CERTIFICATE

This is to certify that the thesis entitled "GRAPH BASED SEGMENTATION AND DEEP LEARNING FOR PHONEME PATTERN CLASSIFICATION IN TAMIL CONTINUOUS SPEECH" submitted to Bharathiar University, in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Computer Science is a record of original research work done by B.R. Laxmi Sree during the period January 2012 to September 2019 of her study in the Department of Computer Science at PSGR Krishnammal College for Women, Coimbatore under my supervision and guidance and the thesis has not formed the basis for the award of any Degree / Diploma / Associateship / Fellowship or other similar title of any candidate of any university.

Countersigned

M. Scier

Signature of the Guide

Dr. M. S. VIJAYA, M.Sc., M.Phil., Ph.D. Associate Professor and Head Department of Computer Science (PG) P.S.G.R. Krishnammal College for Women COIMBATORE - 641 004.

MS Head of the Department

Dr. M. S. VIJAYA, M.Sc., M.Phil., Ph.D. Associate Professor and Head Department of Computer Science (PG) P.S.G.R. Krishnammal College for Women COIMBATORE - 641 004.

Principal

PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WOMEN COIMBATORE - 641 004.

DECLARATION

I, B.R. Laxmi Sree hereby declare that the thesis, entitled "GRAPH BASED SEGMENTATION AND DEEP LEARNING FOR PHONEME PATTERN CLASSIFICATION IN TAMIL CONTINUOUS SPEECH" submitted to Bharathiar University, in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Computer Science is a record of original and independent research work done by me during January 2012 to September 2019 under the Supervision and Guidance of Dr. (Mrs.) M. S. Vijaya, M.Sc., M.Phil., Ph.D, Associate Professor and Head, Department of Computer Science at PSGR Krishnammal College for Women, Coimbatore and it has not formed the basis for the award of any Degree / Diploma / Associateship / Fellowship or other similar title to any candidate in any university.

> B. C. J. Signature of the Candidate

CERTIFICATE OF GENUINESS OF THE PUBLICATION

This is to certify that the Ph.D. candidate Mr./Ms. **B.R. Laxmi Sree** working under my supervision has published a research article in the refereed journal named **International Journal of Speech Technology** with Volume No. **22** Page Numbers **143-156** and year of publication **2019** published by **Springer.** The contents of the publication incorporate part of the results presented in his/her thesis.

Countersigned

Principal/Head of the Dept./Director (College/University/Institute) (with seal) PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WOMEN COIMBATORE - 641 004.

M.SC ce

Research Supervisor (with seal)

Dr. M. S. VIJAYA, M.Sc., M.Phil., Ph.D. Associate Professor and Head Department of Computer Science (PG) P.S.G.R. Krishnammal College for Women COIMBATORE - 641 004.

பாரதியார் பல்கலைக்கழகம் BHARATHIAR UNIVERSITY COIMBATORE - 641 046, TAMILNADU, INDIA.

State University | Re-accredited with "A" Grade by NAAC | Ranked 14" among Indian Universities by MHRD-NIRF

	CERTIFICATE OF	PLAGIARISM CHECK
1	Name of the Research Scholar	B.R. LAXMI SREE
2	Course of study	M.Phil., / Ph.D.,
3	Title of the Thesis / Dissertation	GRAPH BASED SEGMENTATION AND DEEP LEARNING FOR PHONEME PATTERN CLASSIFICATION IN TAMIL CONTINUOUS SPEECH
4	Name of the Supervisor	D.S. Mrs.) M.S. VIJAYA
5	Department / Institution/ Research Centre	PSGR KRISHNAMMAL COLLEGE FOR WOMEN, COIMBATORE
-		DEPT. OF COMPUTER SCIENCE
6	Acceptable Maximum Limit	30 %
7	% of Similarity of content Identified	0%
8	Software Used	URKUND
9	Date of verification	03/09/2019

Report on plagiarism check, items with % of similarity is attached

M.S. Oraya Signature of the Supervisor

Dr. M. S. VIJAY Seall Sc., M. Phil., Ph.D. Associate Professor and Head Department of Computer Science (PG) P.S.G.R. Krishnammal College for Women COIMBATORE - 641 004

· 5. 12 - Der "

Signature of the Scholar

M.8 ugay

R&D Director (BU) / Head of the Department

Dr. M. S. VIJAYA, M.Sc., M.Phil., Ph.D. Associate Professor and Head Department of Computer Science (PG) P.S.G.R. Krishnammal College for Women COIMBATORE - 641 004.

