
85

4. ARTIFICIAL NEURAL NETWORKS AND ADAPTIVE NEURO-

FUZZY INFERENCE SYSTEM FOR PHONEME RECOGNITION

This chapter discusses the pilot study undergone during the initial stage of the research on

building a phoneme recognition model. The study has been conducted by building two models;

one using ANN and the other using Adaptive Neuro-Fuzzy Inference System (ANFIS) to classify

the phonemes in the dataset. The performance of the acoustic models discussed in this chapter has

been analyzed based on the various standard measures in the literature namely precision, recall, F-

measure and classification accuracy on the broad classes of phonemes namely, vowels, nasals,

stops and others and are detailed in the experiments and results section. The experiments show the

performance of ANN phoneme recognition model outperforming to the performance of ANFIS

phoneme recognition model.

4.1 TAMIL PHONEME RECOGNITION MODEL USING ANN

The phases involved in building ANN phoneme recognition model is shown in Fig. 4.1. The

dataset developed as described in chapter 3 is used to build the ANN phoneme recognition model.

The class of ANN, namely the Multilalyer Perceptron (MLP) is used here. First the infrastructural

parameters like number of layers and number of neurons in each layer are defined. The training

dataset is passed batch-wise to this simple ANN with one hidden layer where the input feature

vectors of the phonemes are fed to the input layer of the ANN and propagated to the output layer

through the neurons activated in the hidden layer. The supervised training is performed by

evaluating the error observed at the output layer and propagating it back through the layers of the

network from the output layer to the input layer. The learning process is repeated for the required

number of epochs until the network converges to the expected level of accuracy. For the training

phase of the model, the model parameters namely connection weights and bias to each neuron are

initialized. The test dataset is then fed to the model to evaluate the performance of the model

built. The complete process involved in model building is portrayed in the following algorithm.

86

Fig. 4.1 Architecture of ANN Based Phoneme Recognition Model

Algorithm 4.1Building ANN based phoneme recognition model using back propagation

algorithm

Step 1: Define hyperparameters namely, the number of hidden layers m-1, number of neurons in

each layer of ANN ri, for i=0,1,….m, the learning rate γ, number of epochs and batch

size.

Step 2: Randomly initialize the connection weights
 , for all connections from j node in layer

k-1 to i nodes in layer k and biases of all nodes represented as
 for i

th
 node in layer k.

Step 3: Repeat steps 3 to 7 for the given number of epochs

Step 4: Repeat steps 4 to 7 for each batch of the training dataset.

Step 5: Perform the forward pass by supplying the data points in the current batch to the input

layer until it reaches the output layer

Training Phase

ANN Acoustic

Model

Pre-processing Phase

Filtering

DWT Feature

Extraction

Initialize ANN

parameters

Testing Phase

Test

Dataset

Phoneme

Classification

Training

Dataset

Train ANN

using back

propagation

DWTFS

dataset

Graph cut based segmentation

Continuous Speech from

Kazhangiyam Speech Corpus

Build Weighted

Multigraph

Bipartite Multigraph

until required
segmentation level

achieved

87

a. Initialize input layer by assigning
 , where

 is the output of layer and

 , the input vector.

b. For all hidden layers in sequence from

 Do for k from 1 to m-1

i. Calculate product sums of input to neuron,

ii. Calculate

c. Evaluate the output at the output layer

i. Calculate

ii. Calculate

Step 6: Evaluate the mean squared error at the output layer as follows,

 , where , is actual output vector and , is expected output

vector for the given input vector, xi.

Step 7: Back propagate the change in error from the output layer to the input layer to fine tune

the weight and bias parameters of the network.

a. Calculate change in weights as follows,

b. Calculate change in biases as follows,

c. Update all weight and biases as follows,

Thus to build an ANN based acoustic model, the hyperparameters like the number of

layers, number of neurons in each layer, the activation function used are decided and the

respective parameters of ANN like bias and connection weights are initialized. The model is then

88

pretrained using contrastive divergence technique and then trained using backpropagation which

propagates the error observed in the output layer.

Experiment and Results

In this experiment, a DWTFS dataset of Kazhangiyam corpus discussed in section 3.4 is

used for building a phoneme classification model. The DWTFS dataset used here is a collection

of data points, where each data point represents the DWT features of segmented phonemes of the

speech corpus. Each phoneme is defined as a data point with 90 DWT features. From a total of

667260 phoneme samples defined in the dataset excluding the data points falling into ‘sil’ class,

the remaining 635030 data points are split into training set and testing test with 70:30 proportion

contributing 444521 instances in training dataset and 190509 instances in the test dataset.

The experiment is conducted in MATLAB R2013a. The hyperparameters for ANN to build

the phoneme recognition model are set as follows. The number of neurons in input layer is set as

90, number of neurons in output layer as 38, learning rate or step ratio as 0.01 and number of

epochs as 500. The activation function of neurons is defined as a sigmoid function. The

experiment is conducted by varying the number of hidden neurons as 70, 150, 200 and 250. The

accuracy of the model when trained with datasets by varying the number of instances as 31200,

62400, 124800, 249600 and 444521 are evaluated which is portrayed in Table IX and Fig 4.2.

