
100

5. MUSCULAR DYSTROPHY DISEASE IDENTIFICATION MODELS

THROUGH SHALLOW LEARNING

This chapter details the implementation of a muscular dystrophy disease identification models

using supervised learning algorithms. In this work, python is used as a programming language on

the top of the scikit-learn machine-learning library. A brief description of the tools and libraries

used are given at the beginning of the chapter, and the implementation of the muscular dystrophy

disease identification models are followed later. Five independent experiments were carried out

in this study based on various mutational features and are explained with the flow of events

during training and predicting. The feature extraction process, building the model and the

performance evaluation measures of the classifiers are explained in detail.

Data driven systems solves the problem by developing own models based on the examples

and experiences. These methods develop intelligent systems that discover patterns from large

datasets based on computational analysis that provides concrete theory and predictions.The key

idea in shallow learning approach using supervised learning algorithms is to extract hand crafted

discriminative descriptors from diseased gene sequences associated with all types of mutations

and to provide an effective solution for predicting the type of disease. Change or mutation in the

gene sequence, alters the structure of the sequence which implies the cause of disease. These

structural changes are captured as features of a mutational sequence to learn the prediction

model.

Four data driven supervised learning algorithms commonly used for classification task

such as Decision tree, Naïve bayes, Artificial neural network and Support vector machine are

employed in this research work of genetic disorder prediction.10 fold cross validation is used to

test the models and results are analyzed. The autonomous models built in this research work are

(i) Predicting Muscular dystrophy disease using features related to Missense and Non sense

(Non-synonymous) mutations (ii) Predicting Muscular dystrophy disease using features related

to silent (synonymous) mutations (iii) Predicting Muscular dystrophy disease using features

related to Insertion and Deletion Mutations (iv) Predicting Muscular dystrophy disease using

features related to Splicing Mutations (v) Predicting Muscular dystrophy using pooled features.

101

5.1 Tools and Libraries

Scikit-learn is an open source machine learning library written in python which provides a range

of supervised and unsupervised learning algorithms through a consistent interface in python. It is

a google summer project developed by David cournapeau. Python is a powerful scripting

language now applied in machine learning and it provides efficient tools for data analysis and

data mining problems. Various machine learning techniques such as classification, regression

and clustering algorithms including support vector machines, random forests, gradient boost, K-

means and DBSCAN are designed to work using the python with numerical and scientific

libraries such as numpy and scipy.

Scikit learn is largely written in python with some core algorithms written in python to

achieve performance. Python is a widely used high-level, general-purpose, interpreted, dynamic

programming language. Main advantages of using python than other programming languages

such as C++ or Java is its code readability and its syntax to express concepts that requires only

fewer lines of code. Python is a object-oriented, imperative and functional programming or

procedural styles that ensures the multiple programming par diagram facility. The advantages of

the python library is its dynamic type system and automatic memory management.

Python interpreters are available for many operating systems, allowing python code to run

on a wide variety of systems. Python can be used along with the third-party tools like Py2exe or

Pyinstaller, where the python code is combined into stand-alone executable programs and so the

python based software is used in distributed environments without a python interpreter. Machine

learning in python is,

 Simple and efficient tools for data mining and data analysis.

 Accessible to everybody and reusable in various contexts.

 Built on Numpy, Scipy and matplotlib.

 Opensource, commercially usable.

Most of the algorithms are built based on the library packages such as pandas, numpy,

scipy, and matplotlib.

https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/Third-party_software_component
https://en.wikipedia.org/wiki/Py2exe

102

Numpy

 Numpy is one of the fundamental library in python that supports large n-dimensional

arrays and matrices. This library has a collection of high level mathematical functions to operate

on the arrays. It comprises of various packages and tools for integrating other programming

languages code. Numpy libraries are useful for linear algebraic functions, fourier transform and

random number capabilities. At the core of the NumPy package, is the ndarray object which n-

dimensional arrays of homogeneous data types, that performs well with the operations performed

using compiled code. It is a table of numerical elements, all of the same type, indexed by a tuple

of positive integers. In numpy, the dimensions are the axes. The number of axes is rank.

Scipy

Scipy is the fundamental library for scientific computing. Scipy has bindings to low-level

numerical computations implemented in Fortran, which allows scikit-learn to be both fast and

easy to use at the same time. SciPy builds on the NumPy array object and is part of the

NumPystack, which includes tools like Matplotlib, pandas and SymPy, and an expanding set of

scientific computing libraries.

Pandas

 Pandas is a data analysis toolkit based on Python, which makes it possible to access and

edit tabular data in a fashion similar to that of a relational database. Pandas’ two basic data

structures are Series and Dataframes, where series is for one dimensional and dataframes is for

two-dimensional respectively. This library supports the operations in the relational database such

as selection, insertion, grouping and joining the datasets based on the column values in the table.

Matplotlib

Matplotlib is the two dimensional plotting library coded in python that produces

publication quality figures. Plots, histograms, power spectra, bar charts, error charts, scatter plots

can be generated using this library with a few lines of code. It has a MATLAB-style

programming interface with default plot styles. This library has a deep integration with Python.

The learning problems covered in scikit-learn are Classification, Regression, Clustering,

Dimensionality reduction, Model selection, Preprocessing. The pre-requisites to install python

are python 2.6, numpy 1.6.1, scipy 0.9. Anaconda python library is used in this implementation.

103

Classification using scikit-learn

Supervised machine learning comprises of both regression and classification that refers to the

problem of inferring a function from labeled training data. Scikit learn provides an object

oriented interface centered on the concept of Estimator that extracts useful features from raw

data. Scikit learn consists of a huge array of generalized linear models, that comprises of

discriminate analysis, naive bayes, logistic regression, K-nearest neighbor, Neural networks,

support vector machines and decision trees. The features such as feature extraction, feature

selection, parameter tuning, dimensionality reduction, cross validation and manifold learning in

scikit learn make the classification of data very flexible and more accurate.

5.2 Model I: Predicting Muscular Dystrophy Disease using Features Related

to Missense and Non sense (Non-synonymous) Mutations

The first experiment aims in building the disease identification model using of Non Synonymous

mutational descriptors. Point mutational features such as Structural, Annotation and Alignment

descriptors are considered to be the non-synonymous mutational features.

Feature Extraction

The missense and nonsense mutational features are based on annotation, structure and

alignment of the diseased gene sequences. The missense and nonsense mutational features

includes GeneID, Gene symbol and Chromosome number, Length of the sequence, Alteration

type, Protein changed, Reference allele, Observed allele, Mutation position, Mutation start

position, Mutation end position, Position of mutation in gene sequence, amino acid change leads

to stop codon, stop codon, Position of start codon in cDNA sequence, position of stop codon in

DNA sequence, the nucleotide composition of A, G, C, T, AT and GC component, alignment

features.

R is known to be the most powerful and specialized statistical programming language, and

supports a vast library of statistics and machine learning algorithms. Most of the features are

extracted from the gene sequences through R script and is given in the Appendix B.

Annotation Features: Gene sequences are identified by the attributes like gene identifier and

symbol of the gene. As many to one relationship occur between gene and the disease, these

descriptors are considered to differentiate the gene sequence in every disease type. The attributes

of gene sequences like Gene ID, Gene symbol are identified by using the biomart package in R

104

and are extracted using getgenes(id). Library files such as Biostrings, seqinr are imported to

perform manipulation in the sequence files. Readfasta() is used to read the fasta file from the

directory. After the fasta file is read the sequence is converted into the data frame for

manipulation.

Example: getGene(id=2010, type="entrezgene", mart=ens)

The Gene ID is the NCBI gene identifier for the affected phenotype. Some examples are GeneID

1746 and gene symbol DMD is for Dystrophin gene, GeneID 2010 and gene symbol EMD for

Emerin gene etc.

Sequence Length: The Length of the sequence plays an important role in examining the

difference in length of the sequence. When the insertion or deletion mutation occurs, the length

of the sequence gets varied automatically. This feature is determined using Length() function by

converting the fasta file into a data frame.

Example:

df<-read.fasta(file = "SH3TC2_cdna_ NM_024577.3.fasta")

ds<- df[[1]]

ln<- length(ds)

where, ds is the data frame of the sequence file and the length of the sequence is found out using

length() function.

Alteration Type: The next descriptor alteration type denotes the type of mutation occurred such

as insertion, deletion and duplications. This feature is captured by hardcoding the mutation type

to its corresponding numeric values from 1 to 6 such as 1 for missense/nonsense, 2 for

synonymous, 3 for insertion, 4 for duplication and 5 for deletion and 6 for splicing.

Mutation position (3): This descriptor points the position of the alteration in the diseased gene

sequence. The position of mutation in the gene sequence is identified by blasting the mutated

sequence against the reference gene sequence. Nucleotide blast is used to capture the position of

gene sequence. Starting and ending position of the alteration in the sequence is captured as

mutation start position and mutation end position.

Reference allele and observed allele: The codon or amino acid observed in the normal gene

sequence constitutes the reference allele and the allele that is observed after alteration is the

observed allele of the disease gene sequence. To identify the reference allele and observed allele,

the position of codon is identified with the position of mutation from the mutated sequence file.

105

The first step in finding the observed allele is to read the fasta file and split it into codons. The

required codon is acquired and altered based on the position information of codon change. Seqinr

and Biostrings library are inquired for this work.