University Librarian (BU) University Librarian Arignar Anna Central Library Bharathiar University Coimbatore - 641 046.

Research Coordinator (BU)

ACKNOWLEDGEMENT

First and foremost I thank the God Almighty for giving me the strength, knowledge, ability, opportunity to undertake this research work and to persevere and complete it successfully.

I extend my thanks to **Dr. (Mrs.) R. Nandini, Chairperson,** PSGR Krishnammal College for Women, Coimbatore for having given me the opportunity to undertake this research work in this esteemed institution.

I express my whole hearted thanks to **Dr. (Mrs.) N. Yesodha Devi, M.Com, M.Phil, Ph.D., Secretary,** PSGR Krishnammal College for Women, Coimbatore for her continuous motivation and encouragement.

My heartfelt thanks to **Dr. (Mrs.) S. Nirmala, MBA, M.Phil., Ph.D., Principal,** PSGR Krishnammal College for Women, Coimbatore for her kind support and for all the resources provided.

I place on record my deep sense of gratitude to my research supervisor **Dr. (Mrs.) M.S. Vijaya, M.Sc., M.Phil., Ph.D.,** Associate Professor and Head, Department of Computer Science, PSGR Krishnammal College for Women, Coimbatore for her sustained interest and advice that have contributed to a great extent for the completion of this work. I am thankful for her appropriate guidance, insightful suggestions and support in the completion of this research work. Her patience and immense knowledge has helped me during the tenure of research and writing of thesis.

I wish to thank my friend **Dr. (Mrs.) M. Suguna** for her timely help, words of encouragement and suggestion during the course of study. I also extend my thanks to fellow colleagues at Department of Computer Science, Dr. G.R. Damodaran College of Science, Coimbatore for their continuous support and encouragement. My sincere thanks to my research colleagues for the motivation and guidance rendered. I would also thank the faculty members of Department of Computer Science (PG) for their co-operation and greeting.

Finally, I place on record my deep sense of gratitude to my husband **Mr. D. Raguram**, beloved parents, father-in-law, son, daughter and my sisters for supporting me in successfully completing this work. This would not have been possible without their unwavering and unselfish love and support given to me at all times.

B.R. Laxmi Sree

FIGURE NO.	CAPTION	PAGE NO.
1.1	General Framework for Phoneme Recognition in Continuous Speech	15
2.1	Line Separating the Samples of Two Classes	29
2.2	(a) Human Neuron with Synapse	30
	(b) Artificial Neuron	
2.3	Neural Network Architecture	32
2.4	(a) A Feed-forward Network	33
	(b) A Complicated Network with Feedbacks	
2.5	Structure of Decision Tree	35
2.6	Architecture of CNN	40
2.7	Deep Autoencoder	43
2.8	Deep Belief Network with a Visible layer, n-Hidden layers and an Output Layer (Undirected DBN)	45
2.9	Visualization of Unimodel and Multimodel Solution Space	50
3.1	Architectural Diagram – Phoneme Recognition Model	54
3.2	Scaling and Wavelet Function of db2, the Decomposition and Reconstruction Filters	58
3.3	6-level Filter Bank used to Extract the DWT Features of the Speech Signal	59
3.4	Frequency Bands in the Resulting DWT Spectrum of the Input with 16000Hz	60
3.5	DWT Feature Spectrum of the Sample Speech 'ரேவதியின் வீட்டில் ரோஜா செடி உள்ளது'	61
3.6	Case showing the importance of optimal cut for better partition	64
3.7	Framework Showing the Steps in Building the Phonetic Datasets	66
3.8	Sample Input Speech Signal	68

