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6. PSO PRE-TRAINED DBN FOR PHONEME RECOGNITION 

Learning in neural network vastly pivot on the parameter initialization of the network. 

Parameters of the network generally are assigned with random initialization.  Performing 

pretraining provides better initialization to neural networks and helps in developing more 

optimal model. The time complexity involved in pre-training and training the DBN increases 

with the number of layers in the DBN. It is obvious that if the RBMs in the DBN are trained in 

isolation using contrastive divergence as discussed in the previous chapter, the time complexity 

to train the DBN increases with the increased depth. Further in traditional approach, random 

initialization of network parameters and usage of gradient descent technique for learning may 

suffer with the solution being trapped in local minima. This chapter discusses the proposed 

architecture to build Particle Swarm Optimization pretrained Deep Belief Networks (PSO-DBN) 

model for Tamil phoneme recognition. This uses PSO to pre-train all the layers of DBN in a 

single pass and helps to reduce the time complexity theoretically and enable the movement of 

particles towards global minima rather than being trapped in local minima. This chapter also 

discusses on the performance of DBN phoneme recognition model pretrained using PSO variants 

namely, Second Generation PSO (SGPSO) and New Method PSO (NMPSO) in addition to the 

basic PSO.  

6.1 TAMIL PHONEME RECOGNITION MODEL USING PSO-DBN 

The overall framework of the proposed PSO-DBN based acoustic model is shown in 

Fig.6.1. The framework comprises of three phases: pre-processing phase, training phase and 

testing phase. Continuous speech samples collected is directly fed into the pre-processing phase 

where the speech wave form is segmented into phonetic segments using graph cut based 

segmentation algorithm as discussed in chapter 3. The DWTFS dataset built using graph cut 

based segmentation is fed to the training phase to build various PSO based DBN acoustic 

models. The acoustic models are then tested using the test dataset and the model efficiencies are 

studied through RMSE, PER, precision, recall, F-measure and accuracy. 
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Fig 6.1 Architecture of PSO-DBN Acoustic Model 

The training phase in building PSO-DBN involves pretraining with PSO followed by back 

propagation based fine tuning subphases. The pretraining algorithm used to optimize the 

parameters of DBN using PSO is given below. The neurons in the DBN are defined with the 

sigmoid activation function. The algorithm takes the hyper parameters of DBN number of layers, 

number of neurons in each layer and the training dataset as input and returns the evolved 

population set and the best individual in the population as output. 

Algorithm 6.1 Optimizing DBN parameters using PSO 

Step 1: Initialize the PSO parameters namely, inertia coefficient    , personal        

acceleration coefficient      and global acceleration coefficient      

Step 2: Instantiate population P of size M whose individuals are of the form as shown in     

Training Phase 

  

BBDBN/ GBDBN 

Acoustic  

Model 

Pre-processing Phase 

 

Filtering 
 

DWT Feature 

Extraction 

PSO 

 

Testing   Phase 

 
Test  

Dataset 

Phoneme 

Classification 

Training Dataset 

Train DBN using 

back propagation  

DWTFS dataset 

Graph cut based segmentation 

Continuous Speech from Kazhangiyam 

Speech Corpus 

Build Weighted 

Multigraph 

Bipartite Multigraph 
until required 

segmentation level 

achieved 

Population 

 

Initialize DBN 

 



114 

 

Fig. 6.2 

Step 3: for all individuals i in the population P do 

a. Initialize the position vector (xi(1)) as uniform random values 

b. Initialize the velocity vector (vi(1)) as zero 

Step 4: for each generation t do 

Step 5: for each individual i in the population P do 

a. Calculate the new velocity,  

              vi(t+1)=wvi(t)+h(t)vi(t)+c1r1(pi(t)−xi(t))+c2r2(pg(t)−xi(t) 

b. Calculate the new position,                          

c. Evaluate the cost of the individual for the given training dataset using algorithm 

6.2 

d. Update the personal best cost and position (pi) 

e. Update the global best cost and position (pg) 

f. Update inertia (ω) 

 

 

Fig. 6.2 Coding scheme of each individual of the population 

Various parameters that model the characteristics of the DBN are received as input by the 

pretraining algorithm. Synaptic weights wij of the edges connecting the neurons of successive 

layers, bias values bj of each neuron, the activation function f(x) defining the neurons are such 

parameters. The connection weights and bias parameters of the DBN are codified as an 

individual in the population of PSO to represent the solution of problem under consideration. 

