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7. TEMPERATURE CONTROLLED PSO PRE-TRAINED DBN FOR 

PHONEME RECOGNITION 

The complexity and invariability lying in the speech recognition problem provoked the 

thought of using a generative model which is capable of handling complex problems. In the 

previous work discussed in Chapter 6, the process of pre-training DBN using contrastive 

divergence has been replaced by the variants of PSO to handle the problem of the solution being 

trapped in local minima and to speed up the process of DBN training. The PSO-DBN and 

SGPSO-DBN models discussed in the previous chapter are able to identify the better optimal 

solution in addition to the advantage of lowering the time complexity of pretraining phase. The 

variants of PSO, as expected reduced the training time of DBN, also turning up with better 

optimized connection weights and bias parameters for DBN. This was achieved with the 

property of PSO to quickly find and explore the promising regions in the global search space. 

Among the variants of PSO experimented, PSO was found as a worthy option with better 

phoneme error rates. But, due to the lack of momentum, PSO risk in tending to stagnate at some 

point preventing it from reaching the optimal solution. 

This chapter proposes a novel optimization procedure, through an improved version of 

PSO to support faster and promote active convergence of particles towards the solution. This is 

achieved through a well known characteristic of particle velocity with respect to the temperature 

of the molecule. The velocity of the particle increases with temperature. With this intuition, a 

new optimization algorithm called temperature controlled PSO is proposed to gear up the 

movement of particles in the optimization phase and to initialize the parameters of DBN. The 

proposed methodology called TPSO-DBN is used to build phoneme recognition model for 

continuous Tamil speech. 

7.1 TAMIL PHONEME RECOGNITION MODEL USING TPSO-DBN 

Parameter optimization is a crucial task involved in improving the efficiency of any model, 

which holds true even for deep neural networks. The proposed methodology uses the proposed 

TPSO parameter optimization algorithm to identify the optimized parameters for the deep belief 

network. The complete model building process is depicted in Fig. 7.1. The dataset is passed to 

TPSO-DBN to get the model trained. The pre-processed labelled phoneme dataset built from the 

continuous Tamil speech using a graphcut based segmentation algorithm is used to build the 

phoneme recognition model. The phonetic dataset is passed to the TPSO-DBN module which  

comprises of two phases in building the model namely, (i) DBN parameter optimization phase 
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using TPSO - the pretraining phase and (ii) the training and building DBN phase. The proposed 

TPSO is introduced before discussing the pretraining and training phases of the architecture. 

Fig. 7.1 Architecture of Proposed TPSO-DBN Phoneme Recognition Model 
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Temperature controlled particle swarm optimization algorithm is proposed with the 

intuition of the relationship existing between the temperature of the particles and the acceleration 

of particles. The velocity of the particles is directly proportional to the temperature of the 

molecules. The velocity of the particle in a population during PSO training is defined with two 

terms namely, local best and global best term. In addition to those terms, the TPSO includes a 

temperature term to control the new velocity of the particle in each of the iteration. The velocity 

updation equation of TPSO that replaces the velocity equation 2.22 of basic PSO is given as 

follows,  

 vi(t+1)=wvi(t)+h(t)vi(t)+c1r1(pi(t)−xi(t))+c2r2(pg(t)−xi(t)            (7.1) 

where h(t) is temperature function whose values are in the range [0,1]. The second term in the 

equation 7.1 is called the temperature term. The temperature function is a trapezoidal function as 

shown in Fig. 7.2. The temperature function h(t) gradually increases with t for certain 

generations and stays stable for generations, which then declines during the last few generations. 

This change in the temperature controls the increase and decrease of velocity over generations. 

Once the velocity of the particles is updated in each generation using equation 7.1, the position 

update of the particles in the population is done using equation 7.2. 

                                      (7.2) 

  

 

Fig. 7.2 Trapezoidal Function 
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elucidates the steps to optimize the DBN parameters using TPSO. The algorithm takes the DBN 

architectural parameters such as number of layers, number of neurons activation function and 

dataset to produce the evolved population and global optimal solution for the given problem. 

Algorithm 7.1 Optimizing DBN parameters using TPSO 

Step 1: Initialize the TPSO parameters namely, inertia coefficient  , personal acceleration 

coefficient    and global acceleration coefficient    

Step 2: Define the temperature function, h 

Step 3: Define the lower bounds Ίmin and upper bounds Ίmax of the decision variables 

Step 4: Instantiate population P of size M whose individuals are of the form as shown in Fig. 