LIST OF FIGURES

FIGURE NO.	CAPTION	PAGE NO.
3.9	Filtered Sample Speech	68
3.10	DWT Approximate and Detail Co-efficients of the Sample Speech	69
3.11	First Ten Frames Representing the Sample Speech	70
3.12	Sample Weight Matrix	70
3.13	Weight matrix of the Graph G Constructed from the Frames Representing the Sample Speech	71
3.14	Vertex Set of Graph for a Sample Speech	72
3.15	Sorted Eigenvalues for Sample Speech 'நம்முடைய எண்ணம் எப்போதும் உயர்ந்ததாக இருக்க வேண்டும்' (male)	72
3.16	A Selected Sample Eigenvector	73
3.17	Partitioning Graph Vectors Representing Speech	74-75
3.18	Frame Numbers of Boundary Points Extracted using Graph Cut Algorithm for Sample 1	75
3.19	The Sample Speech 'Thinai ennum sollukku ozhukkam enbathu porul' Showing the Hand Segmentation Points (red) and Graph Cut based Segmentation Points (green)	76
3.20	Feature Values of Sample Phoneme /a/	78
3.21	Confusion Matrix	82
3.22	Sample ROC Curve	83
4.1	Architecture of Build ANN Based Phoneme Recognition Model	86
4.2	Phoneme Recognition Rate Observed for ANN with Varied Number of Neurons in the Hidden Layer	89
4.3	Comparing the Precision, Recall and F-measure Observed as a Result of Increasing the Dataset Size	90
4.4	Architecture of Type-3 ANFIS	92
4.5	Architecture of ANFIS Based Acoustic Model	95
4.6	Comparison of Number of Rules Generated by ANFIS and Time Taken to Build ANFIS with Respect to Dataset Size	97

FIGURE NO.	CAPTION	PAGE NO.
4.7	Recognition Rate Achieved using ANN and ANFIS for Various Categories of Phoneme	99
5.1	Architecture of BBDBN/GBDBN Based Acoustic Model to Recognize Phonetic Units of Tamil Continuous Speech	101
5.2	Training RBM using contrastive divergence	103
5.3	RMSE Observed during Contrastive Divergence Pretraining of RBMs Constituting GBDBN	105
5.4	RMSE Observed during BBDBN and GBDBN Training	106
5.5	Phone Error Rate (PER) During Training and Testing 3, 4, 5 and 6-hidden Layer BBDBNs and GBDBNs	108
5.6	Performance Comparison of Various Models (a) Precision (b) Recall (c) F-measure (d) Accuracy	109
5.7	PER Comparison of Various Models	110
6.1	Architecture of PSO-DBN Acoustic Model	113
6.2	Coding scheme of each individual of the population	114
6.3	Best Costs for Generations during PSO Pre-training with Different Population Size	121
6.4	Best Costs for Generations during SGPSO Pre-training with Different Population Size	121
6.5	Best Costs for Generations during NMPSO Pre-training with Different Population Size	122
6.6	RMSE of DBNs Pre-trained with PSO, SGPSO and NMPSO by Varying Population Size	123
6.7	PER of DBNs Pre-trained with PSO, SGPSO and NMPSO by Varying Population Size	124
6.8	RMSE of Various Models during Training and Testing for Various Network Depths	126
6.9	PER of Various Models During Training and Testing for Various Network Depths	127
6.10	Performance Comparison for the Three Models	128
6.11	Comparison of Accuracy for the Three Models	128
6.12	Comparison of Time-taken to Build the Models CD-DBN, PSO-DBN, SGPSO-DBN and NMPSO-DBN	129