The codification of a DBN in a PSO is done as follows. The population P of size M is 

represented as a collection of individuals each representing the parameters of a DBN model. The 

coding scheme used to represent each individual is shown in Fig. 6.2 which is of length 
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
i=1

L−1
 Ni+1(Ni+1), where L−1 denotes the number of RBMs in the DBN  with L defining the 

number of DBN layers, Ni and Ni+1, the number of neurons in input and output layers of ith 

RBM. The vectors Wi and Bi in the coding scheme denotes the connection weights and biases of 

output neurons of ith RBM, Ri,  where      . Codification of the solution to the problem for 

representing the network parameters as required by PSO is defined in equation 6.1. Each row of 

the matrix represents an individual in the population. 

 

 

             
                   

                                                 
                                    

               
   
    (6.1) 

  Ri, i and i+1 being the input and output layers,          elements of weight matrix and ni+1, 

the number of biases for neurons in layer i+1, are located from  
               

   
   

  to  

  
             

 
   

 in equation 6.1 for any individual k, where      .  

Each individual in the population maintains its position vector, velocity vector and local 

best position. The codification scheme portrayed in Fig. 6.2 defines the position vector and 

velocity vector of each individual in PSO population which in turn represents the DBN 

parameters. The position vector, velocity vector and the local best position of each individual is 

initialized with random values. Then each individual in the population is updated for t 

generations. In each generation the velocity of the particle is updated as given in step 5(a) of the 

algorithm, followed by the updation of the current position. At the end of each generation, the 

cost of each individual in the current population is evaluated using algorithm 6.2. Then the local 

best of each individual and global best of the population are updated. 

Algorithm 6.2 Evaluating the cost of each individuals 

Step 1: for each individual i in population do 

Step 2: Construct a DBN (₦i) by transforming individual i coded as in Fig. 6.2 into a DBN 

structure 

Step 3: Pass the training dataset through the layers of ₦i using                  

       
 
     



116 

 

Step 4: Evaluate Cost(₦i) =(yi - oi)
2
/ᶆ, where yi, oi and ᶆ are predicted output vector, actual 

output vector and number of training samples. 

Step 5: end for 

The algorithm 6.2 evaluates the individuals in the population that codifies the respective 

candidate DBNs. The algorithm receives the current population of PSO as input and returns the 

cost of DBNs as output. The performance of deep neural networks is decided based on their 

fitness values. The algorithm initially transforms individuals to DBN and then evaluates its cost 

by passing the training set to DBN. Mean Square Error (MSE) is used as the fitness or cost 

function and the problem is defined as a minimization problem on the cost function defined by 

MSE. The cost function is given as follows: 

      
 

   
      

    
  

 
 
   

 
   

 (6.2) 

where p is the dataset size, C is the number of output classes,   
  denotes the desired output, and 

  
  denotes the acquired output. The PSO pretraining phase is succeeded with the back 

propagation as explained in section 5.1 and the PSO-DBN acoustic model is developed.  

The basic PSO is extended with its variations namely, SGPSO and NMPSO to search and 

identify better solutions for any problem considered. In this work, these two PSO variants are 

also used for pretraining DBN and to build the SGPSO-DBN and NMPSO-DBN acoustic 

models. 

Second Generation Particle Swarm Optimization (SGPSO) 

SGPSO is an improvement to the basic PSO. The basic PSO works on maintaining the 

local optimum of each particle and global best solution to help the population migrate towards 

the optimum solution. In SGPSO, a third parameter depicting the geometric centre of the 

optimum swarm in addition to the other two the local best and global best is included to identify 

the optimum solution. The inspiration behind the idea is that, the birds maintain a certain 

distance between its swarm centre from the location of the food. The bird flock stays around a 

particular area for a period of time with a fixed swarm centre for each member bird. Once that 

area is explored, it moves to the new area for food search, in turn fixing its new geometric centre. 