Splitting the sequence into codons

cod<-splitseq(ds)

Splitseq(ds) splits the sequence into codons and cod holds all the codon values.

cod[199]

cod[199] gives the codon in the 199th position.

ori<-cod[cod_pos]

ori

To extract the reference allele the codon is retrieved from the specified position from the

reference gene sequence.

cod<-splitseq(ds2)

mut<-cod[cod_pos]

mut

To extract the observed allele the codon is retrieved from the specified position from the mutated

gene sequence gene sequence.

Amino acid change leads to stop codon: This descriptor states whether the change in the amino

acid leads to stop codon. It is a Boolean value descriptor that decides the type of mutation

whether missense or nonsense where in missense amino acid change does not lead to stop codon

where in nonsense it leads to stop codon. This descriptor is captured as same as the reference and

observed allele descriptor.

The first step is to hardcode all the 20 amino acids by assigning the values. The next step is to

capture the reference allele and to check whether it leads to stop codon using boolean functions.

if ((mut == "tag") || (mut == "taa") || (mut == "tga")){

ref<-0}

print(ref)

Protein changed(Y/N): This descriptor results in boolean value that states whether the amino

acid is altered or not after the occurrence of the mutation.

106

Position of Start and Stop codon: ATG is the start codon and TAG, TAA, TGA are the stop

codons. The position of the Stop codon reveals the end of the coding part in the sequence. This

position may be altered with the occurrence of mutation and hence it is noted. match pattern ()

function is employed to identify and capture the position of stop codon. The mutated sequence is

converted into a string of sequence and the position of the start and stop codons can be retrieved.

dstartstring<- c2s(ds)

matchPattern("tag", dstartstring)

where the data frame is converted into data string using c2s(). Using matchpattern() the position

of the start and stop codons will be retrieved.

Nucleotide composition values: The base composition A, C, G,T are calculated to count the

number of occurrences of the four different nucleotides (“A”, “C”, “G”, and “T”) in the

sequence. GC content is the fraction of the sequence that consists of Gs and Cs, i.e. The GC

content can be calculated as the percentage of the bases in the genome that are Gs or Cs. That is,

AT content = (number of As + number of Ts)*100/ (genome length)

GC content = (number of Gs + number of Cs)*100/ (genome length)

Therefore, six different descriptor values are calculated as the nucleotide composition values.

Alignment Scores: Alignment scores are considered as the important feature for disease

prediction. The global pairwise alignment based on edit distance is done with the mutated

sequence against with the reference cDNA sequence and the three alignment scores are

calculated using the edit distance scoring method. PairwiseAlignment() in R is used to calculate

the alignment scores.

pairwiseAlignment(s1, s2,substitutionMatrix = nucleotideSubstitutionMatrix(2, -1,

TRUE),gapOpening = -2, gapExtension = -8)

The PhredQuality measures are calculated with the patternQuality and subjectQuality to examine

the quality-based match and mismatch bit scores for DNA/RNA. By default patternQuality and

subjectQuality are PhredQuality(22L). QualitySubstitutionMatrices() is used to examine the

PhredQuality measures. The substitution scores are calculated by setting the error probability to

0. Table 5.1 depicts the features and its description.

107

Table 5.1 Features and their Descriptions

Features Description

Gene ID Identifier of the gene taken from NCBI

Gene Symbol Name of the gene involved

Chromosome Number The chromosome involved in mutation

Alteration type
Mutation type such as missense, non sense, silent,

deletion and duplication

Protein changed Whether protein altered through mutation

Observed allele The amino acid present in normal gene

Reference allele The observed amino acid after mutation

Mutation Position Position of alteration in cDNA sequence

Length Length of the mutated gene sequence

Mutation start position The starting position of alteration in cDNA sequence

Mutation end position
The position where the mutation ends in cDNA

sequence

Position
Mutation Position in gene sequence is identified through

nucleotide blast against reference gene sequence

Nucleotide Composition
Composition of A, C, G, T, AT, GC in mutated

sequence.

Position of stop codon Last position of stop codon ATG

Edit distance scores Alignment scores using edit distance method

PhredQuality measures Calculated with patternQuality and subjectQuality

Substitution scores Calculated with the error probability set to 0 or 1

ConsensusStart The starting position of conserved region

ConsensusEnd The end position of the conserved region

108

A feature vector of a DMD disease mutated with HGMD accession number HM080103is

shown below. The codon change is CAG-TAG, amino acid change Gln35Term and the

nucleotide change 103C>T. Feature vector for a sample gene sequence is given below.

Training dataset

The features extracted from each disease gene sequence forms a feature vector. Depending on

the type of mutation the mutational features are varied and the size of the feature vector also

varies here. Annotation, structure and alignment features are extracted from1000 disease gene

sequences. 1000 feature vectors of dimension 26 are created and the dataset (NSM) is prepared.

For each feature vector the class label is assigned a sequence number 1 to 5 according to

the category of disease. The training data set with instances related to five categories of muscular

dystrophy that is Duchenne muscular dystrophy, Becker’s muscular dystrophy, Emery-Dreifuss,

Limb-girdle muscular dystrophy and Charcot marie Tooth disease has been developed. The

sample training dataset is depicted below.

GeneID: 1756 GeneSym: 1

Chr: 23 MutPosition: 103

SeqLen: 11058 AlterType: 2

CodonNum: 35 Mutstart: 103

Mutend: 105 Lenvariant:1

Proteinchanged: 1 Referalelle:6

Obseralelle: 0 Posstartcdn: 1

Posstpcdn: 11056 Aminotostpcdn:1

Aminostopcdn: 1 editdisscore: 22113

Qualityscores: 21907.28 Subscoreserr: 18816.67

A: 33.32 G: 20.75

C: 23.7 T: 22.23

GC: 44.45 AT: 55.55

Label 1

109

1756 1 23 6678 11058 2 6678 6680 6922 1 1 18 0 1

 11056 1 3 22113 21907.28 18816.67 1 6677 33.33 20.75

 23.69 22.22 44.45 55.55 A

1756 1 23 6721 11058 2 6721 6723 6965 1 1 8 0 1

 11056 1 3 22113 21907.28 18816.67 1 6720 33.32 20.75

 23.69 22.23 44.45 55.55 A

1756 1 23 6255 11058 2 6253 6255 6986 1 1 18 0 1

 11056 0 0 22113 21907.28 18816.67 1 6254 33.34 20.73

 23.66 22.27 44.38 55.62 B

1756 1 23 6742 11058 2 6742 6744 7646 1 1 7 0 1

 11056 0 0 22113 21907.28 18816.67 1 6741 33.33 20.73

 23.66 22.28 44.38 55.62 B

2010 2 23 2 765 1 1 3 250 1 1 13 2

 208 762 0 0 1518 1500.073 1286.257 3 765 20.16

 31.68 24.21 23.95 55.89 44.11 C

4000 3 1 626 1994 5 627 629 875 1 1 3 17 1

 1992 0 0 3888 3883.749 3328.282 1 625 21.82 29.54

 33.75 14.89 63.29 36.71 C

825 5 15 77 2466 1 76 78 383 1 1 15 11 1

 2464 0 0 4929 4879.157 4193.204 1 76 26.64 25.75

 26.85 20.76 52.6 47.4 D

825 5 15 133 2466 1 133 135 439 1 1 1 17 1

 2464 0 0 4929 4879.157 4193.204 1 132 26.68 25.79

 26.8 20.72 52.6 47.4 D

79628 49 5 680 3867 1 679 681 832 1 1 2 6 1

 3865 0 0 7731 7655.846 6577.915 1 679 22.06 27.05

 27.98 22.91 55.03 44.97 E

79628 49 5 920 3867 2 919 921 1072 1 1 18 0 1

 3865 1 1 7731 7655.846 6577.915 1 919 22.06 27.05

 27.98 22.91 55.03 44.97 E

9628 49 5 1585 3867 1 1585 1587 1737 1 1 2 5 1

 3865 0 0 7731 7655.846 6577.914 1 1584 22.03 27.02

 28.01 22.94 55.03 44.97 E

110

Building the model

The supervised learning techniques namely Naïve Bayes Classifier, Decision tree induction,

Support vector machine and artificial neural network have been used to learn and are built using

Scikit learn. The Scikit-Learn library uses NumPy arrays in its implementation, therefore NumPy

arrays should be created from *.csv files. The data frame is built with the numpy array. It is a

table of elements usually numbers, all of the same type, indexed by a tuple of positive integers.

The attributes extracted from the mutated gene sequences related to non-synonymous mutations

are stored in .csv file which is shown in Appendix - B.

The following script imports the necessary packages and reads the feature vectors as .csv file and

normalization is done. The python coding of all the classification algorithms are shown in

Appendix - C.

Import the numpy library into the algorithm with the code

 import numpy as np /// importing numpy array package

The dataset is stored as comma separated values and therefore genfromtxt() is used to convert it

into numpy array.

from numpy import genfromtxt ////converting the .csv file into numpy array

import numpy as np

import pandas as pd

import io

df=pd.read_csv('C:\Users\HCL\Documents\missense_nonsense_scikit_modified.csv')

print df

from numpy import genfromtxt

my_data = genfromtxt('C:\Users\HCL\Documents\missense_nonsense_scikit_modified.csv',

delimiter=',')

X = my_data[:,0:25]

y = my_data[:,26]

from sklearn import preprocessing

normalized_X = preprocessing.normalize(X)

standardized_X = preprocessing.scale(X)

111

my_data = genfromtxt ('C:\Users\HCL\Documents\Features_sci_G.csv', delimiter=',')

Separate the data from target attributes

Total number of attributes is 20(excluding Label) it is taken in y axis

X feature-object matrix and values of the y target variable.