FIGURE NO.	CAPTION	PAGE NO.	
7.1	Architecture of Proposed TPSO-DBN Phoneme Recognition Model	132	
7.2	Trapezoidal Function	133	
7.3	Population of Initial, 100th, 200th, 300th, 400th and 500th TPSO's Generation	137	
7.4	Best Cost Comparison of PSO, SGPSO, NMPSO and TPSO Pre-training	138	
7.5	Performance Comparison of TPSO-DBN Model with Other Models using RMSE	140	
7.6	Performance comparison of TPSO-DBN model with other models using PER	141	
7.7	PER Comparison for Various DBN Before and After Backpropagation Training	141	
7.8	Performance Comparison of TPSO-DBN with DBN, PSO- DBN, SGPSO-DBN and NMPSO-DBN Models	142	
7.9	ROC of few majority classes /a/,/u/,/nn/,/th/,/p/ and /m/ for models built using CD-DBN, PSO-DBN, SGPSO-DBN, NMPSO-DBN and TPSO-DBN respectively	143	
7.10	ROC of Few Minority Classes /uu/,/au/,/sh/,/nj/,/zh/ and /j/ for Models Built using CD-DBN, PSO-DBN, SGPSO-DBN, NMPSO-DBN and TPSO-DBN Respectively	144	
8.1	Architecture of DBN Phoneme Recognition Models with WMSE Loss Function	148	
8.2	Loss Acquired while Pretraining through PSO/TPSO with MSE	153	
8.3	Loss Acquired while Pretraining through PSO/TPSO with WMSE	154	
8.4	Comparison of Recognition Accuracies of Various Models Built with MSE and WMSE Cost Functions	156	
8.5	ROC comparison of few minority classes /uu/, /au/, /sh/, /nj/, /zh/, and /j/ in DWTFS dataset for various DBN models	157	

TABLE NO.	CAPTION	PAGE NO.
Ι	Summary of Literature Review	22
II	Phonemes of Tamil Language	55
III	Distribution of Speakers	56
IV	The Frequency Bands and the Output Scales Produced in the DWT Spectra	60
V	Segmentations Achieved as Result of Choosing Eigenvectors with High, Median and Low Eigenvalues for Sample Speech 1, 2 And 3	77
VI	Comparing the accuracy of Graph Cut Based Segmentation with BSNLF and NUSDWT	78
VII	Phonetic Instances in each Class of Kazhangiyam Database	79
VIII	Categories of Phonemes in Tamil Language	80
IX	Phoneme Recognition Rate (%) of ANN Observed by Varying the Size of Hidden Layer	88
Х	Precision, Recall and F-measure of ANN Model by Varying the Training Set Size	89
XI	Average Precision, Recall and F-measure Observed for ANFIS Model Built for Phoneme Dataset of Various Sizes	96
XII	Number of Rules Generated and Time Taken by ANFIS for Various Sizes of Training Dataset	97
XIII	Performance Comparison of ANN and ANFIS Phoneme Recognition Models	98
XIV	Time Taken (in mins) for Building 3, 4, 5 and 6 – hidden Layer BBDBN and GBDBN Models	106
XV	Performance Comparison with respect to RMSE Values of BBDBN and GBDBN Models for Different Number of Layers	107
XVI	PER during Training and Testing 3, 4, 5 and 6-hidden Layer BBDBNs and GBDBNs	108
XVII	Comparative Performance Results of Various Models	109
XVIII	Comparative Performance of BBDBN and GBDBN with ANN and ANFIS	110
XIX	Average RMSE of DBN Models when Pre-trained with Various Swarm Size	123

LIST OF TABLES

TABLE NO.	CAPTION	PAGE NO.
XX	Average PER (%) of DBN Models Pre-trained with Various Swarm Size	124
XXI	RMSE of PSO-DBN, SGPSO-DBN and NMPSO-DBN Models with Various Network Depths	125
XXII	PER of PSO-DBN, SGPSO-DBN and NMPSO-DBN Models for Various Network Depths	126
XXIII	Performance Metrics of PSO-DBN, SGPSO-DBN and NMPSO-DBN Phoneme Recognition Models	127
XXIV	Performance Comparison of Various Models without Back Propagation Fine tuning	139
XXV	Performance Comparison of Various Models Built with Back Propagation Fine tuning	140
XXVI	Performance Comparison of TPSO-DBN with CD-DBN, PSO-DBN, SGPSO-DBN, NMPSO-DBN Models	142
XXVII	AUC Comparison of Few Classes for Various Models	145
XXVIII	Performance Analysis of Various DBNs Built using MSE and WMSE Cost Function	154
XXIX	Comparison of the Various DBN Models in terms of Precision, Recall and F-measure	155

