression, Clustering, 

Dimensionality reduction, Model selection, Preprocessing. The pre-requisites to install python 

are python 2.6, numpy 1.6.1, scipy 0.9. Anaconda python library is used in this implementation.  
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Classification using scikit-learn 

Supervised machine learning comprises of both regression and classification that refers to the 

problem of inferring a function from labeled training data. Scikit learn provides an object 

oriented interface centered on the concept of Estimator that extracts useful features from raw 

data. Scikit learn consists of a huge array of generalized linear models, that comprises of  

discriminate analysis, naive bayes, logistic regression, K-nearest neighbor, Neural networks, 

support vector machines and decision trees. The features such as feature extraction, feature 

selection, parameter tuning, dimensionality reduction, cross validation and manifold learning in 

scikit learn make the classification of data very flexible and more accurate. 

 

5.2 Model I: Predicting Muscular Dystrophy Disease using Features Related 

to Missense and Non sense (Non-synonymous) Mutations  

The first experiment aims in building the disease identification model using of Non Synonymous 

mutational descriptors. Point mutational features such as Structural, Annotation and Alignment 

descriptors are considered to be the non-synonymous mutational features. 

Feature Extraction  

The missense and nonsense mutational features are based on annotation, structure and 

alignment of the diseased gene sequences. The missense and nonsense mutational features 

includes GeneID, Gene symbol and Chromosome number, Length of the sequence, Alteration 

type, Protein changed, Reference allele, Observed allele, Mutation position, Mutation start 

position, Mutation end position, Position of mutation in gene sequence, amino acid change leads 

to stop codon, stop codon, Position of start codon in cDNA sequence, position of stop codon in 

DNA sequence, the nucleotide composition of A, G, C, T, AT and GC component, alignment 

features. 

R is known to be the most powerful and specialized statistical programming language, and 

supports a vast library of statistics and machine learning algorithms. Most of the features are 

extracted from the gene sequences through R script and is given in the Appendix B. 

Annotation Features: Gene sequences are identified by the attributes like gene identifier and 

symbol of the gene. As many to one relationship occur between gene and the disease, these 

descriptors are considered to differentiate the gene sequence in every disease type. The attributes 

of gene sequences like Gene ID, Gene symbol are identified by using the biomart package in R 
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and are extracted using getgenes(id). Library files such as Biostrings, seqinr are imported to 

perform manipulation in the sequence files. Readfasta() is used to read the fasta file from the 

directory. After the fasta file is read the sequence is converted into the data frame for 

manipulation.   

Example: getGene(id=2010, type="entrezgene", mart=ens) 

The Gene ID is the NCBI gene identifier for the affected phenotype. Some examples are GeneID 

1746 and gene symbol DMD is for Dystrophin gene, GeneID 2010 and gene symbol EMD for 

Emerin gene etc.  

Sequence Length: The Length of the sequence plays an important role in examining the 

difference in length of the sequence. When the insertion or deletion mutation occurs, the length 

of the sequence gets varied automatically. This feature is determined using Length() function by 

converting the fasta file into a data frame.   

Example: 

df<-read.fasta(file = "SH3TC2_cdna_ NM_024577.3.fasta") 

ds<- df[[1]] 

ln<- length(ds) 

where, ds is the data frame of the sequence file and the length of the sequence is found out using 

length() function. 

Alteration Type: The next descriptor alteration type denotes the type of mutation occurred such 

as insertion, deletion and duplications. This feature is captured by hardcoding the mutation type 

to its corresponding numeric values from 1 to 6 such as 1 for missense/nonsense, 2 for 

synonymous, 3 for insertion, 4 for duplication and 5 for deletion and 6 for splicing. 

Mutation position (3): This descriptor points the position of the alteration in the diseased gene 

sequence. The position of mutation in the gene sequence is identified by blasting the mutated 

sequence against the reference gene sequence. Nucleotide blast is used to capture the position of 

gene sequence. Starting and ending position of the alteration in the sequence is captured as 

mutation start position and mutation end position. 

Reference allele and observed allele: The codon or amino acid observed in the normal gene 

sequence constitutes the reference allele and the allele that is observed after alteration is the 

observed allele of the disease gene sequence. To identify the reference allele and observed allele, 

the position of codon is identified with the position of mutation from the mutated sequence file. 
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The first step in finding the observed allele is to read the fasta file and split it into codons. The 

required codon is acquired and altered based on the position information of codon change. Seqinr 

and Biostrings library are inquired for this work. 

 

Splitting the sequence into codons 

cod<-splitseq(ds) 

Splitseq(ds) splits the sequence into codons and cod holds all the codon values. 

cod[199] 

cod[199] gives the codon in the 199th position. 

ori<-cod[cod_pos] 

ori 

To extract the reference allele the codon is retrieved from the specified position from the 

reference gene sequence. 

cod<-splitseq(ds2) 

mut<-cod[cod_pos] 

mut 

To extract the observed allele the codon is retrieved from the specified position from the mutated 

gene sequence gene sequence. 

Amino acid change leads to stop codon: This descriptor states whether the change in the amino 

acid leads to stop codon. It is a Boolean value descriptor that decides the type of mutation 

whether missense or nonsense where in missense amino acid change does not lead to stop codon 

where in nonsense it leads to stop codon. This descriptor is captured as same as the reference and 

observed allele descriptor. 

The first step is to hardcode all the 20 amino acids by assigning the values. The next step is to 

capture the reference allele and to check whether it leads to stop codon using boolean functions.  

if ((mut == "tag") || (mut == "taa") || (mut == "tga")){ 

ref<-0} 

print(ref) 

Protein changed(Y/N): This descriptor results in boolean value that states whether the amino 

acid is altered or not after the occurrence of the mutation.  
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Position of Start and Stop codon: ATG is the start codon and TAG, TAA, TGA are the stop 

codons. The position of the Stop codon reveals the end of the coding part in the sequence. This 

position may be altered with the occurrence of mutation and hence it is noted. match pattern () 

function is employed to identify and capture the position of stop codon. The mutated sequence is 

converted into a string of sequence and the position of the start and stop codons can be retrieved.  

dstartstring<- c2s(ds) 

matchPattern("tag", dstartstring) 

where the data frame is converted into data string using c2s(). Using matchpattern() the position 

of the start and stop codons will be retrieved. 

Nucleotide composition values: The base  composition A, C, G,T are calculated to count the 

number of occurrences of the four different nucleotides (“A”, “C”, “G”, and “T”) in the 

sequence. GC content is the fraction of the sequence that consists of Gs and Cs, i.e. The GC 

content can be calculated as the percentage of the bases in the genome that are Gs or Cs. That is,  

AT content = (number of As + number of Ts)*100/ (genome length) 

GC content = (number of Gs + number of Cs)*100/ (genome length) 

Therefore, six different descriptor values are calculated as the nucleotide composition values. 

Alignment Scores: Alignment scores are considered as the important feature for disease 

prediction. The global pairwise alignment based on edit distance is done with the mutated 

sequence against with the reference cDNA sequence and the three alignment scores are 

calculated using the edit distance scoring method. PairwiseAlignment( ) in R is used to calculate 

the alignment scores. 

 

pairwiseAlignment(s1, s2,substitutionMatrix = nucleotideSubstitutionMatrix(2, -1, 

TRUE),gapOpening = -2, gapExtension = -8) 

 

The PhredQuality measures are calculated with the patternQuality and subjectQuality to examine 

the quality-based match and mismatch bit scores for DNA/RNA. By default patternQuality and 

subjectQuality are PhredQuality(22L). QualitySubstitutionMatrices() is used to examine the 

PhredQuality measures. The substitution scores are calculated by setting the error probability to 

0. Table 5.1 depicts the features and its description. 
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Table 5.1 Features and their Descriptions 

Features Description 

Gene ID Identifier of the gene taken from NCBI 

Gene Symbol Name of the gene involved 

Chromosome Number The chromosome involved in mutation 

Alteration type 
Mutation type such as missense, non sense, silent, 

deletion and duplication 

Protein changed Whether protein altered through mutation 

Observed allele The amino acid present in normal gene 

Reference allele The observed amino acid after mutation 

Mutation Position Position of alteration in cDNA sequence 

Length  Length of the mutated gene sequence 

Mutation start position The starting position of alteration in cDNA sequence 

Mutation end position 
The position where the mutation ends in cDNA 

sequence 

Position  
Mutation Position in gene sequence is identified through 

nucleotide blast against reference gene sequence 

Nucleotide Composition 
Composition of A, C, G, T, AT, GC in mutated 

sequence. 