The ANN model is perceived to improve its accuracy with the increase in the number of neurons

in the hidden layer but tends to start decreasing at some point when exceeding beyond 200 for this

problem. Further investigation on the performance of ANN continued with 200 hidden neurons.

Table IX Phoneme Recognition Rate (%) of ANN Model by Varying the Size of

Hidden Layer

Training

Dataset

Size

Number of Neurons in Hidden Layer

70 150 200 250

31200 50.4 50.2 51.3 50.8

62400 53.2 54.1 54.8 53.5

124800 57.8 58 58.1 57.8

249600 59.5 60.2 60.4 58.2

444521 63.9 64.2 64.5 64.1

89

Fig. 4.2 Phoneme Recognition Rate Observed for ANN Model with Varied Number of

Neurons in the Hidden Layer

The results were observed and recorded in terms of precision, recall and F-measure and are

manifested in Table X. The model turned out with an increasing precision, recall and F-measure

values for datasets with increasing samples. The maximum precision, recall and F-measure

observed are 0.62, 0.59 and 0.6 respectively for the training dataset of size 444521. The minimal

increase observed for the last case as shown in Fig 4.3. implies some sort of stabilization reached

by the model. The higher recognition rate of 78% is observed for vowels in ANN with an

average recognition rate of 64.5%. The recognition rate of the categories nasals, stops and others

are noted to be 69%, 51% and 60% respectively for ANN model. For the model built using the

training dataset of size 444521, the PERwas evaluated as 35.5%.

Table X Precision, Recall and F-measure of ANN Model by Varying the Training Set Size

Training

Dataset Size

Average

Precision

Average

Recall
F-measure

31200 0.49 0.48 0.48

62400 0.51 0.49 0.5

124800 0.56 0.54 0.55

249600 0.6 0.57 0.58

444521 0.62 0.59 0.60

0

10

20

30

40

50

60

70

P
h

o
n

em
e

 R
e

co
gn

it
io

n
 R

at
e

(%
)

Instances in Training Dataset

70 Hidden Neurons

150 Hidden Neurons

200 Hidden Neurons

250 Hidden Neurons

90

Fig. 4.3 Comparison of Performance metrics with Varying the Dataset Size

Findings

The experiments conducted in this work to build ANN based phoneme recognition model

exposed certain facts. As speech is a highly variable data, it requires a considerable number of

hidden neurons to capture the patterns of phoneme spoken by different people at different

instances. Too less number of neurons in the hidden layer lack the capability in capturing the

variability details and too high counts of neurons in hidden layer lacks with the level of

generalization, as the networks does not provide probable situation to learn due the availability

of more number of neurons to capture varied collection of information.

4.2 TAMIL PHONEME RECOGNITION MODEL USING ANFIS

In the second case, an ANFIS based acoustic model has been built in order to explore the

performance of ANFIS on Tamil phoneme recognition problem. Before a formal description on

the methodology of ANFIS based phoneme recognition model, Linear Discriminant Analysis – a

dimensionality reduction technique, architecture of ANFIS and its learning procedure are

elaborated here.

Linear Discriminant Analysis (LDA) is a dimensionality reduction technique and is

supervised. Its objective is to project the input feature space into linear subspace in the direction

that maximizes the separation between the elements of various classes that helps to avoid

overfitting. It also gives an additional benefit of reducing the computational cost as a result of

reducing the input dimension. The steps involved in LDA algorithm is summarized below.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

31200 62400 124800 249600 444521

Dataset size

Precision

Recall

F-measure

91

Algorithm 4.2 LDA

Step 1: For each of m different classes in the dataset D, evaluate the d-dimensional mean vectors

 for the given input matrix X of order .

Step 2: Compute the scatter matrices.

Step 3: Compute within class scatter matrix

 , where

) with ⊂ holding the samples of class i.

Step 4: Compute between class scatter matrix
 , where is the

overall mean, and are mean and number of samples of each respective class.

Step 5: Solve using general eigen value formulate as
 , to evaluate the eigenvectors

e= and their corresponding eigenvalues respectively.

Step 6: Arrange the eigen values in decreasing order and select k eigenvectors corresponding to

the first k eigenvalues to form a order matrix W.

Step 7: The transformed feature space is evaluated using

The LDA algorithm assumes the data in the attributes under consideration to be in

Gaussian distribution of same variance. With this assumption, it calculates the mean of each

attribute and scatter matrices as given in step 1 and 2. The within class scatter matrix defines the

separability or variance between different classes and is given by the mean differences of the

classes. The between class scatter matrix defines the distance of each instance to the mean of its

class. The scatter matrices obtained are used to formulate an eigen value problem, from whose

resulting set of eigen vectors and values, few eigen vectors with greater eigen values are selected

to form a transformation matrix. The transformation matrix is then applied on the input matrix to

build the transformed feature space with fewer dimensions.