X = my_data [:,0:25]

y = my_data [:,26]

The dataset is normalized using min max normalization by transforming the numeric

values into the range between 0 and 1 which aid in scaling the input attributes for building

accurate model. The dataset is split into training and testing dataset in the ratio of 80:20.

fromsklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

The dataset is trained and a model is fitted with the above listed supervised classification

algorithms using

classifier.fit(X, y)

In case of decision tree classifier and Naïve bayes default parameter settings are used

during classification whereas in Artificial neural network implementation, the hidden layers are

tuned to gain a stable accuracy. In case of SVM various kernels such as linear, polynomial and

RBF kernel are employed with different parameter settings for C regularization parameter. In

case of polynomial and RBF kernels, the default settings for d and gamma are used. In scikit-

learn, an estimator for classification is a Python object that implements the methods fit(X, y) and

predict(T).

Performance evaluation

The task is to predict the disease type the samples are given and from each of the 5

possible classes on which an estimator is fitted to predict the classes to which unseen samples

belong. Evaluating the generalization power of the classifiers and to estimate their predictive

capabilities for unknown samples, a standard k- fold cross-validation technique is used. As

dataset comprises of 1000 instances, it is appropriate to use cross validation with K=10. This 10-

112

fold cross validation iterates the algorithm 10 times with different groupings of training and

testing datasets. The performance of trained models measured in terms of classification accuracy,

precision, recall, F-score, kappa statistic, precision recall curve and ROC curve.

Various scores are retrieved, the performances of each classifier are analyzed using the

function classifier. score() in scikit learn and the results are tabulated in Table 5.2 and 5.3 and

illustrated in Fig.5.1. The predictive performance of the disease classification models shows that

SVM classifier yielded a best accuracy of 84.9%.

Table 5.2 Predictive Performance of the Classifiers

(Non –Synonymous Mutations)

Performance criteria Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Correctly classified

Instances

805 793 698 849

Incorrectly classified

instances

195 207 302 151

Prediction accuracy 80.5 79.3 69.8 84.9

>>> print(metrics.confusion_matrix(expected, predicted))

[187 13 0 0 0]

 [37 163 0 0 0]

 [0 0 165 30 5]

 [0 0 20 170 10]

 [0 0 6 30 164]

>>> from sklearn.metrics import accuracy_score

>>> accuracy_score(expected,predicted)

0.849

>>> cohen_kappa_score(expected,predicted)

0.861

113

Fig.5.1 Prediction Accuracy of the Classifiers

(Non – synonymous mutations)

Table 5.3 Performance Evaluation of the Classifiers

(Non-synonymous mutations)

The output of the binary classifier is typically studied with the Precision-recall curves. In

this multi-class classification work, the target attribute values are binarized and the class values

are shaped into 1. The precision- recall curve is computed by adding some noisy features and the

micro-average ROC and ROC area is calculated. The precision- recall curve is plotted for each

class based on SVM linear classifier. Fig.5.2 shows the precision-recall curve for each class in

SVM classifier.

0

10

20

30

40

50

60

70

80

90

Decision
Tree

Classifier

Artificial
Neural

Network

Naïve
Bayes

Classifier

SVM

Prediction accuracy

Performance criteria Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Prediction accuracy

(%)
80.5 79.3 69.8 84.9

Precision 0.8 0.803 0.689 0.859

Recall 0.825 0.805 0.678 0.866

F1 Score 81.9 81.8 69.9 86.1

Cohen’s Kappa 0.82 0.813 0.692 0.861

Time taken to build

the model (in sec)

8.4 10.7 9.6 7

114

Fig.5.2 Precision-Recall Curve for SVM Classifier

The above figure insists that class 2 and class 4 have high precision of 0.94 and 1.00 and class 3

is curved low at the area 0.47. On the average the micro-average curve shows the value of 0.79.

ROC curve is plotted for SVM linear classifier for each class. Fig.5.3 depicts the ROC curve

based on SVM classifier in predicting muscular dystrophy.

Fig.5.3 ROC Curve for SVM Classifier

115

Findings

From the above results, it is observed that the prediction accuracy is high for SVM than

other algorithms. The precision and Recall measure for SVM is high when compared with other

learning methods. Overall, the balance accuracy measure is also eminent in SVM when

measured with other algorithms. The sensitivity and specificity measure for all classes is

prominent in SVM when compared with other learning techniques. The cohen’s kappa is also

high in SVM with 0.861 score and the time taken is minimal of 7 seconds. The experiment

proves that the features designed for building the classifier are more appropriate and suitable for

disease identification.

5.3 Model II: Predicting Muscular Dystrophy Disease using Features Related

to Synonymous Mutations

In the first experiment, only non-synonymous mutational features are taken into account to

identify the disease, where the silent mutational features are required to identify the disease that

is caused due to synonymous mutations. Therefore, in this second work, the codon usage patterns

are considered as the contributing features for representing the mutated gene sequences. Since

codon usage patterns are diverse in different gene families, this feature input is a well-chosen

descriptors for specifying different gene families for all types of diseases.

Feature Extraction

A codon is the triplet of nucleotides that code for a specific amino acid. Many to one

relationship occurs between the codon and amino acid. Many amino acids are coded by more

than one codon because of the degeneracy of the genetic codes. A total number of codons in a

DNA sequence counts to 64. Since methionine (ATG) and tryptophan (TGG) have only one

corresponding codon, they are not counted and are eliminated from the analysis as their RSCU

values are always equal to 1. The three stop codons (TGA, TAA, TAG) are also not included.

Accordingly, the number of codons considered is 59. The RSCU features are extracted from

mutated gene sequences through R script that is created using seqinr() package downloaded from

www.CRAN.org.

The differences in the frequency of occurrence of synonymous codons are referred as

codon usage bias. The formula for calculating RSCU can be explained as, the number of times a

http://www.cran.org/

116

particular codon is observed, relative to the number of times that the codon would be observed in

the absence of any codon usage bias.

RSCU values are the number of times a particular codon is observed, relative to the

number of times that the codon would be observed in the absence of any codon usage bias.

RSCU is a simple measure of non-uniform usage of synonymous codons in a coding sequence.

RSCU values are the number of times a particular codon is observed, relative to the number of

times that the codon would be observed for a uniform synonymous codon usage where all the

codons for a given amino-acid have the same probability. In the absence of any codon usage

bias, the RSCU values would be 1.00. A codon that is used less frequently than expected will

have an RSCU value of less than 1.00 and vice versa for a codon that is used more frequently

than expected.

The RSCU carries the value 1.00 if the codon usage bias of that particular codon is absent.

If the codon is used less frequently than expected, the RSCU values tend to have the negative

values. Following formula is used to calculate RSCU.

RSCU = Xij / (1/ni *S {Xij; j=1, ni })

whereXij is the number of occurrences of the jth codon for the ith amino acid, and ni is the number

of alternative codons for the ith amino acid.

If the synonymous codons of an amino acid are used with equal frequencies, then their RSCU

values are 1.

The program adds up the total number of times that the codons for a particular amino acid

are observed. It then divides this number by the number of codons for the amino acid, this gives

the expected number of times that the codons should be observed. Then for each codon, the

frequency of observation is divided by the expected frequency. Sometimes the observed

frequency will be greater than the expected frequency (RSCU value greater than 1.00), and

sometimes it will be less (RSCU value less than 1.00).

Based on the above formula the RSCU values for every codon in the mutated gene

sequence is calculated with the uco() function in R. The calculation is as follows:

uco(seq, frame = 0, index = c("eff", "freq", "rscu"), as.data.frame = FALSE,NA.rscu = NA)

Arguments

Seq = coding sequence as a vector of chars

Frame = an integer (0, 1, 2) giving the frame of the coding sequence

117

Index= codon usage index choice, partial matching is allowed. eff for codon counts, freq for

codon relative frequencies, and rscu the RSCU index

as.data.frame = logical. If TRUE: all indices are returned into a data frame.

NA.rscu = when an amino-acid is missing, RSCU are no more defined and reported as

missing values (NA). You can force them to another value (typically 0 or 1) with this argument.

Likewise, the RSCU values of each and every codon are calculated. Table 5.4 shows an

example that holds RSCU values of 59 codons for a mutated gene sequence.

Table 5.4 RSCU Values for 59 Codons

Codon Value Codon Value Codon Value

AAA 1.05 CCC 0.97 GGC 0.92

AAC 0.812 CCG 0.12 GGG 0.75

AAG 0.948 CCT 1.64 GGT 0.64

AAT 1.18 CGA 0.87 GTA 0.81

ACA 1.52 CGC 0.54 GTC 0.93

ACC 0.76 CGG 0.66 GTG 1.40

ACG 0.24 CGT 0.63 GTT 0.85

ACT 1.48 CTA 0.73 TAC 0.61

AGA 1.84 CTC 0.87 TAT 1.38

AGC 0.99 CTG 1.41 TCA 1.23

AGG 1.42 CTT 1.03 TCC 0.91

AGT 1.36 GAA 1.22 TCG 0.14

ATA 0.52 GAC 0.81 TCT 1.33

ATC 1.10 GAG 0.77 TGC 1.16

ATT 1.36 GAT 1.18 TGT 0.833

CAA 0.87 GCA 1.23 TTA 0.71

CAC 0.86 GCC 1.18 TTC 0.64

CAG 1.13 GCG 0.15 TTG 1.23

CAT 1.14 GCT 1.42 TTT 1.63

CCA 1.25 GGA 1.67

118

Training Dataset

The RSCU values are derived for 59 codons from each mutated gene sequence, which forms a

feature vector with 59 elements for training dataset for classification task. Since the corpus

consists of 1000 sequences of 5 types of Muscular dystrophy diseases, a training set (SYM) with

1000 feature vectors has been created and for each feature vector the class label is assigned from

1 to 5 indicating the five types of muscular dystrophy diseases. The sample training dataset is

depicted below.