7.3 

Step 5: for all individuals i in the population P do 

a. Initialize the position vector xi(1) as uniform random values in the range (Xmin;Xmax) 

b. Initialize the velocity vector vi(1) as zero 

Step 6: for each generation t do 

Step 7: for each individual i in the population P do 

a. Calculate the new velocity, 

 vi(t+1)=wvi(t)+h(t)vi(t)+c1r1(pi(t)−xi(t))+c2r2(pg(t)−xi(t) 

b. Calculate the new position,                          

c. Evaluate the cost of the individual for the given training dataset using algorithm 7.2 

d. Update the personal best cost and position pi 

e. Update the global best cost and position pg 

f. Update inertia ω 

In this TPSO parameter optimization phase, population of particles are defined randomly 

for the initial generation. Based on the architectural parameters given, the individuals of the 

TPSO population are formulated as shown in Fig. 6.2. Each particle in the population represents 

a DBN, thus defining its connection weight and bias parameters, referred as the position of a 
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particle. These parameters are initialized with uniform random values of range            , 

where               are lower and upper bound vectors for decision parameters. The velocity 

of each particle is initialized as a zero vector. Next, the temperature function is defined, which is 

a trapezoidal function that increases gradually, then stays stable and then declines finally to 

denote the temperature of the particles in the population over time. The TPSO phase runs for a 

fixed number of generations. During each generation, new velocity of each particle is evaluated 

using equation 7.1, which is followed by the position update of each particle in the population 

using equation 7.2. At the end of each generation the cost of every individual in the population 

representing the DBNs are evaluated with the given training dataset and the personal best cost of 

the each particle and the global best cost of the population are updated as defined in algorithm 

7.2. 

Algorithm 7.2 Evaluating the cost of each individual in TPSO 

Step 1: for each individual i in population do 

Step 2: Construct a DBN ₦i by transforming individual i coded as in Fig. 6.2 into a DBN 

structure 

Step 3: Pass the train dataset through the layers of ₦i using                  

       
 
    

Step 4: Evaluate Cost(₦i) =(yi - oi)
2
/ᶆ, where yi, oi and ᶆ are predicted output vector, actual 

output vector and number of training samples. 

Step 5: end for 

TPSO is used here to evolve the connection weights of the DBN. Each generation evolves 

by updating the population with new velocity and position of the individuals under 

consideration. The candidate models represented by the population are evaluated for each 

generation with the training data to find the global best and get ready for the evolution of next 

generation.  

Once the pre-training of the DBN is successfully completed by applying TPSO, the global 

best of the TPSO is considered as an optimized solution. The values obtained as the position 

parameters of the global best mapped to initialize the bias and connection weights of DBN and 

then subjected to back-propagation training process. The steps to initialize and train the DBN are 

portrayed in algorithm 7.3. 
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Algorithm 7.3 Building TPSO-DBN with global best of TPSO 

Step 1: Construct TPSO-DBN ₦ with the best individual obtained in TPSO parameter 

optimization phase 

Step 2: for i = 1 to MaxIteration do 

a. Pass the train dataset through the layers of DBN ₦ using equation 2.22 

b. Backpropagate the error from the output layer to all the hidden layers by updating 

their bias and weights using change in bias and weight obtained through equation 

5.2 to 5.6 

Step 3: end for 

The output obtained in TPSO explained in algorithm 7.1 is given as input to the above 

algorithm, where the values of the global best individual is mapped to the bias and connection 

weights of DBN with reference to the coding scheme used. The training dataset is then passed to 

make the DBN learn with the forward phase and backward phase that uses backpropagation 

training. This process is repeated for MaxIteration to build the phoneme recognition model. 

7.2 EXPERIMENT AND RESULTS 

The DBN based model for phonetic recognition for Tamil continuous speech is built and 

experimented using TPSO based pretraining. The DWTFS dataset of speech corpus 

‘Kazhangiyam’ discussed in chapter 3 is used in the experiment which is a labelled dataset of 

Tamil phonetic units.  The experiments discussed here builds 7-layer DBNs. The performance of 

the different DBNs that are either pretrained using contrastive divergence or pre-trained by one 

of the variations of PSO namely PSO, SGPSO, NMPSO or TPSO are compared.  