Position of stop codon Last position of stop codon ATG 

Edit distance scores Alignment scores using edit distance method 

PhredQuality measures Calculated with patternQuality and subjectQuality 

Substitution scores Calculated with the error probability set to 0 or 1 

ConsensusStart The starting position of conserved region 

ConsensusEnd The end position of the conserved region 
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A feature vector of a DMD disease mutated with HGMD accession number HM080103is 

shown below. The codon change is CAG-TAG, amino acid change Gln35Term and the 

nucleotide change 103C>T. Feature vector for a sample gene sequence is given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training dataset 

The features extracted from each disease gene sequence forms a feature vector. Depending on 

the type of mutation the mutational features are varied and the size of the feature vector also 

varies here. Annotation, structure and alignment features are extracted from1000 disease gene 

sequences. 1000 feature vectors of dimension 26 are created and the dataset (NSM) is prepared. 

For each  feature  vector  the  class  label  is  assigned  a  sequence number 1 to 5 according to 

the category of disease. The training data set with instances related to five categories of muscular 

dystrophy that is Duchenne muscular dystrophy, Becker’s muscular dystrophy, Emery-Dreifuss, 

Limb-girdle muscular dystrophy and Charcot marie Tooth disease has been developed. The 

sample training dataset is depicted below. 

GeneID: 1756   GeneSym: 1 

Chr: 23    MutPosition: 103 

SeqLen: 11058  AlterType: 2 

CodonNum: 35  Mutstart: 103 

Mutend:  105    Lenvariant:1 

Proteinchanged: 1   Referalelle:6 

Obseralelle: 0   Posstartcdn: 1  

Posstpcdn: 11056   Aminotostpcdn:1 

Aminostopcdn: 1  editdisscore: 22113  

Qualityscores: 21907.28  Subscoreserr: 18816.67 

A: 33.32    G: 20.75 

C: 23.7     T: 22.23  

GC: 44.45     AT: 55.55 

Label 1 
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1756 1 23 6678 11058 2 6678 6680 6922 1 1 18 0 1

 11056 1 3 22113 21907.28 18816.67 1 6677 33.33 20.75

 23.69 22.22 44.45 55.55 A 

1756 1 23 6721 11058 2 6721 6723 6965 1 1 8 0 1

 11056 1 3 22113 21907.28 18816.67 1 6720 33.32 20.75

 23.69 22.23 44.45 55.55 A 

1756 1 23 6255 11058 2 6253 6255 6986 1 1 18 0 1

 11056 0 0 22113 21907.28 18816.67 1 6254 33.34 20.73

 23.66 22.27 44.38 55.62 B 

1756 1 23 6742 11058 2 6742 6744 7646 1 1 7 0 1

 11056 0 0 22113 21907.28 18816.67 1 6741 33.33 20.73

 23.66 22.28 44.38 55.62 B 

2010 2 23 2 765 1 1 3 250 1 1 13 2

 208 762 0 0 1518 1500.073 1286.257 3 765 20.16

 31.68 24.21 23.95 55.89 44.11 C 

4000 3 1 626 1994 5 627 629 875 1 1 3 17 1

 1992 0 0 3888 3883.749 3328.282 1 625 21.82 29.54

 33.75 14.89 63.29 36.71 C 

825 5 15 77 2466 1 76 78 383 1 1 15 11 1

 2464 0 0 4929 4879.157 4193.204 1 76 26.64 25.75

 26.85 20.76 52.6 47.4 D 

825 5 15 133 2466 1 133 135 439 1 1 1 17 1

 2464 0 0 4929 4879.157 4193.204 1 132 26.68 25.79

 26.8 20.72 52.6 47.4 D 

79628 49 5 680 3867 1 679 681 832 1 1 2 6 1

 3865 0 0 7731 7655.846 6577.915 1 679 22.06 27.05

 27.98 22.91 55.03 44.97 E 

79628 49 5 920 3867 2 919 921 1072 1 1 18 0 1

 3865 1 1 7731 7655.846 6577.915 1 919 22.06 27.05

 27.98 22.91 55.03 44.97 E 

9628 49 5 1585 3867 1 1585 1587 1737 1 1 2 5 1

 3865 0 0 7731 7655.846 6577.914 1 1584 22.03 27.02

 28.01 22.94 55.03 44.97 E 

 



110 
 

Building the model 

The supervised learning techniques namely Naïve Bayes Classifier, Decision tree induction, 

Support vector machine and artificial neural network have been used to learn and are built using 

Scikit learn. The Scikit-Learn library uses NumPy arrays in its implementation, therefore NumPy 

arrays should be created from *.csv files. The data frame is built with the numpy array. It is a 

table of elements usually numbers, all of the same type, indexed by a tuple of positive integers. 

The attributes extracted from the mutated gene sequences related to non-synonymous mutations 

are stored in .csv file which is shown in Appendix - B. 

The following script imports the necessary packages and reads the feature vectors as .csv file and 

normalization is done. The python coding of all the classification algorithms are shown in 

Appendix - C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Import the numpy library into the algorithm with the code 

 import numpy as np /// importing numpy array package 

 

The dataset is stored as comma separated values and therefore genfromtxt() is used to convert it 

into numpy array. 

from numpy import genfromtxt ////converting the .csv file into numpy array 

import numpy as np 

import pandas as pd 

import io 

df=pd.read_csv('C:\Users\HCL\Documents\missense_nonsense_scikit_modified.csv') 

print df 

from numpy import genfromtxt 

my_data = genfromtxt('C:\Users\HCL\Documents\missense_nonsense_scikit_modified.csv', 

delimiter=',') 

X = my_data[:,0:25] 

y = my_data[:,26] 

from sklearn import preprocessing 

normalized_X = preprocessing.normalize(X) 

standardized_X = preprocessing.scale(X) 
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my_data = genfromtxt ('C:\Users\HCL\Documents\Features_sci_G.csv', delimiter=',') 

 

Separate the data from target attributes 

Total number of attributes is 20(excluding Label) it is taken in y axis  

X feature-object matrix and values of the y target variable. 

X = my_data [:,0:25] 

y = my_data [:,26] 

 

The dataset is normalized using min max normalization by transforming the numeric 

values into the range between 0 and 1 which aid in scaling the input attributes for building 

accurate model. The dataset is split into training and testing dataset in the ratio of 80:20. 

 

fromsklearn.cross_validation import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) 

 

The dataset is trained and a model is fitted with the above listed supervised classification 

algorithms using  

classifier.fit(X, y) 

In case of decision tree classifier and Naïve bayes default parameter settings are used 

during classification whereas in Artificial neural network implementation, the hidden layers are 

tuned to gain a stable accuracy. In case of SVM various kernels such as linear, polynomial and 

RBF kernel are employed with different parameter settings for C regularization parameter. In 

case of polynomial and RBF kernels, the default settings for d and gamma are used. In scikit-

learn, an estimator for classification is a Python object that implements the methods fit(X, y) and 

predict(T). 

Performance evaluation 

The task is to predict the disease type the samples are given and from each of the 5 

possible classes on which an estimator is fitted to predict the classes to which unseen samples 

belong. Evaluating the generalization power of the classifiers and to estimate their predictive 

capabilities for unknown samples, a standard k- fold cross-validation technique is used.  As 

dataset comprises of 1000 instances, it is appropriate to use cross validation with K=10. This 10-
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fold cross validation iterates the algorithm 10 times with different groupings of training and 

testing datasets. The performance of trained models measured in terms of classification accuracy, 

precision, recall, F-score, kappa statistic, precision recall curve and ROC curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Various scores are retrieved, the performances of each classifier are analyzed using the 

function classifier. score( ) in scikit learn and the results are tabulated in Table 5.2 and 5.3 and 

illustrated in Fig.5.1. The predictive performance of the disease classification models shows that 

SVM classifier yielded a best accuracy of 84.9%. 

 

Table 5.2 Predictive Performance of the Classifiers  

(Non –Synonymous Mutations) 

 

 

Performance criteria Decision Tree 

Classifier 

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM 

Correctly classified 

Instances 

805 793 698 849 

Incorrectly classified 

instances 

195 207 302 151 

Prediction accuracy 80.5 79.3 69.8 84.9 

>>> print(metrics.confusion_matrix(expected, predicted)) 

[187  13   0   0   0] 

 [ 37 163   0   0  0] 

 [ 0   0  165   30 5] 

 [ 0   0   20 170   10] 

 [ 0   0   6  30 164] 

>>> from sklearn.metrics import accuracy_score 

>>> accuracy_score(expected,predicted) 

0.849 

>>> cohen_kappa_score(expected,predicted) 

0.861 
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Fig.5.1 Prediction Accuracy of the Classifiers  

(Non – synonymous mutations) 

 

Table 5.3 Performance Evaluation of the Classifiers  

(Non-synonymous mutations) 

 

The output of the binary classifier is typically studied with the Precision-recall curves. In 

this multi-class classification work, the target attribute values are binarized and the class values 

are shaped into 1. The precision- recall curve is computed by adding some noisy features and the 

micro-average ROC and ROC area is calculated. The precision- recall curve is plotted for each 

class based on SVM linear classifier. Fig.5.2 shows the precision-recall curve for each class in 

SVM classifier. 
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Performance criteria Decision Tree 

Classifier 

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM 

Prediction accuracy 

(%) 
80.5 79.3 69.8 84.9 

Precision  0.8 0.803 0.689 0.859 

Recall  0.825 0.805 0.678 0.866 

F1 Score  81.9 81.8 69.9 86.1 

Cohen’s Kappa  0.82 0.813 0.692 0.861 

Time taken to build 

the model (in sec)  

8.4 10.7 9.6 7 
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Fig.5.2 Precision-Recall Curve for SVM Classifier 

The above figure insists that class 2 and class 4 have high precision of 0.94 and 1.00 and class 3 

is curved low at the area 0.47. On the average the micro-average curve shows the value of 0.79.  