1.0511945 0.8121212 0.9488055 1.1878788 1.52 0.76 0.24 1.48

 1.8484848 0.9917355 1.4242424 1.3636364 0.5263158 1.1052632

 1.3684211 0.8701299 0.8636364 1.1298701 1.1363636 1.2519084

 0.9770992 0.1221374 1.648855 0.8787879 0.5454545 0.6666667

 0.6363636 0.7384615 0.8703297 1.410989 1.0285714 1.2248062

 0.8186528 0.7751938 1.1813472 1.2394366 1.1830986 0.1502347

 1.42723 1.6785714 0.9285714 0.75 0.6428571 0.8121827

 0.9340102 1.4010152 0.8527919 0.6129032 1.3870968 1.2396694

 0.9173554 0.1487603 1.338843 1.1666667 0.8333333 0.7120879

 0.6419753 1.2395604 1.3580247 1

1.0511945 0.8121212 0.9488055 1.1878788 1.52 0.76 0.24 1.48

 1.8484848 0.9876543 1.4242424 1.3580247 0.5263158 1.1052632

 1.3684211 0.8701299 0.8636364 1.1298701 1.1363636 1.2519084

 0.9770992 0.1221374 1.648855 0.8787879 0.5454545 0.6666667

 0.6363636 0.7384615 0.8703297 1.410989 1.0285714 1.2248062

 0.8229167 0.7751938 1.1770833 1.2394366 1.1830986 0.1502347

 1.42723 1.6785714 0.9285714 0.75 0.6428571 0.8121827

 0.9340102 1.4010152 0.8527919 0.6031746 1.3968254 1.2592593

 0.9135802 0.1481481 1.3333333 1.1666667 0.8333333 0.7120879

 0.6419753 1.2395604 1.3580247 2

0.2 1.2380952 1.8 0.7619048 0.1111111 2.3333333 0.5555556 1

 -1 2.3478261 0.4761905 0.4347826 0.1875 2.625 0.1875 0.05

 1.3846154 1.95 0.6153846 0.5 2.25 0.5 0.75 0.2857143 2.952381

 1.4285714 0.8571429 0.1643836 0.8219178 4.2739726 0.4931507

 0.1971831 1.3333333 1.8028169 0.6666667 0.6101695 1.9661017

 0.4745763 0.9491525 0.4761905 1.5238095 1.6190476 0.3809524

 0.1290323 0.9032258 2.8387097 0.1290323 1.6363636 0.3636364

 0.5217391 1.3913043 0.5217391 0.7826087 2 -1 -1 1.25

 0.2465753 0.75 3

119

Building the Model

The second experiment is conducted by learning the above SYM dataset with the standard

supervised pattern learning techniques, Naïve Bayes Classifier, Decision tree induction,

Artificial neural network and Support vector machine (SVM) by tuning the parameters. As

specified in first experiment the dataset is converted in numpy arrays and then it is normalized by

scaling the input attributes. The below depicted script builds a decision tree classifier model in

Scikit learn environment.

0.6551724 1.6190476 1.3448276 0.3809524 1.4358974 1.7435897

 0.4102564 0.4102564 1.3953488 1.4444444 0.8372093 0.8888889

 0.1914894 1.8510638 0.9574468 0.3783784 1.6190476 1.6216216

 0.3809524 1.025641 1.025641 0.8205128 1.1282051 0.4186047

 0.9767442 1.9534884 0.4186047 0.3050847 1.9322034 2.9491525

 0.6101695 0.3666667 1.0526316 1.6333333 0.9473684 1.0909091

 1.8181818 0.1818182 0.9090909 1.0196078 1.1764706 1.0196078

 0.7843137 0.1818182 1.0909091 1.8181818 0.9090909 1.12 0.88

 0.5555556 1.4444444 0.2222222 1.4444444 1.625 0.375 -1

 1.5652174 0.2033898 0.4347826 4

0.58064516 1.14285714 1.41935484 0.85714286 1.11627907 1.72093023

 0.27906977 0.88372093 2.015625 1.19277108 3.46875 0.75903614

 0.62790698 1.6744186 0.69767442 0.46808511 1 1.53191489 1

 1.36507937 1.23809524 0.28571429 1.11111111 0.09375 0.09375

 0.328125 -1 0.22222222 1.05555556 2.22222222 0.77777778

 0.66666667 1.86666667 1.33333333 0.13333333 1 1.61904762

 0.04761905 1.33333333 0.91566265 1.25301205 1.15662651 0.6746988

 0.56 0.88 1.92 0.64 0.92307692 1.07692308 1.30120482 1.30120482

 0.21686747 1.22891566 1.10344828 0.89655172 0.38888889 1.33333333

 1.33333333 0.66666667 5

120

Performance Evaluation

The performance of trained models is evaluated using the same 10-fold cross validation

technique and measured in terms of various metrics as in the terms of previous case. The

predictive performance of the disease classification models shows that decision tree classifier

yielded a best accuracy of 86% and the results are tabulated in Table 5.5 and predictive

performance graph is shown in Fig.5.4.

summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

import numpy as np

import pandas as pd

df=pd.read_csv('C:\Users\HCL\Documents\RSCU.csv')

from numpy import genfromtxt

my_data = genfromtxt('C:\Users\HCL\Documents\RSCU.csv', delimiter=',')

X = my_data[:,0:58]

y = my_data[:,59]

from sklearn import preprocessing

normalized_X = preprocessing.normalize(X)

standardized_X = preprocessing.scale(X)

from sklearn import metrics

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()

model.fit(X, y)

print(model)

expected = y

predicted = model.predict(X)

121

Table 5.5 Predictive Performance of the Classifiers

(Synonymous Mutations)

Fig.5.4 Predictive Accuracy of the Classifiers

(Synonymous mutations)

The performances of the classifiers are evaluated and the measures such as prediction

accuracy, precision, recall, F1- score, cohen’s kappa and Time taken to build the model are

calculated and tabulated in Table 5.6. The precision-recall curve is computed for each class

based on the decision tree classifier. Fig.5.5 shows the precision-recall curve for each class in

decision tree classifier.

81.5

82

82.5

83

83.5

84

84.5

85

85.5

86

Decision
Tree

Classifier

Artificial
Neural

Network

Naïve
Bayes

Classifier

SVM

Prediction accuracy

Performance

criteria

Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Correctly classified

Instances

860 833 840 846

Incorrectly

classified instances

140 167 160 154

Prediction accuracy 86 83.33 84 84.6

122

Table 5.6 Performance Evaluation of the Classifiers

(Synonymous mutations)

Performance

criteria

Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Prediction accuracy 86 83.33 84 84.6

Precision 0.86 0.831 0.835 0.841

Recall 0.854 0.83 0.841 0.85

F1 Score 85.6 83.1 83.3 84.8

Cohen’s Kappa 0.86 0.81 0.83 0.84

Time taken to build

the model (in sec)

7.47 11.7 12.7 10.5

Fig.5.5 Precision- Recall Curve for Decision Tree Classifier

123

Fig.5.6 ROC Curve for Decision Tree Classifier

ROC Curve in the above figure shows that roc curve for class 0 and 4 has low range and it is

elevated from 2 and have a high precision. ROC Curve is plotted for decision tree classifier.

Fig.5.6 depicts the ROC curve based on decision tree classifier.

Findings

The models built in this experiment aids in classifying type of muscular dystrophy using

mutated gene sequences by capturing RSCU features of silent mutations. Decision tree classifier

elevated its accuracy to 86% and the precision, recall measure is also high for the decision tree

classifier than other classifiers. Less time is taken to build the decision tree model. These models

can facilitate in investigating the changes in protein folding and function.

124

5.4 Model III: Predicting Muscular Dystrophy Disease using Features Related

to Insertion/Duplication, Deletion Mutations

Insertions/Duplications and Deletions alter the structure of the sequence and throws a heavy

impact and therefore, in the third experiment imperative extrinsic and intrinsic descriptors are

considered for learning the model using supervised classification algorithms.

Feature Extraction

The exonic and intronic features are considered from diverse gene families, to extract the

well-defined descriptors related to insertion, deletion and duplication mutations in the mutated

gene sequences. Code is written using R for extracting most of the descriptor values from the

mutated gene sequences.

Annotation Features: Gene sequences are identified by the attributes like gene identifier and

symbol of the gene. As many to one relationship occur between gene and the disease, these

descriptors are considered to differentiate the gene sequence in every disease type. The attributes

of gene sequences like Gene ID, Gene symbol are identified by using the bio mart package in R

and are extracted using get genes(id). The Gene ID is the NCBI gene identifier for the affected

phenotype. Some examples are GeneID 1746 and gene symbol DMD is for Dystrophin gene,

GeneID 2010 and gene symbol EMD for Emerin gene etc.

Alteration Type: The next descriptor alteration type denotes the type of mutation occurred such

as insertion, deletion and duplications. This feature is captured by hardcoding the mutation type

to its corresponding numeric values from 3 to 5 such as 3 for insertion, 4 for duplication and 5

for deletion.