LIST OF ABBREVIATIONS

2D	-	Two Dimensional
AI	-	Artificial Intelligence
ANFIS	-	Adaptive Neuro-Fuzzy Inference System
ANN	-	Artificial Neural Network
ATIS	-	Airline Travel Information System
AUC	-	Area Under Curve
BBDBN	-	Bernoulli - Bernoulli DBN
BSNLF	-	Blind Segmentation using Non-linear filters
CART	-	Classification and Regression Trees
CD	-	Context Dependent
CD-DBN	-	Deep Belief Networks pretrained with Contrastive Divergence
C-MMSE	-	Cepstral-Minimum Mean Squared Error
CMU	-	Carnegie Mellon University
CSR	-	Continuous Speech Recognition
СТ	-	Computed Tomography
CWT	-	Continuous Wavelet Transform
DBN	-	Deep Belief Network
DNN-HMM	-	Deep Neural Network – Hidden Markov Model
DP	-	Deleted Phonemes
DTW	-	Dynamic Time Warping
DWT	-	Discrete Wavelet Transform
DWTFS	-	Discrete Wavelet Transform Feature Set
EIS	-	Evolving Intelligent System
EP	-	Expected number of Phonemes
ESPNet	-	Self Evolving and Parameter adaptation Network
FFT	-	Fast Fourier Transform
FIR	-	Finitive Impulse Response

FN	-	False Negatives
FNN	-	Fuzzy Neural Network
FOS	-	Factor of Safety
FP	-	False Positives
GBDBN	-	Gaussian - Bernoulli DBN
GD	-	Gradient Descent
GMM	-	Gaussian Mixture Model
GPU	-	Graphical Processing Unit
HFCC-E	-	Human Factor Cepstral Co-efficients – Equivalent Rectangular Bandwidth
HMM	-	Hidden Markov Model
ID3	-	Iterative Dichotomiser 3
IIR	-	Infinite Impulse Response
IL	-	Indian Lanugages
IP	-	Inserted Phonemes
K-nn	-	K-Nearest Neighbour
LDA	-	Linear Discriminant Analysis
LDC	-	Linguistic Data Consortium
LFB	-	Low Frequency Band
LFCC	-	Linear Frequency Cepstral Co-efficients
LPC	-	Linear Predictive Coding
LSTM	-	Long Short Term Memory
LVCSR	-	Large Vocabulary Continuous Speech Recognition
LVSR	-	Large Vocabulary Speech Recognition
MC	-	Mis-Classified Phonemes
McSLM	-	Metacognitive Scaffolding Learning machine
MDR	-	Multimedia Document Recognition
MFCC	-	Mel- Frequency Cepstral Co-efficients
MLP	-	Multi Layer Perceptron

MMF	-	Maximum Mutual Information
MMI	-	Maximum Mutual Information
MRI	-	Magnetic Resonance Imaging
MSE	-	Mean Square Error
MWP-ACE	-	Mixed Wavelet Packet Advanced Combinational Encoder
NLP	-	Natural Language Processing
NMPSO	-	New Method Particle Swarm Optimization
NN	-	Neural Network
NUSDWT	-	Non-uniform segmentation using DWT
PCA	-	Principle Component Analysis
pClass+	-	Parsimonious Classifier+
PER	-	Phoneme Error Rate
PLP	-	Perceptual Linear Prediction
PSO	-	Particle Swarm Optimization
RAST	-	Rapid Annotation using Subsystem Technology
RBM	-	Restricted Boltzmann Machine
ReLU	-	Rectified Linear Unit
RIVMcSLM	-	Recurrent Interval-Valued McSLM
RM	-	Resource Management
RMSE	-	Root Mean Square Error
RNN	-	Recurrent Neural Network
ROC	-	Receiver-Operating Characteristic Curve
SBC	-	Subband based Cepstral Parameter
SCARF	-	Segmental Conditional Random Fields
SGPSO	-	Second Generation Particle Swarm Optimization
SMOTE	-	Synthetic minority over-sampling technique
ST2Class	-	Scaffolding Type-2 classifier
STFT	_	Short Term Fourier Transform

SVM	-	Support Vector Machine
TI	-	Texas Instruments
TN	-	True Negatives
TP	-	True Positives
TPSO	-	Temperature controlled Particle Swarm Optimization
VAD	-	Voice activity detection
VE	-	Voting Expert
VOP	-	Vowel Onset Point
WER	-	Word Error Rate
WMSE	-	Weighted Mean Square Error