The geometric centre       of the swarm is updated once for every T time, as follows: 

    
 

 
   
 
    (6.3) 
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where M is the number of particles in the population. The velocity calculation in SGPSO is given 

below, 

                                                                  (6.4) 

where             are local, global and geometric centre acceleration coefficients,              

are random number in the range [0, 1] and   is the velocity inertia. Thus the algorithm 6.1 is 

updated for SGPSO and is given below. The SGPSO algorithm also takes number of DBN 

layers, number of neurons in each layer and the dataset to train as input and the evolved 

population set and the best individual in the population as output. 

Algorithm 6.3 Optimizing DBN parameters using SGPSO 

Step 1: Initialize the PSO parameters namely, inertia coefficient  , personal acceleration 

coefficient   , global acceleration coefficient    and geometric centre    

Step 2: Instantiate population P of size M whose individuals are of the form as shown in Fig. 

6.2 

Step 3: for all individuals i in the population P do 

a. Initialize the position vector xi(1) as uniform random values 

b. Initialize the velocity vector vi(1) as zero 

Step 4: for each generation t do 

Step 5: for each individual i in the population P do 

a. Calculate the new velocity, 

                                                                  

b. Calculate the new position,                          

c. Evaluate the cost of the individual for the given training dataset using algorithm 6.2 

d. Update the personal best cost and position pi 

e. Update the global best cost and position pg 

f. Update inertia ω 
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In the above algorithm, step 5(a) shows the velocity update done in generation of SGPSO. 

The fourth term in the velocity update equation                defines the geometric term that 

incorporates the influence of geometric certre of the population in velocity evolution. In this term 

         denotes the coefficient of geometric centre and a random value respectively. 

New Model Particle Swarm Optimization (NMPSO) 

The algorithm NMPSO is an integrated approach of various PSO. The idea of linearly 

varying inertia weight on a course of generation proposed in [86] is used to control the inertia. It 

significantly improves the fit of model parameters over the basic PSO algorithm. The inertia 

weight is linearly varied using the following equation, 

           
            

       
    (6.5) 

where           are the initial and final inertia weights respectively, MAXITER is the 

maximum number of iterations and iter is the current iteration number. 

The concept of velocity resting developed in [87] is used when there is no improvement in 

global best position with the increasing generations. The velocity resting is calculated as follows, 

                    (6.6) 

where r is the uniformly distributed random number in the range [0,1] and      is the maximum 

random perturbation  magnitude  to each selected particle dimension. 

Crossover operator proposed in [88] is defined as follows, 

                                   (6.7) 

which is used in NMPSO to perform crossover at a rate α. Here, ri is a uniformly distributed 

random number in the range [0, 1], ch1 is the offspring and par1 and par2, the parents of the 

offspring. The velocity of offspring is calculated as follows, 

         
                 

                   
           (6.8) 

The algorithm also uses a gaussian mutation operator proposed in [89] at a mutation rate β. The 

parent par to create an offspring is chosen randomly. The mutation is performed using the 

following equation, 

                
            

       
       (6.9) 
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for N being a Gaussian distribution, MAXITER the maximum number of allowable iterations and 

iter, the current iteration. 

The concept of dynamic random neighborhood used by [90] is applied in NMPSO at a rate 

of γ. This involves dividing the population into neighborhoods, with each neighborhood having a 

maximum population of MAXNEIGH. The best member of each neighborhood     
 is 

computed. Then the velocity of each particle is updated in terms of neighborhoods as follows: 

                                           
            (6.10) 

  neighborhoods. So, the NMPSO is a combination of several improvements on PSO that 

includes varying inertia, crossover offspring, particle mutation and dynamic neighborhoods. The 

flow of NMPSO is listed out in the following algorithm which too takes training dataset and 

DBN hyperparameters as input and presents the global best individual as a result. 

Algorithm 6.4 NMPSO for optimizing DBN parameters 

Step 1: Initialize the population given as a set of individuals,   , where i=1, 2, ....M. 