ROC curve is plotted for SVM linear classifier for each class. Fig.5.3 depicts the ROC curve 

based on SVM classifier in predicting muscular dystrophy. 

 

Fig.5.3 ROC Curve for SVM Classifier 
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Findings 

From the above results, it is observed that the prediction accuracy is high for SVM than 

other algorithms. The precision and Recall measure for SVM is high when compared with other 

learning methods. Overall, the balance accuracy measure is also eminent in SVM when 

measured with other algorithms. The sensitivity and specificity measure for all classes is 

prominent in SVM when compared with other learning techniques. The cohen’s kappa is also 

high in SVM with 0.861 score and the time taken is minimal of 7 seconds. The experiment 

proves that the features designed for building the classifier are more appropriate and suitable for 

disease identification. 

5.3 Model II: Predicting Muscular Dystrophy Disease using Features Related 

to Synonymous Mutations  

In the first experiment, only non-synonymous mutational features are taken into account to 

identify the disease, where the silent mutational features are required to identify the disease that 

is caused due to synonymous mutations. Therefore, in this second work, the codon usage patterns 

are considered as the contributing features for representing the mutated gene sequences. Since 

codon usage patterns are diverse in different gene families, this feature input is a well-chosen 

descriptors for specifying different gene families for all types of diseases. 

Feature Extraction 

A codon is the triplet of nucleotides that code for a specific amino acid. Many to one 

relationship occurs between the codon and amino acid. Many amino acids are coded by more 

than one codon because of the degeneracy of the genetic codes. A total number of codons in a 

DNA sequence counts to 64. Since methionine (ATG) and tryptophan (TGG) have only one 

corresponding codon, they are not counted and are eliminated from the analysis as their RSCU 

values are always equal to 1. The three stop codons (TGA, TAA, TAG) are also not included. 

Accordingly, the number of codons considered is 59. The RSCU features are extracted from 

mutated gene sequences through R script that is created using seqinr() package downloaded from 

www.CRAN.org. 

The differences in the frequency of occurrence of synonymous codons are referred as 

codon usage bias. The formula for calculating RSCU can be explained as, the number of times a 

http://www.cran.org/
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particular codon is observed, relative to the number of times that the codon would be observed in 

the absence of any codon usage bias. 

RSCU values are the number of times a particular codon is observed, relative to the 

number of times that the codon would be observed in the absence of any codon usage bias. 

RSCU is a simple measure of non-uniform usage of synonymous codons in a coding sequence. 

RSCU values are the number of times a particular codon is observed, relative to the number of 

times that the codon would be observed for a uniform synonymous codon usage where all the 

codons for a given amino-acid have the same probability. In the absence of any codon usage 

bias, the RSCU values would be 1.00. A codon that is used less frequently than expected will 

have an RSCU value of less than 1.00 and vice versa for a codon that is used more frequently 

than expected. 

The RSCU carries the value 1.00 if the codon usage bias of that particular codon is absent. 

If the codon is used less frequently than expected, the RSCU values tend to have the negative 

values. Following formula is used to calculate RSCU. 

RSCU = Xij / (1/ni *S {Xij; j=1, ni }) 

whereXij is the number of occurrences of the jth codon for the ith amino acid, and ni is the number 

of alternative codons for the ith amino acid.  

If the synonymous codons of an amino acid are used with equal frequencies, then their RSCU 

values are 1. 

The program adds up the total number of times that the codons for a particular amino acid 

are observed.  It then divides this number by the number of codons for the amino acid, this gives 

the expected number of times that the codons should be observed.  Then for each codon, the 

frequency of observation is divided by the expected frequency.  Sometimes the observed 

frequency will be greater than the expected frequency (RSCU value greater than 1.00), and 

sometimes it will be less (RSCU value less than 1.00). 

Based on the above formula the RSCU values for every codon in the mutated gene 

sequence is calculated with the uco( ) function in R. The calculation is as follows: 

uco(seq, frame = 0, index = c("eff", "freq", "rscu"), as.data.frame = FALSE,NA.rscu = NA) 

Arguments 

Seq   =   coding sequence as a vector of chars  

Frame = an integer (0, 1, 2) giving the frame of the coding sequence  
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Index= codon usage index choice, partial matching is allowed. eff for codon counts, freq for 

codon relative frequencies, and rscu the RSCU index 

as.data.frame = logical. If TRUE: all indices are returned into a data frame. 

NA.rscu =     when an amino-acid is missing, RSCU are no more defined and reported as 

missing values (NA). You can force them to another value (typically 0 or 1) with this argument. 

Likewise, the RSCU values of each and every codon are calculated. Table 5.4 shows an 

example that holds RSCU values of 59 codons for a mutated gene sequence. 

Table 5.4 RSCU Values for 59 Codons 

Codon Value Codon Value Codon Value 

AAA 1.05 CCC 0.97 GGC 0.92 

AAC 0.812 CCG 0.12 GGG 0.75 

AAG 0.948 CCT 1.64 GGT 0.64 

AAT 1.18 CGA 0.87 GTA 0.81 

ACA 1.52 CGC 0.54 GTC 0.93 

ACC 0.76 CGG 0.66 GTG 1.40 

ACG 0.24 CGT 0.63 GTT 0.85 

ACT 1.48 CTA 0.73 TAC 0.61 

AGA 1.84 CTC 0.87 TAT 1.38 

AGC 0.99 CTG 1.41 TCA 1.23 

AGG 1.42 CTT 1.03 TCC 0.91 

AGT 1.36 GAA 1.22 TCG 0.14 

ATA 0.52 GAC 0.81 TCT 1.33 

ATC 1.10 GAG 0.77 TGC 1.16 

ATT 1.36 GAT 1.18 TGT 0.833 

CAA 0.87 GCA 1.23 TTA 0.71 

CAC 0.86 GCC 1.18 TTC 0.64 

CAG 1.13 GCG 0.15 TTG 1.23 

CAT 1.14 GCT 1.42 TTT 1.63 

CCA 1.25 GGA 1.67   
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Training Dataset 

The RSCU values are derived for 59 codons from each mutated gene sequence, which   forms a 

feature vector with 59 elements for training dataset for classification task. Since the corpus 

consists of 1000 sequences of 5 types of Muscular dystrophy diseases, a training set (SYM) with 

1000 feature vectors has been created and for each feature vector the class label is assigned from 

1 to 5 indicating the five types of muscular dystrophy diseases. The sample training dataset is 

depicted below. 

 

 

  

1.0511945 0.8121212 0.9488055 1.1878788 1.52 0.76 0.24 1.48

 1.8484848 0.9917355 1.4242424 1.3636364 0.5263158 1.1052632

 1.3684211 0.8701299 0.8636364 1.1298701 1.1363636 1.2519084

 0.9770992 0.1221374 1.648855 0.8787879 0.5454545 0.6666667

 0.6363636 0.7384615 0.8703297 1.410989 1.0285714 1.2248062

 0.8186528 0.7751938 1.1813472 1.2394366 1.1830986 0.1502347

 1.42723 1.6785714 0.9285714 0.75 0.6428571 0.8121827

 0.9340102 1.4010152 0.8527919 0.6129032 1.3870968 1.2396694

 0.9173554 0.1487603 1.338843 1.1666667 0.8333333 0.7120879

 0.6419753 1.2395604 1.3580247 1 

1.0511945 0.8121212 0.9488055 1.1878788 1.52 0.76 0.24 1.48

 1.8484848 0.9876543 1.4242424 1.3580247 0.5263158 1.1052632

 1.3684211 0.8701299 0.8636364 1.1298701 1.1363636 1.2519084

 0.9770992 0.1221374 1.648855 0.8787879 0.5454545 0.6666667

 0.6363636 0.7384615 0.8703297 1.410989 1.0285714 1.2248062

 0.8229167 0.7751938 1.1770833 1.2394366 1.1830986 0.1502347

 1.42723 1.6785714 0.9285714 0.75 0.6428571 0.8121827

 0.9340102 1.4010152 0.8527919 0.6031746 1.3968254 1.2592593

 0.9135802 0.1481481 1.3333333 1.1666667 0.8333333 0.7120879

 0.6419753 1.2395604 1.3580247 2 

0.2 1.2380952 1.8 0.7619048 0.1111111 2.3333333 0.5555556 1

 -1 2.3478261 0.4761905 0.4347826 0.1875 2.625 0.1875 0.05

 1.3846154 1.95 0.6153846 0.5 2.25 0.5 0.75 0.2857143 2.952381

 1.4285714 0.8571429 0.1643836 0.8219178 4.2739726 0.4931507

 0.1971831 1.3333333 1.8028169 0.6666667 0.6101695 1.9661017

 0.4745763 0.9491525 0.4761905 1.5238095 1.6190476 0.3809524

 0.1290323 0.9032258 2.8387097 0.1290323 1.6363636 0.3636364

 0.5217391 1.3913043 0.5217391 0.7826087 2 -1 -1 1.25

 0.2465753 0.75 3 
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Building the Model 

The second experiment is conducted by learning the above SYM dataset with the standard 

supervised pattern learning techniques, Naïve Bayes Classifier, Decision tree induction, 

Artificial neural network and Support vector machine (SVM) by tuning the parameters. As 

specified in first experiment the dataset is converted in numpy arrays and then it is normalized by 

scaling the input attributes. The below depicted script builds a decision tree classifier model in 

Scikit learn environment. 