The hyperparameters of the DBN model to be built are decided. The experiments are done 

by building 7-layer DBNs with 90, 100, 120, 120, 100, 70 and 39 neurons in each layers 

respectively using various pretraining methods. The sigmoid function is used as the activation 

function. The hyperparameters defined for DBN are passed to the TPSO module along with the 

training dataset which is contributed with 70% of the DWTFS dataset. The TPSO parameters 

namely, maximum number of iterations, population size, inertia coefficient ω, damping inertia 

coefficient, personal acceleration co-efficient c1, global acceleration co-efficient c2 are set as 

500, 35, 1, 0.99, 2 and 2 respectively. The temperature function h(t), used in TPSO is defined as 
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shown in Fig. 7.2.  Mean Square Error (MSE) is set as the cost function in the pre-training phase 

of TPSO-DBN model building.  

With the population set to 35, each individual is randomly initialized adhering to the 

defined limits, each representing a solution to initialize the parameters of the DBN model. The 

movement of particles towards the global optimal solution during TPSO pretraining, captured at 

every hundredth generation for DWTFS training dataset is shown in the Fig. 7.3. The evolution 

of particles in TPSO continues for 500 iterations. The movement of the particles are highly 

realised during this pretraining. 

 

Fig. 7.3 Population of Initial, 100th, 200th, 300th, 400th and 500th TPSO’s Generation 
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The best cost observed over generations during TPSO pretraining is compared with the 

best costs observed for various other pretraining procedures in Fig. 7.4. The best cost achieved in 

this experiment is recorded as 0.0297 for TPSO pretraining and is found to be lower when 

compared to best cost for various other pre-training procedures recorded as 0.0465, 0.0442 and 

0.0449 for PSO, SGPSO and NMPSO respectively. The best costs observed in various 

pretraining procedures have converged in generations 220, 453, 129 and 290 respectively. The 

experiments SGPSO and NMPSO converge to the solution space earlier when compared to PSO 

and TPSO. The steepness of best cost curve shows that the variations of PSO namely SGPSO 

and NMPSO converge faster towards the optimum solution than PSO and TPSO for the problem 

under consideration. Among the variants of PSO considered, the best costs achieved through 

generations is observed less stagnate for TPSO when compared to its competing variants.  

 

Fig. 7.4 Best Cost Comparison of PSO, SGPSO, NMPSO and TPSO Pre-training  

The global best solution arrived in TPSO is then decoded to represent the DBN. A 7-layer 

DBN with 90, 100, 120, 120, 100, 70 and 39 neurons from layer 1 to 7 is built with sigmoid 

activation function defined for each neuron. The DBN modelled so, is then trained using 

backpropagation. For all DBN models, the back propagation based training lasts for 1000 

iterations with a batch size of 100. During DBN training, the initial and final momentum is set to 

0.5 and 0.9 respectively, where the initial momentum lasts for first five iterations. The weight 

cost of the DBN is set as 0.0002. The backpropagation training is accomplished as discussed in 

chapter 5. 
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The TPSO-DBN model is evaluated for its effectiveness using measures such as root mean 

square error, phoneme error rate, precision, recall and F1-score. Eventhough the pretraining 

phase helps to reach the optimal solution, there is a need to fine tune the network parameters 

through backpropagation to improve the accuracy rate of the model built. Table XXIV projects 

the RMSE and PER values for various models under consideration before fine tuning with back 

propagation algorithm for the training and testing datasets. The results show that the RMSE and 

PER values for TPSO is observed as 0.01031, 0.01272, 13.91% and 16.72% for training and 

testing datasets respectively, which is lower than other models proving the efficiency of TPSO in 

parameter optimization and the effect of using the well optimized parameters in building DBNs.  

Table XXIV Performance Comparison of Various Models without  

Back Propagation Fine tuning 

Method 

Training Data Testing Data 

Average PER 

RMSE PER RMSE PER 

CD-DBN 0.04526 34.21 0.04918 36.23 35.22 

PSO-DBN 0.03209 21.31 0.03802 25.01 23.16 

SGPSO-DBN 0.02941 18.68 0.03901 28.11 23.39 

NMPSO-DBN 0.04654 28.37 0.04932 32.69 30.53 

TPSO-DBN 0.01031 13.91 0.01272 16.72 15.32 

 