Step 2: Do until the stop criteria is reached 

Step 3: If   , does not improve for a said number of iterations then apply velocity resting as 

defined in equation 6.6 

                 If random(0,1)>γ the create new neighborhoods 

Step 4: Update inertia weight using equation 6.5 

Step 5: For all individual   , do 

                Calculate their fitness 

Step 6: For all individual   , do 

                Update its best position    

Step 7: For each neighborhood   , do 

                Update the best individual     
 

Step 8: For all dimensions, for all individuals do 

a. Update velocity using equation 6.10 

b. Update current position          

c. If random(0,1)>α, perform crossover using equation 6.7 and 6.8 

d. If random(0,1)>β, perform mutation using equation 6.9 
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The output of any PSO pretraining provide the global best solution in the problem space, 

which is further decoded to initialize the weights of the links connecting the layers of DBN and 

biases of neurons in each layer of DBN  to form PSO-DBN, SGPSO-DBN and NMPSO-DBN 

models respectively. The DBN models are then trained with the back propagation training to 

build efficient acoustic models.  

6.2 EXPERIMENT AND RESULTS 

As in previous experiments the DWTFS dataset is used to implement phoneme recognition 

models PSO-DBN, SGPSO-DBN and NMPSO-DBN. Experiments are performed by varying the 

number of layers and the population involved in identifying the optimal solution for the phoneme 

recognition problem. The default values of parameters common to all three PSOs were set as 

follows: a population of 25, inertia co-efficient 1, damping inertia co-efficient 0.99, personal 

acceleration and social acceleration co-efficients 2, and a maximum of 500 generations. For 

SGPSO the geometric centre acceleration co-efficient has been set to 2, while the social and 

personal accelerations co-efficients were assigned 2.05, and the geometric centre updating time 

as 20. For NMPSO pre-training, the parameters were defined as follows: the population size 100, 

number of neighbourhoods 4, initial and final inertia coefficients 0.9 and 0.4, crossover and 

mutation factors 0.1, and neighborhood updation rate 0.2. The number of neurons in the 7-layer 

DBN is set as 90x100x120x120x100x70x39. The sigmoid activation function is used for firing 

the neurons.  

The best cost observed over the generations of PSO pretraining of a 7-layer DBN when 

trained with population sizes 5, 10, 15, 20, 25, 30 and 35 is shown in Fig. 6.3.  The best cost 

observed shows that the learning becomes better while increasing the population size but started 

degrading after the population size of 25. The learning observed in the curve of PSO pretraining 

with population 25 shows a good improved in the best cost achieved over generations.  
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Fig. 6.3 Best Costs for Generations during PSO Pre-training with Different Population Size 

Similarly, the best cost recorded during the pretraining of DBN models using SGPSO with 

various population sizes is shown in Fig. 6.4. It is inferred from the curves that the best cost 

achieved for models when trained by increasing the population sizes is improving much better 

with population size and has shown degradation in the case of population size, 35. The models 

pretrained using population of size 25 and 30 has turned out with competing best cost curves. 

Fig. 6.4 Best Costs for Generations during SGPSO Pre-training with  

Different Population Size 

The best cost curves while pretraining DBN models with NMPSO with various population 

sizes 20, 30, 50 and 100 respectively shown in Fig. 6.5. The population size used here differs 

from the other two PSOs due to the existence and implementation of neighborhood relationships. 
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It can be observed from the best cost curves that the learning happens only for first few 

generations while using SGPSO for pretraining DBN with the DWTFS dataset. 

It is observed for most swarm sizes of PSO pre-training the best costs curve moves more 

steep for around 50 generations and then stays in the plateau, whereas for most swarm sizes of 

SGPSO and NMPSO pre-training the best costs curve moves steep by around 100 and 10 

generations respectively which then starts to stabilize. This shows that using PSO for pre-

training reaches the optimal area in the solution space earlier and then improves steadily in case 

of swarm size 25 when compared to others. At the same time, SGPSO and NMPSO pre-training 

show little or no learning.  

 

 

Fig. 6.5 Best Costs for Generations during NMPSO Pre-training with  

Different Population Size 

The various DBN models pretrained using various PSO, are then trained with the 

backpropagation technique. The hyperparameters DBN are set as follows. The number of layers 

in DBN is set as 7, the number of neurons in each layers is set as 90x100x120x120x100x70x39, 

and activation function as sigmoid. The back propagation training is accomplished for 1000 

epochs for batch size of 100 data points, step size 0.1, initial momentum 0.5, final momentum 

0.9 and weight cost 0.0002. Various performance metrics RMSE, PER, precision, recall, F-

measure and accuracy used to evaluate the efficiency of three models. The RMSE values of the 

DBN models experimented is listed out in Table XIX and Table XX. The observations reveals 

the increase in population size during pre-training DBNs with PSO, SGPSO and NMPSO have 
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some improvement in RMSE values and PERs by better optimising the initial values assigned to 

DBN parameters.  