 

 

 

 

 

 

 

0.6551724 1.6190476 1.3448276 0.3809524 1.4358974 1.7435897

 0.4102564 0.4102564 1.3953488 1.4444444 0.8372093 0.8888889

 0.1914894 1.8510638 0.9574468 0.3783784 1.6190476 1.6216216

 0.3809524 1.025641 1.025641 0.8205128 1.1282051 0.4186047

 0.9767442 1.9534884 0.4186047 0.3050847 1.9322034 2.9491525

 0.6101695 0.3666667 1.0526316 1.6333333 0.9473684 1.0909091

 1.8181818 0.1818182 0.9090909 1.0196078 1.1764706 1.0196078

 0.7843137 0.1818182 1.0909091 1.8181818 0.9090909 1.12 0.88

 0.5555556 1.4444444 0.2222222 1.4444444 1.625 0.375 -1

 1.5652174 0.2033898 0.4347826 4 

0.58064516 1.14285714 1.41935484 0.85714286 1.11627907 1.72093023

 0.27906977 0.88372093 2.015625 1.19277108 3.46875 0.75903614

 0.62790698 1.6744186 0.69767442 0.46808511 1 1.53191489 1

 1.36507937 1.23809524 0.28571429 1.11111111 0.09375 0.09375

 0.328125 -1 0.22222222 1.05555556 2.22222222 0.77777778

 0.66666667 1.86666667 1.33333333 0.13333333 1 1.61904762

 0.04761905 1.33333333 0.91566265 1.25301205 1.15662651 0.6746988

 0.56 0.88 1.92 0.64 0.92307692 1.07692308 1.30120482 1.30120482

 0.21686747 1.22891566 1.10344828 0.89655172 0.38888889 1.33333333

 1.33333333 0.66666667 5 
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Performance Evaluation 

The performance of trained models is evaluated using the same 10-fold cross validation 

technique and measured in terms of various metrics as in the terms of previous case. The 

predictive performance of the disease classification models shows that decision tree classifier 

yielded a best accuracy of 86% and the results are tabulated in Table 5.5 and predictive 

performance graph is shown in Fig.5.4. 

# summarize the fit of the model 

print(metrics.classification_report(expected, predicted)) 

print(metrics.confusion_matrix(expected, predicted)) 

 

 

 

import numpy as np 

import pandas as pd 

df=pd.read_csv('C:\Users\HCL\Documents\RSCU.csv') 

from numpy import genfromtxt 

my_data = genfromtxt('C:\Users\HCL\Documents\RSCU.csv', delimiter=',') 

X = my_data[:,0:58] 

y = my_data[:,59] 

from sklearn import preprocessing 

normalized_X = preprocessing.normalize(X) 

standardized_X = preprocessing.scale(X) 

from sklearn import metrics 

from sklearn.tree import DecisionTreeClassifier 

model = DecisionTreeClassifier() 

model.fit(X, y) 

print(model) 

expected = y 

predicted = model.predict(X) 
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Table 5.5 Predictive Performance of the Classifiers  

(Synonymous Mutations) 

 

 

 

Fig.5.4 Predictive Accuracy of the Classifiers  

(Synonymous mutations) 

 

The performances of the classifiers are evaluated and the measures such as prediction 

accuracy, precision, recall, F1- score, cohen’s kappa and Time taken to build the model are 

calculated and tabulated in Table 5.6. The precision-recall curve is computed for each class 

based on the decision tree classifier. Fig.5.5 shows the precision-recall curve for each class in 

decision tree classifier. 
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Performance 

criteria 

Decision Tree 

Classifier 

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM 

Correctly classified 

Instances  

860 833  840 846 

Incorrectly 

classified instances  

140 167 160 154 

Prediction accuracy  86 83.33 84  84.6 
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Table 5.6 Performance Evaluation of the Classifiers  

(Synonymous mutations) 

 

Performance 

criteria 

Decision Tree 

Classifier 

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM 

Prediction accuracy  86 83.33 84 84.6 

Precision  0.86  0.831 0.835  0.841 

Recall  0.854 0.83 0.841  0.85 

F1 Score  85.6  83.1 83.3 84.8 

Cohen’s Kappa  0.86  0.81  0.83 0.84 

Time taken to build 

the model (in sec)  

7.47  11.7 12.7 10.5 

 

Fig.5.5 Precision- Recall Curve for Decision Tree Classifier 
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Fig.5.6 ROC Curve for Decision Tree Classifier 

ROC Curve in the above figure shows that roc curve for class 0 and 4 has low range and it is 

elevated from 2 and have a high precision. ROC Curve is plotted for decision tree classifier. 

Fig.5.6 depicts the ROC curve based on decision tree classifier. 

 

Findings 

The models built in this experiment aids in classifying type of muscular dystrophy using 

mutated gene sequences by capturing RSCU features of silent mutations. Decision tree classifier 

elevated its accuracy to 86% and the precision, recall measure is also high for the decision tree 

classifier than other classifiers. Less time is taken to build the decision tree model. These models 

can facilitate in investigating the changes in protein folding and function. 
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5.4 Model III: Predicting Muscular Dystrophy Disease using Features Related 

to Insertion/Duplication, Deletion Mutations 

Insertions/Duplications and Deletions alter the structure of the sequence and throws a heavy 

impact and therefore, in the third experiment imperative extrinsic and intrinsic descriptors are 

considered for learning the model using supervised classification algorithms.  

Feature Extraction 

The exonic and intronic features are considered from diverse gene families, to extract the 

well-defined descriptors related to insertion, deletion and duplication mutations in the mutated 

gene sequences. Code is written using R for extracting most of the descriptor values from the 

mutated gene sequences. 

 

 

 

 

 

 

Annotation Features: Gene sequences are identified by the attributes like gene identifier and 

symbol of the gene. As many to one relationship occur between gene and the disease, these 

descriptors are considered to differentiate the gene sequence in every disease type. The attributes 

of gene sequences like Gene ID, Gene symbol are identified by using the bio mart package in R 

and are extracted using get genes(id). The Gene ID is the NCBI gene identifier for the affected 

phenotype. Some examples are GeneID 1746 and gene symbol DMD is for Dystrophin gene, 

GeneID 2010 and gene symbol EMD for Emerin gene etc.  

Alteration Type: The next descriptor alteration type denotes the type of mutation occurred such 

as insertion, deletion and duplications. This feature is captured by hardcoding the mutation type 

to its corresponding numeric values from 3 to 5 such as 3 for insertion, 4 for duplication and 5 

for deletion. 

Sample Coding sequence of DMD gene 

1                            10                                  20                                30                                40                     50                    60                            70  80 90 100                  109  

ATGCTTTGGTGGGAAGAAGTAGAGGACTGTTATGTTGATACCACCTATCCAGATAAGAAGTCCATCTTAATGTACATCACATCACTCTTCCAAGTTTTGCCTCAACAAGTGA 
|----Exon1----------|----------Exon 2------------------|-------Exon 3--------|-----------------------Exon 4------------------------|------Exon5-----|----Exon 6----|Exon 7-------| 
 
When deletion occurs in exon 2 and 3 
1                            10                                  20                                30                                40                     50                    60                                    74    

ATGCTTTGGTGGGACCAGATAAGAAGTCCATCTTAATGTACATCACATCACTCTTCCAAGTTTTGCCTCAACAAGTGA 
|----Exon1----------|-----------------------Exon 4------------------------|------Exon5-----|----Exon 6----|Exon 7---------| 
 
 

Gene Id: 1746  No. of Exons deleted: 2 
Gene Symbol: DMD  Starting position of exon: 14 
Sequence Length: 74  Ending position of exon: 47 
Alteration Type: Internal exon Inframe/ outframe: Inframe 
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Gene Starting position and Gene Ending position: A chromosome is comprised of several 

genes and every gene has its starting and ending position. If an insertion/duplication or deletion 

mutation occurs in a sequence, then there may be a change in the gene’s starting or ending 

position, hence these features aids in classifying the disease type. Nucleotide blast is used to 

capture the starting position and ending position of gene by aligning the sequence with its 

reference gene sequence.  