Further the RMSE and PER values experimented for various models with backpropagation 

fine tuning are portrayed in Table XXV, for both training and testing phases. The results show an 

improvement in the RMSE and PER values for various models proving the support of back 

propagation in performance. Among the results obtained, the best phoneme error rate of 9.5% 

and 10.81% are observed for SGPSO-DBN model in training phase and TPSO-DBN model in 

testing phase respectively. The RMSE in both training and testing phases are observed as 0.0094 

and 0.01058 respectively and found to be lower in TPSO-DBN model when compared to the 

other models. Table XXIV shows that the TPSO-DBN has also recorded the lowest average PER 

with 10.65% when compared to other methods with 14.79%, 12.59%, 15.76% and 15.45%. The 

comparative results  of  RMSE and PER observed during training and testing phases of various 

models is shown in Fig. 7.5 and 7.6.  
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Table XXV Performance Comparison of Various Models Built with  

Back Propagation Fine tuning 

Method 
Training Phase Testing Phase 

Average PER 
RMSE PER RMSE PER 

CD-DBN 0.01523 14.62 0.01528 14.97 14.79 

PSO-DBN 0.01549 12.2 0.01620 12.98 12.59 

SGPSO-DBN 0.01196 9.5 0.02112 22.03 15.76 

NMPSO-DBN 0.01891 13.03 0.0210 17.87 15.45 

TPSO-DBN 0.0094 10.5 0.0105 10.81 10.65 

 

 

 

Fig. 7.5 Performance Comparison of TPSO-DBN Model  

with Other Models using RMSE 
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Fig. 7.6 Performance Comparison of TPSO-DBN Model with Other Models using PER 

Comparison of average PER before and after backpropagation training in Fig. 7.7 shows a 

decline in average PER for the five models under experimentation. Their PER declination after 

backpropagation fine tuning are observed as 20.43%, 10.57%, 7.63%, 15.08% and 4.67% for 

CD-DBN, PSO-DBN, SGPSO-DBN and TPSO-DBN respectively. It can be seen that the 

average PER of TPSO-DBN declines much lesser when compared to the other models showing 

ability of TPSO in identifying the better optimal solution for DBN.  

 

Fig. 7.7 PER Comparison for Various DBN Before and After Backpropagation Training 
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The precision, recall and F-measure of the models under study are listed in the Table 

XXVI. The best precision achieved is 0.807888, 0.769021 and 0.687681 for TPSO-DBN, 

SGPSO-DBN and PSO-DBN. The best recall is observed as 0.778787, 0.773511 and 0.611481 

for TPSO-DBN, SGPSO-DBN and PSO-DBN respectively. The recognition performance of 

TPSO-DBN performs comparatively competitive with SGPSO-DBN and is observed as 

0.790325.  The accuracy achieved for TPSO-DBN acoustic model is 89.35% and is found to 

outperform CD-DBN, PSO-DBN, SGPSO-DBN and NMPSO-DBN which have achieved 

accuracy of 85.21%, 87.41%, 86.62% and 47.33% respectively. 

Table XXVI Performance Comparison of TPSO-DBN with CD-DBN,  

PSO-DBN, SGPSO-DBN, NMPSO-DBN Models  

Method Precision Recall F-Measure Accuracy (%) 

CD-DBN 0.299081 0.253322 0.274306 85.21 

PSO-DBN 0.687681 0.611481 0.647346 87.41 

SGPSO-DBN 0.769021 0.778787 0.773872 86.62 

NMPSO-DBN 0.198742 0.239211 0.217105 47.33 

TPSO-DBN 0.807888 0.773511 0.790325 89.35 

The comparison of precision, recall, F-measure and accuracy various models with TPSO-

DBN phoneme recognition model is shown in Fig. 7.8. It is found that TPSO-DBN transcends 

the other models under comparison.  

 

Fig. 7.8 Performance Comparison of TPSO-DBN with DBN, PSO-DBN,  

SGPSO-DBN and NMPSO-DBN Models  
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The recognition performances of the models are further analyzed using receiver-operating 

characteristic curve and area under curve measures. The performances of the models under 

consideration are depicted as ROC curves in the Fig. 7.9.  It shows ROC curves of some majority 

classes namely, /a/, /u/, /nn/, /th/, /p/ and /m/ for the classifiers built using CD-DBN, PSO-DBN, 

SGPSO-DBN, NMPSO-DBN and TPSO-DBN. 