Sample Coding sequence of DMD gene

1 10 20 30 40 50 60 70 80 90 100 109

ATGCTTTGGTGGGAAGAAGTAGAGGACTGTTATGTTGATACCACCTATCCAGATAAGAAGTCCATCTTAATGTACATCACATCACTCTTCCAAGTTTTGCCTCAACAAGTGA
|----Exon1----------|----------Exon 2------------------|-------Exon 3--------|-----------------------Exon 4------------------------|------Exon5-----|----Exon 6----|Exon 7-------|

When deletion occurs in exon 2 and 3
1 10 20 30 40 50 60 74

ATGCTTTGGTGGGACCAGATAAGAAGTCCATCTTAATGTACATCACATCACTCTTCCAAGTTTTGCCTCAACAAGTGA
|----Exon1----------|-----------------------Exon 4------------------------|------Exon5-----|----Exon 6----|Exon 7---------|

Gene Id: 1746 No. of Exons deleted: 2
Gene Symbol: DMD Starting position of exon: 14
Sequence Length: 74 Ending position of exon: 47
Alteration Type: Internal exon Inframe/ outframe: Inframe

125

Gene Starting position and Gene Ending position: A chromosome is comprised of several

genes and every gene has its starting and ending position. If an insertion/duplication or deletion

mutation occurs in a sequence, then there may be a change in the gene’s starting or ending

position, hence these features aids in classifying the disease type. Nucleotide blast is used to

capture the starting position and ending position of gene by aligning the sequence with its

reference gene sequence.

Sequence Length: The Length of the sequence plays an important role in examining the

difference in length of the sequence. When the insertion or deletion mutation occurs, the length

of the sequence gets varied automatically. This feature is determined using Length() function by

converting the fasta file into a data frame.

Number of Exons inserted/deleted: Severe effect on the deletion of exons leads to DMD and

mild deletion of exons will results in BMD. While gross insertions and gross deletions occurred,

the severity of the disease is determined with number of exons inserted or deleted. This

descriptor is calculated by using the deletion region information column in the HGMD.

Exon and intron boundary: Every gene sequence is comprised of coding (exonic) and non

coding (intronic) regions. Boundary of exonic and intronic region gets altered when

Insertion/duplication or deletion of exons occurs and so, these descriptors are captured to identify

the differences in the boundary between the normal and the diseased sequences. By visualizing

the sequences in geneious pro these descriptors are captured.

Deletion type: If the sequence can be still read after deletion mutation occurs, then it is

considered as inframe deletion. In outframe deletion type, the sequence cannot be read after the

deletion mutation occurs. Deletion type is a contributive feature in identifying the type of the

disease as in some diseases like BMD, where the sequence can be still read after deletion and in

some diseases like DMD, the sequence cannot be read after deletion as it is outframe. This

feature is captured by translating the diseased sequences into its corresponding amino acid

sequence. Splitseq (), tablecode () functions from biostrings, seqinr packages are used to capture

this descriptor.

Exon type: Depending on location of the exon, the type of exon may be Initial, Internal,

Terminal and Single exons. The mutation in each type of exon has its own severity which aids in

classifying the disease type. This discriminative feature is captured using geneious pro tool.

126

Conservation score: The structure or the function of the sequence is identified by calculating the

conservation score by aligning the sequence with all organisms. University of California Santa

Cruz (UCSC) genome browser is employed to calculate the conservation score.

Protein Coding Region score: The score of the protein coding region is calculated with coding

potential calculator based on the sequence features to distinguish protein coding from non coding

regions. When a deletion occurs in an exon the protein coding region score decides the severity

of deletion on the sequence.

Nucleotide composition values: The base composition A, C, G,T are calculated to count the

number of occurrences of the four different nucleotides (“A”, “C”, “G”, and “T”) in the

sequence. GC content is the fraction of the sequence that consists of Gs and Cs, i.e. The GC

content can be calculated as the percentage of the bases in the genome that are Gs or Cs. That is,

AT content = (number of As + number of Ts)*100/ (genome length)

GC content = (number of Gs + number of Cs)*100/ (genome length)

Therefore six different descriptor values are calculated as the nucleotide composition values.

Stop codon position: The position of the Stop codon reveals the end of the coding part in the

sequence. This position may be altered with the occurrence of mutation and hence it is noted.

match pattern () function is employed to identify and capture the position of stop codon.

Alignment Scores: Alignment scores are considered as the important feature for disease

prediction. The global pairwise alignment based on edit distance is done with the mutated

sequence against with the reference cDNA sequence and the three alignment scores are

calculated using the edit distance scoring method. The PhredQuality measures are calculated

with the patternQuality and subjectQuality to examine the quality-based match and mismatch bit

scores for DNA/RNA. The substitution scores are calculated by setting the error probability to 0.

Table 5.7 depicts the IDM features and their descriptions.

127

Table 5.7 IDM Features and their Descriptions

Features Description

Gene ID Identifier of the gene taken from NCBI

Gene Symbol Name of the gene involved

Chromosome Number The chromosome involved in mutation

Alteration type
Mutation type such as missense, non sense, silent,

deletion and duplication

Gene start position The starting position of the gene

Gene end position The starting position of the gene

Length Length of the mutated gene sequence

Exon Boundary The position of inserted or deleted exons boundary

Intron Boundary The position of inserted or deleted introns boundary

Deletion Type Deletion type whether inframe or outframe

No. of Exons Deleted Number of exons deleted or inserted

Exon Type
Type of exon. Initial, Internal, Terminal and Single

exons

Starting position of Exon The starting position of the Exon

Ending position of Exon The ending position of the Exon

Nucleotide Composition
Composition of A, C, G, T, AT, GC in mutated

sequence.

Position of stop codon Last position of stop codon ATG

Edit distance scores Alignment scores using edit distance method

PhredQuality measures Calculated with patternQuality and subjectQuality

Substitution scores Calculated with the error probability set to 0 or 1

128

Feature vector for a sequence is as follows:

Training Dataset

The above twenty-three features are extracted from each diseased gene sequence and a dataset

(IDM) with 1000 feature vectors is created. The sample training dataset is depicted below.

Gene ID : 1746

Gene Symbol : DMD

Alteration type : 2

Length : 74

Exon Boundary : 345

Intron Boundary : 654

Deletion Type : Inframe

No. of Exons Deleted : 2

Exon Type : Internal exon

Starting position of Exon : 14

Ending position of Exon : 47

Conservation Score : 1.493

Protein Coding region score : 24.9

Nucleotide Composition : A - 33.33 T-20.75 G-23.7 C-22.22 AT- 44.45

GC-55.55

Edit distance scores : 22113

PhredQuality measures : 21907.28

Substitution scores : 18816.67

129

Building the Model

The models demonstrated in section 5.2 and 5.3 concentrates on non-synonymous and

synonymous mutations where as in this experiment IDM dataset is employed in building the

disease classification model. Numpy arrays are generated based on the IDM related features. The

dataset is normalized using min max normalization. Feature object matrix is created and target

value has been set. The same classification algorithms are adopted to build the models. In case of

decision tree classifier and Naïve bayes default parameter settings are used during classification

whereas in Artificial neural network implementation, the hidden layers are tuned to gain a stable

accuracy. In case of SVM, Radial basis kernel performed well with the cost value of 1 and

gamma value 0.016.The number of support vectors created by this model is 90.

1756 1 11058 2 74 345 654 0 2 14 47

 1.493 24.9 22113 18816.67 33.33 20.75 23.7 22.22 44.45 55.55 1

1756 1 10409 5 7 1 7 2 649 245 893

 15624 18022.56 15110.32 33.33 20.79 23.79 22.1 44.58 55.42 1

1756 1 10524 5 3 10 12 1 522 1205 1727

 16774 18710.54 15766.83 33.16 21 23.65 22.19 44.65 55.35 2

1756 1 8799 5 13 16 29 1 2258 2057 4315 -

476 8391.182 5930.44 32.8 20.98 23.87 22.35 44.85 55.15 2

2010 2 715 5 1 5 5 0 50 648 697

 1028 1206.958 1006.864 19.86 32.87 23.78 23.5 56.64 43.36 3

2010 2 503 5 2 4 5 0 261 436 697 -

1 092 -61.17883 -201.9393 17.3 35.19 23.26 24.25 58.45 41.55 3

10585 12 1991 5 2 19 20 0 1052 2094 3146

 1956 2923.671 2366.496 19.49 27.27 29.18 24.06 56.45 43.55 4

10585 12 1939 5 2 18 19 0 304 1967 2271

 1436 2612.63 2070 20.17 27.59 28.83 23.41 56.42 43.58 4

5376 44 504 4 1 2 2 0 20 536 556

 796 863.1859 728.0229 17.86 30.36 24.21 27.58 54.56 45.44 5

5376 44 966 4 4 2 5 0 483 209 691 -

2900 -984.7863 -1119.978 18.01 30.64 23.6 27.74 54.24 45.76 5

130

An example of an estimator is the class sklearn.svm.SVC that implements support vector

classification. The constructor of an estimator takes as arguments the parameters of the model.