Sequence Length: The Length of the sequence plays an important role in examining the 

difference in length of the sequence. When the insertion or deletion mutation occurs, the length 

of the sequence gets varied automatically. This feature is determined using Length() function by 

converting the fasta file into a data frame. 

Number of Exons inserted/deleted: Severe effect on the deletion of exons leads to DMD and 

mild deletion of exons will results in BMD. While gross insertions and gross deletions occurred, 

the severity of the disease is determined with number of exons inserted or deleted. This 

descriptor is calculated by using the deletion region information column in the HGMD.  

Exon and intron boundary: Every gene sequence is comprised of coding (exonic) and non 

coding (intronic) regions. Boundary of exonic and intronic region gets altered when 

Insertion/duplication or deletion of exons occurs and so, these descriptors are captured to identify 

the differences in the boundary between the normal and the diseased sequences. By visualizing 

the sequences in geneious pro these descriptors are captured.  

Deletion type: If the sequence can be still read after deletion mutation occurs, then it is 

considered as inframe deletion. In outframe deletion type, the sequence cannot be read after the 

deletion mutation occurs. Deletion type is a contributive feature in identifying the type of the 

disease as in some diseases like BMD, where the sequence can be still read after deletion and in 

some diseases like DMD, the sequence cannot be read after deletion as it is outframe. This 

feature is captured by translating the diseased sequences into its corresponding amino acid 

sequence. Splitseq (), tablecode () functions from biostrings, seqinr packages are used to capture 

this descriptor. 

Exon type:  Depending on location of the exon, the type of exon may be Initial, Internal, 

Terminal and Single exons. The mutation in each type of exon has its own severity which aids in 

classifying the disease type. This discriminative feature is captured using geneious pro tool. 
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Conservation score: The structure or the function of the sequence is identified by calculating the 

conservation score by aligning the sequence with all organisms. University of California Santa 

Cruz (UCSC) genome browser is employed to calculate the conservation score.  

Protein Coding Region score: The score of the protein coding region is calculated with coding 

potential calculator based on the sequence features to distinguish protein coding from non coding 

regions. When a deletion occurs in an exon the protein coding region score decides the severity 

of deletion on the sequence. 

Nucleotide composition values: The base  composition A, C, G,T are calculated to count the 

number of occurrences of the four different nucleotides (“A”, “C”, “G”, and “T”) in the 

sequence. GC content is the fraction of the sequence that consists of Gs and Cs, i.e. The GC 

content can be calculated as the percentage of the bases in the genome that are Gs or Cs. That is,  

AT content = (number of As + number of Ts)*100/ (genome length) 

GC content = (number of Gs + number of Cs)*100/ (genome length) 

Therefore six different descriptor values are calculated as the nucleotide composition values. 

Stop codon position: The position of the Stop codon reveals the end of the coding part in the 

sequence. This position may be altered with the occurrence of mutation and hence it is noted. 

match pattern () function is employed to identify and capture the position of stop codon.  

Alignment Scores: Alignment scores are considered as the important feature for disease 

prediction. The global pairwise alignment based on edit distance is done with the mutated 

sequence against with the reference cDNA sequence and the three alignment scores are 

calculated using the edit distance scoring method. The PhredQuality measures are calculated 

with the patternQuality and subjectQuality to examine the quality-based match and mismatch bit 

scores for DNA/RNA. The substitution scores are calculated by setting the error probability to 0.  

Table 5.7 depicts the IDM features and their descriptions. 
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Table 5.7 IDM Features and their Descriptions 

Features Description 

Gene ID Identifier of the gene taken from NCBI 

Gene Symbol Name of the gene involved 

Chromosome Number The chromosome involved in mutation 

Alteration type 
Mutation type such as missense, non sense, silent, 

deletion and duplication 

Gene start position The starting position of the gene  

Gene end position The starting position of the gene  

Length  Length of the mutated gene sequence 

Exon Boundary The position of inserted or deleted exons boundary  

Intron Boundary The position of inserted or deleted introns boundary 

Deletion Type Deletion type whether inframe or outframe 

No. of Exons Deleted Number of exons deleted or inserted 

Exon Type 
Type of exon. Initial, Internal, Terminal and Single 

exons 

Starting position of Exon The starting position of the Exon 

Ending position of Exon The ending position of the Exon  

Nucleotide Composition 
Composition of A, C, G, T, AT, GC in mutated 

sequence. 

Position of stop codon Last position of stop codon ATG 

Edit distance scores Alignment scores using edit distance method 

PhredQuality measures Calculated with patternQuality and subjectQuality 

Substitution scores Calculated with the error probability set to 0 or 1 
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Feature vector for a sequence is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training Dataset 

The above twenty-three features are extracted from each diseased gene sequence and a dataset 

(IDM) with 1000 feature vectors is created. The sample training dataset is depicted below. 

 

  

Gene ID   : 1746 

Gene Symbol   : DMD 

Alteration type  : 2 

Length    : 74 

Exon Boundary  : 345 

Intron Boundary  : 654 

Deletion Type   :  Inframe 

No. of Exons Deleted  :  2 

Exon Type   : Internal exon 

Starting position of Exon : 14 

Ending position of Exon : 47 

Conservation Score  :  1.493 

Protein Coding region score   :  24.9 

Nucleotide Composition :  A - 33.33 T-20.75 G-23.7 C-22.22 AT- 44.45 

GC-55.55 

Edit distance scores  : 22113 

PhredQuality measures : 21907.28 

Substitution scores  :  18816.67 
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Building the Model 

The models demonstrated in section 5.2 and 5.3 concentrates on non-synonymous and 

synonymous mutations where as in this experiment IDM dataset is employed in building the 

disease classification model. Numpy arrays are generated based on the IDM related features. The 

dataset is normalized using min max normalization. Feature object matrix is created and target 

value has been set. The same classification algorithms are adopted to build the models. In case of 

decision tree classifier and Naïve bayes default parameter settings are used during classification 

whereas in Artificial neural network implementation, the hidden layers are tuned to gain a stable 

accuracy. In case of SVM, Radial basis kernel performed well with the cost value of 1 and 

gamma value 0.016.The number of support vectors created by this model is 90. 

1756 1 11058 2 74 345 654 0 2 14 47

 1.493 24.9 22113 18816.67 33.33 20.75 23.7 22.22 44.45 55.55 1 

1756 1 10409 5 7 1 7 2 649 245 893

 15624 18022.56 15110.32 33.33 20.79 23.79 22.1 44.58 55.42 1 

1756 1 10524 5 3 10 12 1 522 1205 1727

 16774 18710.54 15766.83 33.16 21 23.65 22.19 44.65 55.35 2 

1756 1 8799 5 13 16 29 1 2258 2057 4315 -

476 8391.182 5930.44 32.8 20.98 23.87 22.35 44.85 55.15 2 

2010 2 715 5 1 5 5 0 50 648 697

 1028 1206.958 1006.864 19.86 32.87 23.78 23.5 56.64 43.36 3 

2010 2 503 5 2 4 5 0 261 436 697 -

1 092 -61.17883 -201.9393 17.3 35.19 23.26 24.25 58.45 41.55 3 

10585 12 1991 5 2 19 20 0 1052 2094 3146

 1956 2923.671 2366.496 19.49 27.27 29.18 24.06 56.45 43.55 4 

10585 12 1939 5 2 18 19 0 304 1967 2271

 1436 2612.63 2070 20.17 27.59 28.83 23.41 56.42 43.58 4 

5376 44 504 4 1 2 2 0 20 536 556

 796 863.1859 728.0229 17.86 30.36 24.21 27.58 54.56 45.44 5 

5376 44 966 4 4 2 5 0 483 209 691 -

2900 -984.7863 -1119.978 18.01 30.64 23.6 27.74 54.24 45.76 5 
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An example of an estimator is the class sklearn.svm.SVC that implements support vector 

classification. The constructor of an estimator takes as arguments the parameters of the model. 

 

 

 

 

 

The implementation is based on libsvm. 

 

from sklearn import metrics 

from sklearn.svm import SVC 

estimator = SVC(kernel = ‘rbf’) 

 

Cross validation iterator 

from sklearn.cross_validation import ShuffleSplit 

cv = ShuffleSplit(X_train.shape[0], n_iter=10, test_size=0.2, random_state=0) 

 

Applying Cross validation on the training set 

The sklearn provides an object that, given data, computes the score during the fit of an estimator 

on a parameter grid and chooses the parameters to maximize the cross-validation score. This 

object invokes an estimator while construction and depicts an estimator API. 

from sklearn import metrics 

from sklearn.svm import SVC 

# fit a SVM model to the data 

model = SVC() 

model.fit(X, y) 

print(model) 

# make predictions 

expected = y 

predicted = model.predict(X) 

 

Class sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, 

shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, 

verbose=False, max_iter=-1, decision_function_shape=None, random_state=None) 
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Evaluating on the test dataset 

 

 

 

 

 

Performance Evaluation 

The predictive performance of the disease classification models have been evaluated as done in 

earlier experiments and shows that SVM classifier yielded a best accuracy of 86.3% and the 

results are tabulated in Table 5.8 and Table 5.9 and drawn in figures Fig.5.7. 