 

Fig. 7.9 ROC of Few Majority Classes /a/,/u/,/nn/,/th/,/p/ and /m/ for Models Built using 

CD-DBN, PSO-DBN, SGPSO-DBN, NMPSO-DBN and TPSO-DBN Respectively 

The ROC curves depicting the performance of the models built for minority classes 

namely, /uu/, /au/, /sh/, /nj/, /zh/ and /j/ is projected in Fig. 7.10. It is observed that for most cases 

the classification performance in terms of true positive rate to the false positive rate is not as 

promising as observed for the majority classes as shown in Fig. 7.9. 
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Fig. 7.10 ROC of Few Minority Classes /uu/,/au/,/sh/,/nj/,/zh/ and /j/ for Models Built using 

CD-DBN, PSO-DBN, SGPSO-DBN, NMPSO-DBN and TPSO-DBN Respectively 

The ROC curve of TPSO-DBN and SGPSO-DBN are more towards 1 confirming them to 

be better classifiers when compared to the other models under study. The AUC values of the 

various classifiers for the classes visualized as ROCs in Fig. 7.9 and Fig 7.10 are listed in Table 

XXVII. The AUC measure is identified to be greater than 0.9 for TPSO-DBN and greater than 

0.8 for SGPSO-DBN for all majority classes. The highest AUC is observed as 0.9618 for class 

/m/ of TPSO-DBN and the lowest AUC is observed as 0.4583 for CD-DBN class /zh/. The AUC 

of maximum classes for NMPSO-DBN is observed to be constant showing the model reacts 

same for both majority and minority classes of the dataset. 
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Table XXVII AUC Comparison of Few Classes for Various Models 

Class/Model CD-DBN PSO-DBN SGPSO-DBN NMPSO-DBN TPSO-DBN 

/a/ 0.7016 0.8724 0.8755 0.5 0.9117 

/u/ 0.6723 0.7997 0.8466 0.5 0.9041 

/nn/ 0.5609 0.7840 0.8164 0.5 0.9208 

/th/ 0.6384 0.8875 0.8711 0.5 0.9392 

/p/ 0.5692 0.7818 0.8221 0.5 0.9484 

/m/ 0.7417 0.8170 0.8713 0.5 0.9618 

/uu/ 0.7702 0.800 0.9407 0.5000 0.8973 

/au/ 0.5967 0.6502 0.8587 0.5000 0.8389 

/sh/ 0.5736 0.5312 0.5598 0.4992 0.8205 

/nj/ 0.5041 0.7424 0.8244 0.5000 0.7285 

/zh/ 0.4583 0.6577 0.9026 0.5000 0.8776 

/j/ 0.5089 0.6526 0.8236 0.5000 0.7673 

 

In consolidation, the best cost and convergence time achieved by SGPSO is better than the 

other pre-training methods used but its RMSE and PER values shows greater differences for 

training and testing datasets which shows the overfitness of the model. On the other hand, the 

recognition performance of DBN pre-trained using TPSO gives better precision, recall, F-

measure and recognition accuracy when compared to the one pre-trained with SGPSO. The ROC 

curves and AUC values of classes for various models proves the improved efficiency of 

proposed TPSO-DBN model to other models.  The performance of the proposed TPSO-DBN is 

evaluated to be the best of various aforesaid experiments conducted on DWTFS speech dataset. 

Findings 

Eventhough the performance of DBNs pretrained using PSO and SGPSO are performing 

comparatively during training to TPSO-DBN, they are observed to be overfitted models during 

the testing process. The statement is strongly supported with the respective AUC values and 

corresponding ROCs. The difference in the AUC values is observed and identified to be lesser 

for minority classes when compared to majority classes for all models. It is proved that TPSO 

solved the problem of particle stagnation in the pretraining phase which is realised through the 
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steady improvement in the best cost curve over generations. Thus it helps more in the movement 

of the particles in the population towards the global optimal solution providing better 

initialization to the DBN which intern improve the performance of the model built. 

SUMMARY 

The proposed TPSO algorithm and the Tamil phoneme recognition model built using 

TPSO pretrained DBN was elucidated in this chapter. The performance of TPSO-DBN was 

evaluated and compared with the previously implemented models namely, CD-DBN, PSO-DBN, 

SGPSO-DBN and NMPSO-DBN. As problem under consideration uses a Tamil phoneme 

dataset which is highly imbalanced, the influence PER contributed by the minority class was 

evinced. So, it is believed that the accuracy of the model can be further improved by using 

techniques to handle the problem of imbalanced data and is proposed in forth coming chapter.    
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