The implementation is based on libsvm.

from sklearn import metrics

from sklearn.svm import SVC

estimator = SVC(kernel = ‘rbf’)

Cross validation iterator

from sklearn.cross_validation import ShuffleSplit

cv = ShuffleSplit(X_train.shape[0], n_iter=10, test_size=0.2, random_state=0)

Applying Cross validation on the training set

The sklearn provides an object that, given data, computes the score during the fit of an estimator

on a parameter grid and chooses the parameters to maximize the cross-validation score. This

object invokes an estimator while construction and depicts an estimator API.

from sklearn import metrics

from sklearn.svm import SVC

fit a SVM model to the data

model = SVC()

model.fit(X, y)

print(model)

make predictions

expected = y

predicted = model.predict(X)

Class sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0,

shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None,

verbose=False, max_iter=-1, decision_function_shape=None, random_state=None)

131

Evaluating on the test dataset

Performance Evaluation

The predictive performance of the disease classification models have been evaluated as done in

earlier experiments and shows that SVM classifier yielded a best accuracy of 86.3% and the

results are tabulated in Table 5.8 and Table 5.9 and drawn in figures Fig.5.7.

Table 5.8 Predictive Performance of the Classifiers

(Insertion, Deletion and Duplication Mutations)

Performance

criteria

Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Correctly classified

Instance

853 856 831 863

Incorrectly classified

instance

147 144 169 137

Prediction accuracy 85.3 85.6 83.1 86.3

from sklearn.grid_search import GridSearchCV

gammas = np.logspace(-6, -1, 10)

classifier = GridSearchCV(estimator=estimator, cv=cv, param_grid=dict(gamma=gammas))

classifier.fit(X_train, y_train)

classifier.score(X_test, y_test)

Train final model on whole dataset

classifier.fit(X, y)

132

Fig.5.7 Predictive Accuracy of the Classifiers

(Insertion, Deletion and Duplication Mutations)

Table 5.9 Performance Evaluation of the Classifiers (IDD mutations)

Performance

criteria

Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Prediction accuracy 85.3 85.6 83.1 86.3

Precision 0.853 0.86 0.831 0.883

Recall 0.85 0.8 0.83 0.89

F1 Score 85.3 85.9 83.1 88.3

Cohen’s Kappa 0.88 0.862 0.81 0.89

Time taken to build

the model (in sec)

8.7 9.6 11.7 7.6

The precision- recall curve is plotted for each class based on SVM linear classifier Fig.5.8 shows

the precision-recall curve for each class in SVM classifier. Fig.5.9 shows the ROC curve for each

class in SVM classifier.

81.5

82

82.5

83

83.5

84

84.5

85

85.5

86

86.5

Decision
Tree

Classifier

Artificial
Neural

Network

Naïve
Bayes

Classifier

SVM

Prediction accuracy

133

Fig.5.8 Precision Recall Curve for SVM Classifier

Fig.5.9 ROC Curve SVM Classifier

134

Findings

It is perceived from the above results the kappa statistic and prediction accuracy is high

for SVM than other algorithms. The precision and recall measure for SVM is high when

compared with other learning methods. Overall, the balance accuracy measure is also prominent

in SVM when measured with other algorithms. The cohen’s kappa is also high in SVM with

0.861 score and the time taken is minimal of 7.6 seconds.

5.5 Model IV: Predicting Muscular Dystrophy Disease using Features Related

to Splicing Mutations

The exons are formed by splicing out the introns during transcription and the mutations occurred

while spicing should be considered to know the alteration after the splicing process. The key idea

in this experiment is to spot out discriminative descriptors from diseased gene sequences based on

splicing variants and to provide an effective machine learning solution for predicting the type of

muscular dystrophy disease with the splicing mutations. SNP, Gene and Exon-based

discriminative features are identified and utilized to train the model.

In this experiment, the cloned gene sequences are synthesized based on the mutation

position and its location on the chromosome. For instance, in the database, the mutational

information for splicing mutation is specified as IVS1-5 T>G indicates (IVS- intervening

sequence or introns), 1st intron and 5 nucleotides before the consensus intron site AG, where the

variant occurs in nucleotide G altered to T. IVS (+ve) denotes forward strand 3’ – positive

numbers from G of donor site invariant and IVS (-ve) denotes backward strand 5’ – Negative

numbers starting from G of acceptor site.

Feature Extraction

The discriminative descriptors aids in diagnosing the identification of exonic single base

substitutions that modulate splicing. Descriptors are the arrays of features that were derived

based upon the genomic coordinate of the substitution in the human reference gene. Gene id,

Gene symbol, chromosome number, variant exon number, exon boundary, Intron boundary,

sequence length, splice site distance, PhyloP and PhastCons score, ESR Change, Donor site

score, Acceptor site score, Branch site score, Splice site scores, Distance of alteration from 5’

splice site, Distance of alteration from 3’ splice site, scoring splice site with PWM, flanking

135

intron size, GC content, Exon size, Constitutive exon, Exon type and coding region score are the

twenty four features identified and captured.

Variant exon number: Variant exon number gives the mutant exon’s number in the target

isoforms. As the exonic splicing features are captured in this work this exon number gives the

position of the exon that is altered while splicing. This feature is captured through geneious pro

tool.

Splice site distance: The distance of the substitution from the variant to the nearest splice site is

identified and recorded as splice site distance. The splice site distance aids in identifying the

severity of the disease.

PhyloP and PhastCons score: PhyloP is an evolutionary conservation element that computed the

base-wise sequence conservation score of single base substitution which is calculated based on

multiple sequence alignment. PhastCons is a base wise conservation element examined from

probability for substitution site, based on multiple alignments. PhyloP and PhastCons scores are

downloaded from the UCSC Genome Browser.

ESR Change: The regulatory sequences located within the exon and promoting exon inclusion

are referred to as Exonic Splicing Regulatory (ESR) elements. ESR change identifies the change

in the frequency of ESR elements with respect to single variants. To strengthen or repress the

elements in the sequences Exonic Splicing Enhancers (ESE) and Exonic Splicing Silencers

(ESS) is calculated using ESE finder tool. The ESR changes helps in recognizing the adjacent

splice site. Counting the occurrences of nucleotides at each position within the 5’ splice site is

done using PWM – Position Weight Matrices that is calculated as log odds score.

Site scores (3): The 3 sites Acceptor site, branch site and donor site are altered while splicing

and therefore the cut off score of these sites should be calculated to observe the change in the

scores after alteration. These scores are calculated using ESE finder tool.

Scoring splice site with PWM: PWM – It is necessary to identify the score of the splice sites

with the Position Weight Matrices (PWM). PWM will count the occurrences of nucleotides at

each position within the 5’ splice site. It is calculated as log odds score.

Flanking intron size: Flanking intron size is the length of the base pairs of the upstream and

downstream introns nearby the target exon. The intron size is captured using geneious pro tool.

The features and their description are depicted in Table 5.10.

136

Table 5.10 Features and their Descriptions

Features Description

Gene ID Identifier of the gene taken from NCBI

Gene Symbol Name of the gene involved

Chromosome Number The chromosome involved in mutation

Variant Exon number Mutant exon’s number in the target isoforms

Length Length of the mutated gene sequence

Exon Boundary The position of inserted or deleted exons boundary

Intron Boundary The position of inserted or deleted introns boundary

Splice site distance
The distance of the substitution from the variant to the

nearest splice site

PhyloP and PhastCons

score

Evolutionary conservation element that computed the

base-wise sequence conservation score

ESR Change change in the frequency of ESR elements

Site scores (3) Acceptor Site, Branch site and Splice site scores

Distance of alteration

from 5’ splice site
Composition of A, C, G, T, AT, GC in mutated sequence.

Distance of alteration

from 3’ splice site
Last position of stop codon ATG

Scoring splice site with

PWM
Score of the splice sites with the Position Weight Matrices

Flanking intron size
Length of the base pairs of the upstream and downstream

introns

Exon size Number of exons

Exon type Type of exon. Initial, Internal, Terminal and Single exons

Coding region score Score of the coding region

GC content Calculated with the error probability set to 0 or 1

137

Sample feature values are shown below.

Training Dataset

Position of the spliced introns and exons are carefully examined and gene, exon and snp features

are extracted as described above from 1000 gene sequences. 1000 feature vectors of dimension

24 are created and the dataset (SPM) is prepared. For each feature vector, the class label is

assigned a sequence number 1 to 5 designating the category of muscular dystrophy disease. The

sample training dataset is depicted below.

Gene ID : 2010

Gene Symbol : EMD

Chromosome Number : 23

Variant Exon number : 1

Length : 764

Exon Boundary : 1

Intron Boundary : 331

Splice site distance : 32

PhyloP and PhastCons score : 1.493

Acceptor Site : -7.3

Branch site : -32.7

Donor site score : -4.39

Distance of alteration from 5’ splice site :64

Distance of alteration from 3’ splice site :80

Exon size : 330

Exon type : Internal

Coding region score : 27.26

GC content : 1

138

Building the Model

In this experiment the extracted descriptors from the diseased gene sequences are stored in *.csv

files. The .csv files are converted into a numpy array as scikit – learn library accepts a numpy

array in its implementation. The data frame is built with the numpy array. Normalizing the data

by transforming the feature values into the range between 0 and 1 aid in scaling the input

attributes for a model. Supervised learning algorithms - Naïve bayes, decision tree, ANN, SVM

are employed to develop models using python library framework in scikit learn. While learning

SVM model, the cost, gamma and kernel parameters are tuned to attain good results. The python

script for building the model is shown below.