 

Table 5.8 Predictive Performance of the Classifiers  

(Insertion, Deletion and Duplication Mutations) 

 

Performance 

criteria 

Decision Tree 

Classifier 

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM  

Correctly classified 

Instance  

853 856 831  863 

Incorrectly classified 

instance  

147 144 169 137 

Prediction accuracy  85.3 85.6 83.1 86.3 

 

 

from sklearn.grid_search import GridSearchCV 

gammas = np.logspace(-6, -1, 10) 

classifier = GridSearchCV(estimator=estimator, cv=cv, param_grid=dict(gamma=gammas)) 

classifier.fit(X_train, y_train) 

 

classifier.score(X_test, y_test) 

Train final model on whole dataset 

classifier.fit(X, y) 
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Fig.5.7 Predictive Accuracy of the Classifiers  

(Insertion, Deletion and Duplication Mutations) 

 

Table 5.9 Performance Evaluation of the Classifiers (IDD mutations) 

Performance 

criteria 

Decision Tree 

Classifier 

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM 

Prediction accuracy  85.3 85.6 83.1 86.3 

Precision  0.853 0.86 0.831 0.883 

Recall  0.85 0.8 0.83 0.89 

F1 Score  85.3 85.9 83.1 88.3 

Cohen’s Kappa  0.88 0.862 0.81  0.89 

Time taken to build 

the model (in sec)  

8.7 9.6 11.7 7.6 

 

The precision- recall curve is plotted for each class based on SVM linear classifier Fig.5.8 shows 

the precision-recall curve for each class in SVM classifier. Fig.5.9 shows the ROC curve for each 

class in SVM classifier.  
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Fig.5.8 Precision Recall Curve for SVM Classifier 

 

Fig.5.9 ROC Curve SVM Classifier 
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Findings 

It is perceived from the above results the kappa statistic and prediction accuracy is high 

for SVM than other algorithms. The precision and recall measure for SVM is high when 

compared with other learning methods. Overall, the balance accuracy measure is also prominent 

in SVM when measured with other algorithms. The cohen’s kappa is also high in SVM with 

0.861 score and the time taken is minimal of 7.6 seconds. 

5.5  Model IV: Predicting Muscular Dystrophy Disease using Features Related 

to Splicing Mutations 

The exons are formed by splicing out the introns during transcription and the mutations occurred 

while spicing should be considered to know the alteration after the splicing process. The key idea 

in this experiment is to spot out discriminative descriptors from diseased gene sequences based on 

splicing variants and to provide an effective machine learning solution for predicting the type of 

muscular dystrophy disease with the splicing mutations. SNP, Gene and Exon-based 

discriminative features are identified and utilized to train the model.  

In this experiment, the cloned gene sequences are synthesized based on the mutation 

position and its location on the chromosome. For instance, in the database, the mutational 

information for splicing mutation is specified as IVS1-5 T>G indicates (IVS- intervening 

sequence or introns), 1st intron and 5 nucleotides before the consensus intron site AG, where the 

variant occurs in nucleotide G altered to T. IVS (+ve) denotes forward strand 3’ – positive 

numbers from G of donor site invariant and IVS (-ve) denotes backward strand 5’ – Negative 

numbers starting from G of acceptor site. 

Feature Extraction 

The discriminative descriptors aids in diagnosing the identification of exonic single base 

substitutions that modulate splicing. Descriptors are the arrays of features that were derived 

based upon the genomic coordinate of the substitution in the human reference gene. Gene id, 

Gene symbol, chromosome number, variant exon number, exon boundary, Intron boundary, 

sequence length, splice site distance, PhyloP and PhastCons score, ESR Change, Donor site 

score, Acceptor site score, Branch site score, Splice site scores, Distance of alteration from 5’ 

splice site, Distance of alteration from 3’ splice site, scoring splice site with PWM, flanking 
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intron size, GC content, Exon size, Constitutive exon, Exon type and coding region score are the 

twenty four features identified and captured. 

Variant exon number: Variant exon number gives the mutant exon’s number in the target 

isoforms. As the exonic splicing features are captured in this work this exon number gives the 

position of the exon that is altered while splicing. This feature is captured through geneious pro 

tool.  

Splice site distance: The distance of the substitution from the variant to the nearest splice site is 

identified and recorded as splice site distance. The splice site distance aids in identifying the 

severity of the disease.  

PhyloP and PhastCons score: PhyloP is an evolutionary conservation element that computed the 

base-wise sequence conservation score of single base substitution which is calculated based on 

multiple sequence alignment. PhastCons is a base wise conservation element examined from 

probability for substitution site, based on multiple alignments. PhyloP and PhastCons scores are 

downloaded from the UCSC Genome Browser. 

ESR Change: The regulatory sequences located within the exon and promoting exon inclusion 

are referred to as Exonic Splicing Regulatory (ESR) elements. ESR change identifies the change 

in the frequency of ESR elements with respect to single variants. To strengthen or repress the 

elements in the sequences Exonic Splicing Enhancers (ESE) and Exonic Splicing Silencers 

(ESS) is calculated using ESE finder tool. The ESR changes helps in recognizing the adjacent 

splice site. Counting the occurrences of nucleotides at each position within the 5’ splice site is 

done using PWM – Position Weight Matrices that is calculated as log odds score.  

Site scores (3): The 3 sites Acceptor site, branch site and donor site are altered while splicing 

and therefore the cut off score of these sites should be calculated to observe the change in the 

scores after alteration. These scores are calculated using ESE finder tool. 

Scoring splice site with PWM: PWM – It is necessary to identify the score of the splice sites 

with the Position Weight Matrices (PWM). PWM will count the occurrences of nucleotides at 

each position within the 5’ splice site. It is calculated as log odds score.  

Flanking intron size: Flanking intron size is the length of the base pairs of the upstream and 

downstream introns nearby the target exon. The intron size is captured using geneious pro tool. 

The features and their description are depicted in Table 5.10. 
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Table 5.10 Features and their Descriptions 

Features Description 

Gene ID Identifier of the gene taken from NCBI 

Gene Symbol Name of the gene involved 

Chromosome Number The chromosome involved in mutation 

Variant Exon number Mutant exon’s number in the target isoforms 

Length  Length of the mutated gene sequence 

Exon Boundary The position of inserted or deleted exons boundary  

Intron Boundary The position of inserted or deleted introns boundary 

Splice site distance 
The distance of the substitution from the variant to the 

nearest splice site 

PhyloP and PhastCons 

score 

Evolutionary conservation element that computed the 

base-wise sequence conservation score 

ESR Change change in the frequency of ESR elements 

Site scores (3) Acceptor Site, Branch site and Splice site scores 

Distance of alteration 

from 5’ splice site 
Composition of A, C, G, T, AT, GC in mutated sequence. 

Distance of alteration 

from 3’ splice site 
Last position of stop codon ATG 

Scoring splice site with 

PWM 
Score of the splice sites with the Position Weight Matrices 

Flanking intron size 
Length of the base pairs of the upstream and downstream 

introns 

Exon size Number of exons 

Exon type Type of exon. Initial, Internal, Terminal and Single exons 

Coding region score Score of the coding region 

GC content Calculated with the error probability set to 0 or 1 
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Sample feature values are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training Dataset 

Position of the spliced introns and exons are carefully examined and gene, exon and snp features 

are extracted as described above from 1000 gene sequences. 1000 feature vectors of dimension 

24 are created and the dataset (SPM) is prepared. For each feature vector, the class label is 

assigned a sequence number 1 to 5 designating the category of muscular dystrophy disease. The 

sample training dataset is depicted below. 

Gene ID    : 2010 

Gene Symbol    : EMD 

Chromosome Number  : 23 

Variant Exon number   : 1 

Length    : 764 

Exon Boundary   : 1 

Intron Boundary   :  331 

Splice site distance  :  32 

PhyloP and PhastCons score : 1.493 

Acceptor Site    :  -7.3 

Branch site    :  -32.7 

Donor site score   : -4.39 

Distance of alteration from 5’ splice site :64 

Distance of alteration from 3’ splice site :80 

Exon size    : 330 

Exon type    : Internal 

Coding region score  : 27.26 

GC content    : 1 
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Building the Model 

In this experiment the extracted descriptors from the diseased gene sequences are stored in *.csv 

files. The .csv files are converted into a numpy array as scikit – learn library accepts a numpy 

array in its implementation. The data frame is built with the numpy array. Normalizing the data 

by transforming the feature values into the range between 0 and 1 aid in scaling the input 

attributes for a model. Supervised learning algorithms - Naïve bayes, decision tree, ANN, SVM 

are employed to develop models using python library framework in scikit learn. While learning 

SVM model, the cost, gamma and kernel parameters are tuned to attain good results. The  python 

script for building the model is shown below. 