Table XIX Average RMSE of DBN Models when  

Pre-trained with Various Swarm Size 

Model PSO-DBN SGPSO-DBN NMPSO-DBN 

P
o
p

u
la

ti
o
n

 S
iz

e 

5 0.01536 0.016909 - 

10 0.015267 0.016262 - 

15 0.015177 0.016308 - 

20 0.015412 0.016208 0.018343 

25 0.015851 0.016543 - 

30 0.014986 0.016337 0.018502 

35 0.01518 0.015945 - 

50 - - 0.018122 

100 - - 0.018008 

The best RMSE values observed for PSO-DBN is 0.014986 when pretrained with swarm 

size 30, where as it is 0.015945 and 0.018008 for SGPSO-DBN and NMPSODBN when swarm 

size was set to 35. The comparison chart showing RMSEs recorded for the models experiments 

is depicted in Fig. 6.6. The overall RMSE values observed for PSO-DBN seems to be better the 

the other two. 

 

 

Fig. 6.6 RMSE of DBN Models Pre-trained with PSO, SGPSO and NMPSO  

with Various Population Size 
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Table XX Average PER (%) of DBN Models Pre-trained  

with Various Swarm Size 

Model PSO-DBN SGPSO-DBN NMPSO-DBN 
P

o
p

u
la

ti
o
n

 S
iz

e 

5 12.13 14.15 - 

10 12.02 13.92 - 

15 11.98 13.91 - 

20 12.29 13.83 21.65 

25 12.42 14.1 - 

30 11.39 14.2 19.25 

35 11.99 13.62 - 

50 - - 19.02 

100 - - 18.88 
 

The best phoneme error rate achieved amongst various experiments is 11.39% for PSO-

DBN pre-trained with PSO population size 30, 14.1% for SGPSO-DBN pre-trained with SGPSO 

population size 25 and 18.88% for NMPSO-DBN built with swarm size 100. From the Fig. 6.7, 

the overall PER observed for PSO-DBN shows that it outperforms the other two models for all 

DBNs built with varying the swarm size that are  experimented in this chapter. 

 

Fig. 6.7 PER of DBN Models Pre-trained with PSO, SGPSO and NMPSO  

with Various Population Size 
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The influences of increasing the number of layers for DBNs have been experimented, 

whose results are discussed here. The RMSE evaluated for training and testing datasets on all the 

three DBN models are portrayed in Table XXI. The results show an improvement in the RMSE 

values with increase in number of layers in the DBN. The best RMSE values recorded for PSO-

DBN, SGPSO-DBN and NMPSO-DBN, for the training dataset is 0.015497, 0.011965 and 

0.016892 respectively, and has been observed with 7-layer DBNs. Similarly, the best RMSE 

values for corresponding models when subjected with the testing dataset are 0.016204, 0.021122 

and 0.020112 respectively. 

Table XXI RMSE of PSO-DBN, SGPSO-DBN and NMPSO-DBN Models with  

Various Network Depths 

Method 

No. of Layers 

3 4 5 6 7 

PSO-DBN-Train 0.019058 0.01867 0.017554 0.016104 0.015497 

SGPSO-DBN-Train 0.01831 0.017067 0.014958 0.013604 0.011965 

NMPSO-DBN-Train 0.019449 0.01892 0.018527 0.017001 0.016892 

PSO-DBN-Test 0.019118 0.018416 0.017825 0.016179 0.016204 

SGPSO-DBN-Test 0.021025 0.021316 0.021181 0.021489 0.021122 

NMPSO-DBN-Test 0.022654 0.021005 0.020898 0.020591 0.020112 

 

The Table XXII lists the phoneme error rates observed for various model experimented in 

this chapter. The best Phoneme Error Rate for PSO-DBN during training and testing is observed 

as 12.2% and 12.98% respectively with 7 layers DBN where as the best PER with training set on 