1756 1 23 11058 440 1 4 0 78 2 11254 32

 0 0 0 0.953 2235 26.45 1

1756 1 23 11058 440 1 4 0 78 2 11254 19

 0 0 0 1.493 2235 26.45 1

1756 1 23 11058 2381 0 1 2 275 2 11254 2

 -7.3 -32.7 -4.39 3.79 2234 27.26 2

1756 1 23 11058 1601 0 17 19 176 2 11254 2

 -14.72 -39.78 -4.33 1.403 2234 27.23 2

2010 2 23 765 263 0 1 1 330 2 738 81

 -8.92 3.12 -8.733 0.838 764 6.23 3

2010 2 23 765 81 0 1 3 330 2 738 108

 -16.25 -18.72 -11.15 0.462 764 6.177 3

3730 4 23 2742 40 0 10 13 135 2 2135 60

 -12.85 -23.5 -10.1 -0.593 2741 11.74 4

3730 4 23 2742 763 0 1 1 357 2 2135 168

 -24.28 -43.2 -10.07 3.235 2741 11.74 4

4359 40 1 747 448 0 4 5 136 2 713 6

 -3.43 -9.34 -0.85 4.312 746 3.32 5

4359 40 1 747 586 0 3 3 214 2 713 2

 -16.8 -38.84 -10.63 4.754 746 3.39 5

139

Performance Evaluation

The training was performed using SPM dataset and the predictive performance of the disease

classification shows that SVM classifier attains an accuracy of 86.7%. The results are tabulated

in Table 5.11 and depicted in Fig.5.10.

Table 5.11 Predictive Performance of the Classifiers

(Splicing Mutations)

Performance criteria Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Correctly classified

instances

849 835 813 867

Incorrectly classified

instances

151 165 187 133

Prediction accuracy 84.9 83.5 81.3 86.7

from sklearn import metrics

from sklearn.svm import SVC

fit a SVM model to the data

model = SVC()

model.fit(X, y)

print(model)

make predictions

expected = y

predicted = model.predict(X)

summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

140

Fig.5.10 Predictive Accuracy of the Classifiers

(Splicing mutations)

The performances of the classifiers are evaluated and the measures such as prediction

accuracy, precision, recall, F1- score, cohen’s kappa and Time taken to build the model are

calculated and tabulated in Table 5.12.

Table 5.12 Performance Evaluation of the Classifiers

(Splicing Mutations)

Performance criteria Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Prediction accuracy 84.9% 83.5% 81.3% 86.7%

Precision 0.849 0.83 0.81 0.86

Recall 0.846 0.815 0.8 0.87

F1 Score 85.1 82.9 79.9 86.7

Cohen’s Kappa 0.841 0.81 0.802 0.867

Time taken to build the

model (in sec)

7 8 13.6 6.5

The output of the binary classifier is typically studied with the Precision-recall curves. In this

multi-class classification work, the target attribute values are binarized and the class values are

shaped into 1. The precision- recall curve is computed by adding some noisy features and the

micro-average ROC and ROC area is calculated. The precision- recall curve is plotted for each

class based on SVM linear classifier. Fig.5.11 shows the precision-recall curve for each class in

SVM classifier.

78
79
80
81
82
83
84
85
86
87

Decision
Tree

Classifier

Artificial
Neural

Network

Naïve
Bayes

Classifier

SVM

Prediction accuracy

141

Fig.5.11 Precision Recall Curve SVM Classifier

The above figure insists that class 2, 3 and class 4 have high precision of 1.00 and class 0is

curved low at the area 0.54. On the average the micro-average curve shows the value of 0.91.

ROC curve is plotted for SVM linear classifier for each class. Fig.5.12 depicts the ROC curve

based on SVM classifier in predicting muscular dystrophy.

142

Fig.5.12 ROC Curve SVM Classifier

Findings

From the above results it is observed that the prediction accuracy of 86.7% is attained from SVM

classifier. High precision and Recall measures of about 0.80 and 0.87 is attained for SVM

classifier. The cohen’s kappa with 0.867 score and the time taken of 6.5 seconds is promotable in

SVM classifier. Overall, the balance accuracy measure is also prominent in SVM when

measured with other algorithms.

143

5.6 Model V: Predicting Muscular Dystrophy Disease using Features Related

to Aggregated Mutational Descriptors

Finally, a data driven model is developed by aggregating the features related to all kinds of

mutations for predicting the disease precisely. In all the previous works, autonomous disease

identification models were built based on the specific mutational features. However, the type of

mutation caused in the gene sequence may not be known explicitly and hence all the mutational

features are accumulated to facilitate efficient learning for predicting the disease caused by any

mutation.

Training Dataset

So far in the literature no attempt was made to build disease identification model by aggregating

all kind of mutational descriptors and hence it is significant to build this type of disease

identification model. In this experiment, AGM dataset is formed by pooling all the mutational

features described in previous sections. 106 evocative features are cumulated by eliminating the

repetitive features without losing information from 132 features and feature vectors are created

with labels 1 to 5 for learning the disease prediction models. Another dataset is formed by

selecting the subset of attributes using the information gain selection attribute method and 73

highly ranked attributes are chosen as feature vectors.

1756 1 23 63 11058 4 163 487 489 732 1

 1 18 8 1 11056 0 0 22106 21901.15

 18806.38 1 486 33.33 20.75 23.7 22.22 44.45 55.55

 1.0511945 0.8121212 0.9488055 1.1878788 1.52 0.76 0.24

 1.48 1.8484848 0.9876543 1.4242424 1.3580247 0.5263158

 1.1052632 1.3684211 0.8701299 0.8636364 1.1298701

 1.1363636 1.2519084 0.9770992 0.1221374 1.648855

 0.8787879 0.5454545 0.6666667 0.6363636 0.7384615

 0.8703297 1.410989 1.0285714 1.2248062 0.8186528

 0.7751938 1.1813472 1.2394366 1.1830986 0.1502347

 1.42723 1.6637168 0.920354 0.7787611 0.6371681

 0.8121827 0.9340102 1.4010152 0.8527919 0.6129032

 1.3870968 1.2592593 0.9135802 0.1481481 1.3333333

 1.1666667 0.8333333 0.7120879 0.6419753 1.2395604

 1.3580247 0 0 0 0 1 10474 10474 0 1

 2 275 11254 93 -3.43 -9.34 -0.85 0 27.25 1

144

 1756 1 23 93 11058 4 48 142 144 449 1 1

 16 3 1 2464 0 0 3980 3939.565 3381.302 1

 142 21.84 29.56 33.72 14.88 63.28 36.72 0.6551724 1.6190476

 1.3448276 0.3809524 1.4 1.8 0.4 0.4 1.3953488 1.3584906

 0.8372093 0.9056604 0.1914894 1.8510638 0.9574468 0.3783784

 1.6190476 1.6216216 0.3809524 1.025641 1.025641 0.8205128

 1.1282051 0.4186047 0.9767442 1.9534884 0.4186047 0.3050847

 1.9322034 2.9491525 0.6101695 0.3666667 1.0526316 1.6333333

 0.9473684 1.0909091 1.8181818 0.1818182 0.9090909 1.0196078

 1.1764706 1.0196078 0.7843137 0.1818182 1.0909091 1.8181818

 0.9090909 1.12 0.88 0.5660377 1.4716981 0.2264151 1.4716981

 1.625 0.375 0 1.5652174 0.2033898 0.4347826 1 696

 696 0 1 2 275 11254 2 -7.3 -32.7 -4.39 3.79 27.26 2

2010 2 23 0 747 5 105 313 315 557 1 1

 12 0 32 11056 1 2 1956 2923.671 2366.496 1

 132 19.49 27.27 29.18 24.06 56.45 43.55 1.0511945 0.8121212

 0.9488055 1.1878788 1.52 0.76 0.24 1.48 1.8484848 0.9876543

 1.4242424 1.3580247 0.5263158 1.1052632 1.3684211 0.8664495

 0.8636364 1.1335505 1.1363636 1.2519084 0.9770992 0.1221374

 1.648855 0.8787879 0.5454545 0.6666667 0.6363636 0.7384615

 0.8703297 1.410989 1.0285714 1.2248062 0.8186528 0.7751938

 1.1813472 1.2394366 1.1830986 0.1502347 1.42723 1.6785714

 0.9285714 0.75 0.6428571 0.8121827 0.9340102 1.4010152

 0.8527919 0.6129032 1.3870968 1.2592593 0.9135802 0.1481481

 1.3333333 1.1666667 0.8333333 0.7120879 0.6419753 1.2395604

 1.3580247 2 19 20 0 1052 2094 3146 738 17

 -1.162 0 3

3730 4 23 1295 2742 45 133 135 439 1 1 1

 17 1 2464 0 0 3928 3907.675 3351.09 1 132

 21.87 29.61 33.63 14.88 63.25 36.75 0.6551724 1.6097561 1.3448276

 0.3902439 1.3658537 1.8536585 0.3902439 0.3902439 1.3953488

 1.4444444 0.8372093 0.8888889 0.1914894 1.8510638 0.9574468

 0.3783784 1.6190476 1.6216216 0.3809524 1.025641 1.025641

 0.8205128 1.1282051 0.4186047 0.9767442 1.9534884 0.4186047

 0.3050847 1.9322034 2.9491525 0.6101695 0.3666667 1.0526316

 1.6333333 0.9473684 1.1162791 1.7674419 0.1860465 0.9302326

 1.0196078 1.1764706 1.0196078 0.7843137 0.1818182 1.0909091

 1.8181818 0.9090909 1.12 0.88 0.5555556 1.4444444 0.2222222

 1.4444444 1.625 0.375 0 1.5652174 0.2033898 0.4347826 6

 452 452 10 13 135 2135 60 -12.85 -23.5 -10.1 -0.593 11.74 4

145

Building the Model

The predictive performance of the classifiers using the aggregated features is carried out in two

implementations before and after feature selection. Numpy arrays are generated based on the

IDM related features. The dataset is normalized using min max normalization. In all the previous

experiments, autonomous disease identification models have been built based on the specific

mutational features. In this experiment AGM dataset is employed for training the decision tree,

naïve bayes, ANN and SVM models. The script for building the classifier is shown below.