 

1756 1 23 11058 440 1 4 0 78 2 11254 32

 0 0 0 0.953 2235 26.45 1 

1756 1 23 11058 440 1 4 0 78 2 11254 19

 0 0 0 1.493 2235 26.45 1 

1756 1 23 11058 2381 0 1 2 275 2 11254 2

 -7.3 -32.7 -4.39 3.79 2234 27.26 2 

1756 1 23 11058 1601 0 17 19 176 2 11254 2

 -14.72 -39.78 -4.33 1.403 2234 27.23 2 

2010 2 23 765 263 0 1 1 330 2 738 81

 -8.92 3.12 -8.733 0.838 764 6.23 3 

2010 2 23 765 81 0 1 3 330 2 738 108

 -16.25 -18.72 -11.15 0.462 764 6.177 3 

3730 4 23 2742 40 0 10 13 135 2 2135 60

 -12.85 -23.5 -10.1 -0.593 2741 11.74 4 

3730 4 23 2742 763 0 1 1 357 2 2135 168

 -24.28 -43.2 -10.07 3.235 2741 11.74 4 

4359 40 1 747 448 0 4 5 136 2 713 6

 -3.43 -9.34 -0.85 4.312 746 3.32 5 

4359 40 1 747 586 0 3 3 214 2 713 2

 -16.8 -38.84 -10.63 4.754 746 3.39 5 



139 
 

 

 

 

 

 

 

 

 

 

 

 

Performance Evaluation 

The training was performed using SPM dataset and the predictive performance of the disease 

classification shows that SVM classifier attains an accuracy of 86.7%. The results are tabulated 

in Table 5.11 and depicted in Fig.5.10. 

Table 5.11 Predictive Performance of the Classifiers  

(Splicing Mutations) 

 

Performance criteria  Decision Tree 

Classifier  

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM 

Correctly classified 

instances  

849 835 813 867 

Incorrectly classified 

instances  

151 165 187 133 

Prediction accuracy  84.9 83.5 81.3 86.7 

 

from sklearn import metrics 

from sklearn.svm import SVC 

# fit a SVM model to the data 

model = SVC() 

model.fit(X, y) 

print(model) 

# make predictions 

expected = y 

predicted = model.predict(X) 

# summarize the fit of the model 

print(metrics.classification_report(expected, predicted)) 

print(metrics.confusion_matrix(expected, predicted)) 
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Fig.5.10 Predictive Accuracy of the Classifiers  

(Splicing mutations) 

 

The performances of the classifiers are evaluated and the measures such as prediction 

accuracy, precision, recall, F1- score, cohen’s kappa and Time taken to build the model are 

calculated and tabulated in Table 5.12.  

 

Table 5.12 Performance Evaluation of the Classifiers  

(Splicing Mutations) 

 

Performance criteria  Decision Tree 

Classifier  

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM 

Prediction accuracy  84.9% 83.5% 81.3% 86.7% 

Precision  0.849 0.83 0.81 0.86 

Recall  0.846 0.815 0.8 0.87 

F1 Score  85.1 82.9 79.9 86.7 

Cohen’s Kappa  0.841 0.81 0.802 0.867 

Time taken to build the 

model (in sec)  

7 8 13.6 6.5 

 

The output of the binary classifier is typically studied with the Precision-recall curves. In this 

multi-class classification work, the target attribute values are binarized and the class values are 

shaped into 1. The precision- recall curve is computed by adding some noisy features and the 

micro-average ROC and ROC area is calculated. The precision- recall curve is plotted for each 

class based on SVM linear classifier. Fig.5.11 shows the precision-recall curve for each class in 

SVM classifier. 
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Fig.5.11 Precision Recall Curve SVM Classifier 

The above figure insists that class 2, 3 and class 4 have high precision of 1.00 and class 0is 

curved low at the area 0.54. On the average the micro-average curve shows the value of 0.91. 

ROC curve is plotted for SVM linear classifier for each class. Fig.5.12 depicts the ROC curve 

based on SVM classifier in predicting muscular dystrophy. 
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Fig.5.12 ROC Curve SVM Classifier 

Findings 

From the above results it is observed that the prediction accuracy of 86.7% is attained from SVM 

classifier. High precision and Recall measures of about 0.80 and 0.87 is attained for SVM 

classifier. The cohen’s kappa with 0.867 score and the time taken of 6.5 seconds is promotable in 

SVM classifier. Overall, the balance accuracy measure is also prominent in SVM when 

measured with other algorithms. 
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5.6  Model V: Predicting Muscular Dystrophy Disease using Features Related 

to Aggregated Mutational Descriptors 

Finally, a data driven model is developed by aggregating the features related to all kinds of 

mutations for predicting the disease precisely. In all the previous works, autonomous disease 

identification models were built based on the specific mutational features. However, the type of 

mutation caused in the gene sequence may not be known explicitly and hence all the mutational 

features are accumulated to facilitate efficient learning for predicting the disease caused by any 

mutation.  

Training Dataset 

So far in the literature no attempt was made to build disease identification model by aggregating 

all kind of mutational descriptors and hence it is significant to build this type of disease 

identification model. In this experiment, AGM dataset is formed by pooling all the mutational 

features described in previous sections. 106 evocative features are cumulated by eliminating the 

repetitive features without losing information from 132 features and feature vectors are created 

with labels 1 to 5 for learning the disease prediction models. Another dataset is formed by 

selecting the subset of attributes using the information gain selection attribute method and 73 

highly ranked attributes are chosen as feature vectors. 

 

  

1756 1 23 63 11058 4 163 487 489 732 1

 1 18 8 1 11056 0 0 22106 21901.15

 18806.38 1 486 33.33 20.75 23.7 22.22 44.45 55.55

 1.0511945 0.8121212 0.9488055 1.1878788 1.52 0.76 0.24

 1.48 1.8484848 0.9876543 1.4242424 1.3580247 0.5263158

 1.1052632 1.3684211 0.8701299 0.8636364 1.1298701

 1.1363636 1.2519084 0.9770992 0.1221374 1.648855

 0.8787879 0.5454545 0.6666667 0.6363636 0.7384615

 0.8703297 1.410989 1.0285714 1.2248062 0.8186528

 0.7751938 1.1813472 1.2394366 1.1830986 0.1502347

 1.42723 1.6637168 0.920354 0.7787611 0.6371681

 0.8121827 0.9340102 1.4010152 0.8527919 0.6129032

 1.3870968 1.2592593 0.9135802 0.1481481 1.3333333

 1.1666667 0.8333333 0.7120879 0.6419753 1.2395604

 1.3580247 0 0 0 0 1 10474 10474 0 1

 2 275 11254 93 -3.43 -9.34 -0.85 0 27.25 1 
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  1756 1 23 93 11058 4 48 142 144 449 1 1