SGPSO-DBN is 9.5% and on NMPSO-DBN is 16.03% and during testing was found to be 

21.92% and 21.09% respectively.  
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Table XXII PER of PSO-DBN, SGPSO-DBN and NMPSO-DBN Models for  

Various Network Depths 

Method 

No. of Layers 

3 4 5 6 7 

PSO-DBN-Train 17.15 15.78 14.46 12.68 12.2 

SGPSO-DBN-Train 15.15 13.33 11.94 10.34 9.5 

NMPSO-DBN-Train 18.33 16.03 17.57 16.93 16.05 

PSO-DBN-Test 17.36 15.38 14.83 12.97 12.98 

SGPSO-DBN-Test 21.92 23.44 23.18 23.11 22.03 

NMPSO-DBN-Test 23.11 21.87 22.98 21.09 22.45 

 

The RMSE of various DBN models developed are visualized in the Fig. 6.8 and their 

corresponding PERs in Fig. 6.9. It is clear that the variation reflected in RMSE and PER values 

of SGPSO-DBN and NMPSO-DBN during their respective training and testing reflects them as a 

overfitted DBN model, whereas the RMSEs and PERs of PSO-DBNs show lesser deviation in 

both training and testing, reflecting better generalized representation of the phoneme recognition 

model.  

 

Fig. 6.8 RMSE of Various Models during Training and Testing for Various Network 
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Fig. 6.9 PER of Various Models during Training and Testing for Various Network Depths 

The overall performance in terms of precision, recall, F-measure and accuracy are portrayed 

in Table XXIII for the three models experimented in this chapter. The average precision of PSO-

DBN, SGPSO-DBN and NMPSO-DBN are 0.687681, 0.65293 and 0.198742 respectively. The 

recall of the three models in order is 0.611481, 0.641114 and 0.239211. The F-measure is 

evaluated as 0.6473, 0.646968 and 0.217105 respectively. The overall accuracy is 87.41% for 

PSO-DBN and found to outperform the other two models that turned out with accuracies 86.82% 

and 47.33% respectively. 

Table XXIII Performance Metrics of PSO-DBN, SGPSO-DBN and NMPSO-DBN  

Phoneme Recognition Models 

Model Precision Recall F-measure Accuracy (%) 

PSO-DBN 0.687681 0.611481 0.6473 87.41 

SGPSO-DBN 0.65293 0.641114 0.646968 86.82 

NMPSO-DBN 0.198742 0.239211 0.217105 47.33 

 

The comparison of precision, recall and F-measure is projected in Fig. 6.10, where PSO-

DBN shows greater precision, SGPSO-DBN have turned out with greater recall and both PSO-

DBN and SGPSO-DBN with equivalent F-measures. The overall accuracy comparison of the 
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three models is illustrated in Fig. 6.11. PSO-DBN phoneme recognition model tops with greater 

accuracy, followed by SGPSO-DBN and then by NMPSO-DBN models. 

 

Fig. 6.10 Performance Comparison for the Three Models 

 

 

Fig. 6.11 Comparison of Accuracy for the Three Models 
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divergence technique CD-DBN and the comparison is illustrated in Fig. 6.12. The PSO variant 

incomparably outperforms the contrastive divergence technique based pretraining, among which 

the basic PSO produces better results. 

 

Fig. 6.12 Comparison of Time-taken to Build the Models CD-DBN, PSO-DBN, SGPSO-

DBN and NMPSO-DBN 
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parameters by identifying the global optimum in the solution space. But still the risk of 

stagnation of particles is observed through the best cost curves during pretraining. 

SUMMARY 

This chapter discussed the development of DBN models using various pretraining 

procedures namely PSO, SGPSO and NMPSO. The various experiments conducted on building 

DBN based acoustic model for phoneme recognition are demonstrated. The performances of the 

various models built by varying the swarm size and the number of layers in the DBN was 

compared and reported in this chapter. Eventhough it was found that the PSO and SGPSO 

pretrained DBNs outperform the CD-DBN, there is need to improve the accuracy of the 

phoneme recognition model and to handle the particle stagnation problem. These problems will 

be dealt in the forthcoming chapter by proposing temperature controlled PSO to pretrain the 

DBN. 
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