79628 49 5 2859 3867 241 721 723 965 1 1 6

 0 32 11056 1 2 -180 571.5369 380.4075 1

 720 25.33 21.82 25.92 26.94 47.73 52.27 1.0511945 0.8121212

 0.9488055 1.1878788 1.52 0.76 0.24 1.48 1.8484848 0.9876543

 1.4242424 1.3580247 0.5263158 1.1052632 1.3684211 0.8664495

 0.8636364 1.1335505 1.1363636 1.2519084 0.9770992 0.1221374

 1.648855 0.8787879 0.5454545 0.6666667 0.6363636 0.7384615

 0.8703297 1.410989 1.0285714 1.2248062 0.8186528 0.7751938

 1.1813472 1.2394366 1.1830986 0.1502347 1.42723 1.6785714

 0.9285714 0.75 0.6428571 0.8121827 0.9340102 1.4010152

 0.8527919 0.6129032 1.3870968 1.2592593 0.9135802 0.1481481

 1.3333333 1.1666667 0.8333333 0.7120879 0.6419753 1.2395604

 1.3580247 2 5 6 0 192 541 733 0 0 11

 11 1695 3778 14 -17.3 -9.1 -1.22 1.792 19.175 5

import numpy as np

import pandas as pd

import io

df=pd.read_csv('C:\Users\HCL\Documents\pooled_sample_2_scikit.csv')

print df

from numpy import genfromtxt

my_data = genfromtxt('C:\Users\HCL\Documents\pooled_sample_2_scikit.csv', delimiter=',')

X = my_data[:,0:105]

y = my_data[:,106]

from sklearn import preprocessing

normalized_X = preprocessing.normalize(X)

standardized_X = preprocessing.scale(X)

146

Performance Evaluation

The experiments conducted on the diseased gene sequences are assessed on the model built with

evaluation methods. The cross validation results of the classifiers are shown in Table 5.13 and

illustrated in Fig.5.13 and Fig.5.14.

Table 5.13 Predictive Performance of the Classifiers

(Pooled Features)

Performance

criteria

Decision Tree

Classifier

Artificial

Neural

Network

Naïve Bayes

Classifier

SVM

Correctly classified

Instance

849 835 813 867

Incorrectly

classified instance

151 165 187 133

Prediction accuracy 84.9 83.5 81.3 86.7

from sklearn import metrics

from sklearn.svm import SVC

fit a SVM model to the data

model = SVC()

model.fit(X, y)

print(model)

make predictions

expected = y

predicted = model.predict(X)

summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

147

Fig.5.13 Predictive Performance of the Classifiers

 (Pooled Features)

Fig.5.14 Predictive Accuracy of the Classifiers

(Pooled Features)

The experiment was carried out with selected subset of attributes and a model is built

using the standard pattern recognition algorithms. The performance of SVM classifier observed

better accuracy of 90.3%. The performances of the classifiers are evaluated with respect to the

measures such as prediction accuracy, precision, recall, F1- score, cohen’s kappa and Time taken

to build the model The results of the classifiers are shown in Table 5.14, Table 5.15 and

illustrated in Fig.5.15.

0

100

200

300

400

500

600

700

800

900

Decision
Tree

Classifier

Artificial
Neural

Network

Naïve
Bayes

Classifier

SVM

Correctly classified
Instance

Incorrectly classified
instance

79
80
81
82
83
84
85
86
87
88

Decision
Tree

Classifier

Artificial
Neural

Network

Naïve
Bayes

Classifier

SVM

Prediction accuracy

148

Table 5.14 Predictive Performance of the Classifiers

(After Feature Selection)

Performance

criteria

Decision Tree

Classifier

Artificial

Neural

Network

Naïve Bayes

Classifier

SVM

Correctly classified

Instance

847 829 823 903

Incorrectly

classified instance

153 171 177 97

Prediction accuracy 84.7 82.9 82.3 90.3

Table 5.15 Performance evaluation of the Classifiers

(After Feature selection)

Performance

criteria

Decision Tree

Classifier

Artificial Neural

Network

Naïve Bayes

Classifier

SVM

Prediction accuracy 84.7% 82.9% 82.3% 87.2%

Precision 0.847 0.829 0.823 0.872

Recall 0.847 0.82 0.82 0.881

F1 Score 84.1 82.1 82.1 87.2

Cohen’s Kappa 0.847 0.83 0.83 0.87

Time taken to build

the model (in sec)

7 9.7 9.7 5.2

Fig.5.15 Predictive Accuracy of the Classifiers

 (After Feature Selection)

149

The comparative analysis of the models built before feature selection and after feature selection

is made with respect to predictive accuracy and presented in Table 5.16 and in Fig.5.16. This

comparative analysis shows that models built with high ranked features produce better results.

Table 5.16 Comparative Study of Prediction Accuracy

Before and After Feature Selection

Fig.5.16 Comparative Study of Prediction Accuracy

Before and After Feature Selection

From the above experiments, it was observed that the performance of the classifiers is high when

training dataset contains summative features. The classification models built using non-

synonymous mutational features produced an accuracy of about 84.9%. The classification

models built using features related to synonymous mutations produced an accuracy of about

86%. 86.3% accuracy was attained when insertion/duplication and deletion mutational features

are taken into account. Disease prediction model reached an accuracy of 86.7% when splicing

mutational features are considered. When all the mutational features are pooled together, the

models showed an accuracy of about 87.2%.

76

78

80

82

84

86

88

90

Decision
Tree

Classifier

Artificial
Neural

Network

Naïve Bayes
Classifier

SVM

Before Feature
Selection

After Feature
Selection

Prediction accuracy Decision

Tree

Classifier

Artificial

Neural

Network

Naïve

Bayes

Classifier

SVM

Before Feature

Selection

84.9 83.5 81.3 86.7

After Feature Selection 84.7 82.9 82.3 90.3

150

The output of the binary classifier is typically studied with the Precision-recall curves. In

this multi-class classification work, the target attribute values are binarized and the class values

are shaped into 1. The precision- recall curve is computed by adding some noisy features and the

micro-average ROC and ROC area is calculated. The precision- recall curve is plotted for each

class based on SVM linear classifier. Fig.5.17 shows the precision-recall curve and Fig.5.18

shows the ROC curve for each class in SVM classifier.

Fig.5.17 Precision Recall Curve for SVM Classifier

151

Fig.5.18 ROC Curve for SVM Classifier

Findings

Downsizing the features through feature selection expedites to improve the outcome and the

prediction accuracy of the SVM classifier built using high ranked features was hoisted to 90.3%.

Hence, it is observed that pooling the descriptors associated with all type of mutations produced

augmented trained models for meticulous disease prediction.

5.7 Summary

This chapter demonstrates the modeling of disease identification work as the problem of

learning multiclass classification system that can suits in bioinformatics environment to identify

the disease effectively. It describes the implementation of shallow learning approach for

identifying the genetic disease based on the mutational features. Five different models were built

to identify the disease based on diverse features associated to different kind of mutations. The

AGM based disease identification model is a generalized model which can identify any kind of

disease effectively by aggregating all type of mutational features. The outcome of the

experiments proves that, the disease identification model is effectual when the collective features

are used in learning. The results shows that our method is valuable than existing disease

identification procedures with respect to significant features.

152

Remarks

1. Paper titled “Predicting Muscular Dystrophy with Sequence based Features for Point

Mutations”, is presented in the conference, IEEE Conference on research in Computational

Intelligence and communication Network, IEEE CIS Kolkata chapter on Nov 2015, and

published in the conference proceedings of ISBN 978-1-4673-6734-9, pp: 235 – 240.

2. Paper titled “Predicting Muscular Dystrophy through Genetic testing – A Study”, is a

review paper presented in the International Conference on Innovative trends in Electronics

Communication and Applications, ASDF and IIT Madras Research park, Chennai, Dec

2015and published in the conference proceedings of ISBN 978-81-929742-6-2. Vol – 01,

pp: 65-71.

3. Paper titled "Muscular Dystrophy Disease Classification Using Relative Synonymous

Codon Usage", has been published in the International Journal of Machine Learning and

Computing vol.6, no. 2, ISSN- 2010-3700, pp. 139-144, 2016.

4. Paper titled “Identification of Rare Genetic Disorder from Single Nucleotide Variants

Using Supervised Learning Technique”, has been published by International journal of

control theory and applications, Vol.9, no.34, pp. 801-810, 2016. (Scopus Indexed)

5. Paper titled "Shallow Learning model for diagnosing neuromuscular disorder from splicing

variants", has been published by World Journal of Engineering, Vol. 14 Issue: 4, pp.329-

336, 2017. (Scopus, ISI indexed).

6. Paper titled "Data Driven Approach for Genetic Disorder Prediction by Aggregating

Mutational Features", has been accepted for publication in the Asian Journal of

Information Technology. (Will be published in Issue 16, Vol.3)