 16 3 1 2464 0 0 3980 3939.565 3381.302 1

 142 21.84 29.56 33.72 14.88 63.28 36.72 0.6551724 1.6190476

 1.3448276 0.3809524 1.4 1.8 0.4 0.4 1.3953488 1.3584906

 0.8372093 0.9056604 0.1914894 1.8510638 0.9574468 0.3783784

 1.6190476 1.6216216 0.3809524 1.025641 1.025641 0.8205128

 1.1282051 0.4186047 0.9767442 1.9534884 0.4186047 0.3050847

 1.9322034 2.9491525 0.6101695 0.3666667 1.0526316 1.6333333

 0.9473684 1.0909091 1.8181818 0.1818182 0.9090909 1.0196078

 1.1764706 1.0196078 0.7843137 0.1818182 1.0909091 1.8181818

 0.9090909 1.12 0.88 0.5660377 1.4716981 0.2264151 1.4716981

 1.625 0.375 0 1.5652174 0.2033898 0.4347826  1 696

 696 0 1 2 275 11254 2 -7.3 -32.7 -4.39 3.79 27.26 2 

2010 2 23 0 747 5 105 313 315 557 1 1

 12 0 32 11056 1 2 1956 2923.671 2366.496 1

 132 19.49 27.27 29.18 24.06 56.45 43.55 1.0511945 0.8121212

 0.9488055 1.1878788 1.52 0.76 0.24 1.48 1.8484848 0.9876543

 1.4242424 1.3580247 0.5263158 1.1052632 1.3684211 0.8664495

 0.8636364 1.1335505 1.1363636 1.2519084 0.9770992 0.1221374

 1.648855 0.8787879 0.5454545 0.6666667 0.6363636 0.7384615

 0.8703297 1.410989 1.0285714 1.2248062 0.8186528 0.7751938

 1.1813472 1.2394366 1.1830986 0.1502347 1.42723 1.6785714

 0.9285714 0.75 0.6428571 0.8121827 0.9340102 1.4010152

 0.8527919 0.6129032 1.3870968 1.2592593 0.9135802 0.1481481

 1.3333333 1.1666667 0.8333333 0.7120879 0.6419753 1.2395604

 1.3580247 2 19 20 0 1052 2094 3146  738 17 

 -1.162 0 3 

3730 4 23 1295 2742 45 133 135 439 1 1 1

 17 1 2464 0 0 3928 3907.675 3351.09 1 132

 21.87 29.61 33.63 14.88 63.25 36.75 0.6551724 1.6097561 1.3448276

 0.3902439 1.3658537 1.8536585 0.3902439 0.3902439 1.3953488

 1.4444444 0.8372093 0.8888889 0.1914894 1.8510638 0.9574468

 0.3783784 1.6190476 1.6216216 0.3809524 1.025641 1.025641

 0.8205128 1.1282051 0.4186047 0.9767442 1.9534884 0.4186047

 0.3050847 1.9322034 2.9491525 0.6101695 0.3666667 1.0526316

 1.6333333 0.9473684 1.1162791 1.7674419 0.1860465 0.9302326

 1.0196078 1.1764706 1.0196078 0.7843137 0.1818182 1.0909091

 1.8181818 0.9090909 1.12 0.88 0.5555556 1.4444444 0.2222222

 1.4444444 1.625 0.375 0 1.5652174 0.2033898 0.4347826 6

 452 452 10 13 135 2135 60 -12.85 -23.5 -10.1 -0.593 11.74 4 



145 
 

 

 

 

 

 

 

 

Building the Model 

The predictive performance of the classifiers using the aggregated features is carried out in two 

implementations before and after feature selection. Numpy arrays are generated based on the 

IDM related features. The dataset is normalized using min max normalization. In all the previous 

experiments, autonomous disease identification models have been built based on the specific 

mutational features. In this experiment AGM dataset is employed for training the decision tree, 

naïve bayes, ANN and SVM models. The script for building the classifier is shown below. 

  

79628 49 5 2859 3867 241 721 723 965 1 1 6

 0 32 11056 1 2 -180 571.5369 380.4075 1

 720 25.33 21.82 25.92 26.94 47.73 52.27 1.0511945 0.8121212

 0.9488055 1.1878788 1.52 0.76 0.24 1.48 1.8484848 0.9876543

 1.4242424 1.3580247 0.5263158 1.1052632 1.3684211 0.8664495

 0.8636364 1.1335505 1.1363636 1.2519084 0.9770992 0.1221374

 1.648855 0.8787879 0.5454545 0.6666667 0.6363636 0.7384615

 0.8703297 1.410989 1.0285714 1.2248062 0.8186528 0.7751938

 1.1813472 1.2394366 1.1830986 0.1502347 1.42723 1.6785714

 0.9285714 0.75 0.6428571 0.8121827 0.9340102 1.4010152

 0.8527919 0.6129032 1.3870968 1.2592593 0.9135802 0.1481481

 1.3333333 1.1666667 0.8333333 0.7120879 0.6419753 1.2395604

 1.3580247 2 5 6 0 192 541 733 0 0 11

 11 1695 3778 14 -17.3 -9.1 -1.22 1.792 19.175 5 

 

 

 

import numpy as np 

import pandas as pd 

import io 

df=pd.read_csv('C:\Users\HCL\Documents\pooled_sample_2_scikit.csv') 

print df 

from numpy import genfromtxt 

my_data = genfromtxt('C:\Users\HCL\Documents\pooled_sample_2_scikit.csv', delimiter=',') 

X = my_data[:,0:105] 

y = my_data[:,106] 

from sklearn import preprocessing 

normalized_X = preprocessing.normalize(X) 

standardized_X = preprocessing.scale(X) 
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Performance Evaluation 

The experiments conducted on the diseased gene sequences are assessed on the model built with 

evaluation methods. The cross validation results of the classifiers are shown in Table 5.13 and 

illustrated in Fig.5.13 and Fig.5.14. 

Table 5.13 Predictive Performance of the Classifiers  

(Pooled Features) 

 

Performance 

criteria 

Decision Tree 

Classifier 

Artificial 

Neural 

Network 

Naïve Bayes 

Classifier 

SVM  

Correctly classified 

Instance  

849 835 813 867 

Incorrectly 

classified instance  

151 165 187 133 

Prediction accuracy  84.9 83.5 81.3 86.7 

 

from sklearn import metrics 

from sklearn.svm import SVC 

# fit a SVM model to the data 

model = SVC() 

model.fit(X, y) 

print(model) 

# make predictions 

expected = y 

predicted = model.predict(X) 

# summarize the fit of the model 

print(metrics.classification_report(expected, predicted)) 

print(metrics.confusion_matrix(expected, predicted)) 
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Fig.5.13 Predictive Performance of the Classifiers 

 (Pooled Features) 

 

 

Fig.5.14 Predictive Accuracy of the Classifiers  

(Pooled Features) 

 

The experiment was carried out with selected subset of attributes and a model is built 

using the standard pattern recognition algorithms. The performance of SVM classifier observed 

better accuracy of 90.3%. The performances of the classifiers are evaluated with respect to the 

measures such as prediction accuracy, precision, recall, F1- score, cohen’s kappa and Time taken 

to build the model The results of the classifiers are shown in Table 5.14, Table 5.15 and 

illustrated in Fig.5.15.   
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Table 5.14 Predictive Performance of the Classifiers  

(After Feature Selection) 

 

Performance 

criteria 

Decision Tree 

Classifier 

Artificial 

Neural 

Network 

Naïve Bayes 

Classifier 

SVM  

Correctly classified 

Instance  

847 829 823 903 

Incorrectly 

classified instance  

153 171 177 97 

Prediction accuracy  84.7 82.9 82.3 90.3 

 

Table 5.15 Performance evaluation of the Classifiers  

(After Feature selection)  
 

Performance 

criteria 

Decision Tree 

Classifier 

Artificial Neural 

Network 

Naïve Bayes 

Classifier 

SVM  

Prediction accuracy  84.7% 82.9% 82.3% 87.2% 

Precision  0.847 0.829 0.823 0.872 

Recall  0.847 0.82 0.82 0.881 

F1 Score  84.1 82.1 82.1 87.2 

Cohen’s Kappa  0.847 0.83 0.83 0.87 

Time taken to build 

the model (in sec)  

7 9.7 9.7 5.2 

 

Fig.5.15 Predictive Accuracy of the Classifiers 

 (After Feature Selection) 
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The comparative analysis of the models built before feature selection and after feature selection 

is made with respect to predictive accuracy and presented in Table 5.16 and in Fig.5.16. This 

comparative analysis shows that models built with high ranked features produce better results. 

Table 5.16 Comparative Study of Prediction Accuracy  

Before and After Feature Selection  
 

 

 

 

 

 

Fig.5.16 Comparative Study of Prediction Accuracy  

Before and After Feature Selection  

 

From the above experiments, it was observed that the performance of the classifiers is high when 

training dataset contains summative features. The classification models built using non-

synonymous mutational features produced an accuracy of about 84.9%. The classification 

models built using features related to synonymous mutations produced an accuracy of about 

86%. 86.3% accuracy was attained when insertion/duplication and deletion mutational features 

are taken into account. Disease prediction model reached an accuracy of 86.7% when splicing 

mutational features are considered. When all the mutational features are pooled together, the 

models showed an accuracy of about 87.2%. 
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The output of the binary classifier is typically studied with the Precision-recall curves. In 

this multi-class classification work, the target attribute values are binarized and the class values 

are shaped into 1. The precision- recall curve is computed by adding some noisy features and the 

micro-average ROC and ROC area is calculated. The precision- recall curve is plotted for each 

class based on SVM linear classifier. Fig.5.17 shows the precision-recall curve and Fig.5.18 

shows the ROC curve for each class in SVM classifier. 

 

Fig.5.17 Precision Recall Curve for SVM Classifier 
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Fig.5.18 ROC Curve for SVM Classifier 

Findings 

Downsizing the features through feature selection expedites to improve the outcome and the 

prediction accuracy of the SVM classifier built using high ranked features was hoisted to 90.3%. 

Hence, it is observed that pooling the descriptors associated with all type of mutations produced 

augmented trained models for meticulous disease prediction. 

 

5.7  Summary 

This chapter demonstrates the modeling of disease identification work as the problem of 

learning multiclass classification system that can suits in bioinformatics environment to identify 

the disease effectively. It describes the implementation of shallow learning approach for 

identifying the genetic disease based on the mutational features. Five different models were built 

to identify the disease based on diverse features associated to different kind of mutations. The 

AGM based disease identification model is a generalized model which can identify any kind of 

disease effectively by aggregating all type of mutational features. The outcome of the 

experiments proves that, the disease identification model is effectual when the collective features 

are used in learning. The results shows that our method is valuable than existing disease 

identification procedures with respect to significant features. 
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