LIST OF SYMBOLS

θ	-	Phase spectrum
ω	-	Phase shift
τ	-	Group delay function
S	-	Speech signal
s(n)	-	da
φ	-	Wavelet function
m	-	Resolution level while applying wavelet transform
G	-	Graph (Multigraph)
V	-	Set of vertices of graph G
E	-	Set of edges of graph G
cut()	-	Degree of dissimilarity between two graphs
<i>w(u,v)</i>	-	Similarity between two nodes u and v in a Graph/weight of edge (u,v)
Ncut()	-	Normalized cut – measure of disassociation between two subgraphs
assoc()	-	Measure of association between two subgraphs
Nassoc()	-	Measure of normalized association between two subgraphs
F	-	Set of feature vectors of speech S
ζ	-	Distance factor/node distance
W	-	Weight matrix of graph
D	-	Diagonal matrix where each d_i represents the total weight i^{th} node
\mathcal{E}_i	-	<i>i</i> th value in the sorted list of eigenvalues
E_i	-	<i>i</i> th eigen vector

Y	-	Filtered speech
b_0, b_1, b_2	-	Co-efficients of second order filter
db2	-	Daubachies wavelet
θ	-	Model parameters
V	-	Number of visible nodes in RBM
Н	-	Number of hidden nodes in RBM
E()	-	Energy function of neurons
W _{ij}	-	Connection weight between i^{th} node in visible layer to j^{th} node in hidden layer of an RBM
b_i	-	Bias of <i>i</i> th visible neuron
a_j	-	Bias of j^{th} hidden neuron
N	-	Gaussian function
<i>p()</i>	-	Conditional probability distribution
Δw_{ij}	-	Change in weight parameter for connection between i^{th} visible node and j^{th} hidden node
$\langle v_i h_j \rangle_{td}$	-	Measured frequency of visible units for given training data
$\langle v_i h_j \rangle_{rd}$	-	Measured frequency of visible units with reconstructed data
Σ	-	Sigmoid function
x_i	-	Position of <i>i</i> th particle in PSO
М	-	Population size in PSO
Т	-	Time/iteration in PSO
$v_i(t)$	-	Velocity of i^{th} particle at time t in PSO
p_g	-	Global position in PSO
r_1, r_2, r_3	-	Uniformly distributed random variables in PSO

<i>c</i> ₁	-	Local acceleration co-efficient
<i>c</i> ₂	-	Global acceleration co-efficient
ω	-	Inertia weight
v_{min} .	-	Lower limit for velocity of particles in PSO
v_{max}	-	Upper limit for velocity of particles in PSO
P	-	Geometric centre of the particle swarm
Т	-	Time frequency
<i>c</i> ₃	-	Geometric centre acceleration co-efficient
ω_1	-	Initial intertia
ω_2	-	Final intertia
MAXITER	-	Maximum number of iterations in PSO
Iter	-	Current iteration in PSO
h()	-	Temperature function
'I _{min}	-	Lower bound vector of decision variables in PSO
T _{max}	-	Upper bound vector of decision variables in PSO
Р	-	Population in PSO
L	-	Depth of DBN/Number of layers in DBN
L-1	-	Number of RBMs forming DBN
W _i	-	Connection weight of <i>i</i> th RBM
B _i	-	Biases of hidden layer of i^{th} RBM
N _i	-	Number of neurons in i^{th} layer of DBN
ℕi	-	DBN built using <i>i</i> th particle in the population
R	-	RBM
q	-	Number of decision parameters in PSO

n_i	-	Number of biases in i^{th} layer
С	-	Number of output classes
o_i^{*}	-	Desired output
y_i^i	-	Observed output
m	-	Number of training samples
δ	-	Error
Γ	-	Learning rate
β_n	-	Influence term of n^{th} class
\mathbb{C}_n	-	Number of instances of class n in training dataset
Ι	-	Total number of instances in training dataset
0	-	Sequence of observations
w _i	-	i th word
$P(w_i)$	-	Prior probabilities
$P(O w_i)$	-	Likelihood
B_i	-	Co-efficients of hyperplane
X _i	-	Variables or datapoints of hyperplane
$K(x, X^i)$	-	Kernel function on input vector x and support vector X^{i}
gamma	-	Influence of individual sample
P , p(I)	-	Probability of i th class