The output of LDA is given as input to adaptive neuro-fuzzy inference system to build the

acoustic model. It is a combination of adaptive neural networks and fuzzy logic which takes the

advantage of soft computing techniques of neural networks and the ability of fuzzy logic to

transform human knowledge into quantitative rules [80]. The type-3 ANFIS with an adaptive

network is a feed forward network that has the capability to learn itself. The type-3 ANFIS [81] is

a five layer feed forward network whose structure with two inputs, one output and nine rules is

shown in the Fig. 4.4, where the square node denote the adaptive nodes, that are capable of

92

learning and the circle nodes are fixed nodes. The rules of the network are Takagi and Sugeno

type, which takes the form “If Input1=x1 and Input2=x2 Then Output is y=ax1+bx2+c”. The

consequent part of the rules’ generated are built as a linear combination of the inputs and a

constant term. The weighted average of the outputs from each rule is given as the final output of

the network. The type-3 ANFIS architecture can be explained as follows:

Layer 1: This layer is a fuzzification layer, where the inputs are fuzzified to represent the

linguistic terms of the system. The nodes of this layer are adaptive and are represented by some

continuous piecewise differentiable functions like trapezoidal, triangular or bell-shaped functions.

Each node of this layer is defined with a membership function and is represented as follows,

 (4.1)

Fig. 4.4 Architecture of Type-3 ANFIS

where x is the input for the node i, and Ai is a function representing the linguistic term associated

with the node. For a bell-shaped membership function, the membership values usually lies

between 0 and 1 and is given as follows,

93

 (4.2)

where the parameter defining the bell-shape ai, bi and ci forms the parameter set. These

parameters are thereby referred as premises parameters, as they help defining the premises part of

the rule set.

Layer 2: Each node in this layer is a circle node whose function is to produce the product of

all incoming signals from the previous layer. The output of the nodes in this layer indicates the

firing strength of the rule, which is represented as,

 (4.3)

With i=1,2 for two input network, μAi(x) and μBi(y) denoting the membership function for

the respective inputs.

Layer 3: This layer represented with nodes labelled N, gives the ratio of the firing strength

of the i
th

 rule to the sum of firing strengths of all rules. For the given nine rule network, this ratio

is calculated as follows,

 (4.4)

Layer 4: Each node in this layer is represented as a combination of the output of layer 3 and

linear function of inputs and given by

 (4.5)

where () is the output of previous layer and pi, qi and ri are the consequent parameters, the

parameters of layer 4.

Layer 5: This layer is the output layer, which provides the summation of all incoming

signals and is given by,

 (4.6)

With this structure, the ANFIS model follows a hybrid learning rule, which employs two

passes, the forward pass and the backward pass. In the forward pass, the network learns from the

functional signals that moves forward through the layers of the network. In the backward pass, the

least square error is calculated and is back propagated to each layer through gradient descent.

94

During the training process, in the backward pass, the error observed in the output layer is

back propagated to the previous layers to fine tune the premise parameters that defines

the shape of the membership functions [82]. The error at the output layer is calculated as a

squared error follows:

 (4.7)

where is the component of the desired output, vector
 is the component of the

actual output of ANFIS in forward pass for p
th

 input data vector, denotes the number of nodes

in layer L. The error starts propagating backward through each and every node of layer 4 of the

network as a derivative of square error which is given by,

 (4.8)

 node in layer L. Further, the internal nodes lying in the other layers (l) of ANFIS are updated

by using the chain rule as follows,

 (4.9)

With the internal node updated with the error as in the above equation, any parameter of some

set of nodes, S in the networks can be updated as follows,

 (4.10)

Thus the overall error of parameter y is given as a summation of error contributed by each

input data and the gradient descent for the parameter y is given as

 (4.11)

with γ being the learning rate.

The methodology of building ANFIS based acoustic model is shown in Fig. 4.5. Initially

LDA is applied on the dataset to reduce the dimensionality of the feature space by linearly

transforming the features from the original space into a new space with lower dimensionality. The

transformed feature space inputs are given to the ANFIS training module where each input

variable is fuzzified with three linguistic terms namely low, medium and high and represented by

Gaussian functions. The layer 1 of ANFIS model has nodes representing the linguistic units of

95

features in the new space with each linguistic term represented as Gaussian function. The model is

then trained with the training dataset using two passes, where the ANFIS learns by propagating

the input till the output layer and fine tunes the parameters in the backward pass using gradient

based back-propagation technique to propel the error observed in the output layer as discussed

earlier in this section. This learning procedure of forward and backward pass is repeated to few

hundred epochs to train the network. The training phase is followed by a testing phase with the

test dataset to evaluate the performance of the ANFIS phoneme recognition model. The

experimental results of training the ANFIS for kazhangiyam phoneme dataset are discussed in the

following section.

Fig. 4.5 Architecture of ANFIS Based Phoneme Recognition Model

Experiment and Results

ANFIS algorithm is implemented using the DWTFS dataset in kazhangiyam speech corpus

for building a Tamil phoneme classification model. The dataset is divided into the training set and

testing set where a subset with maximum of 31200 data points spanning all the 39 classes of the

dataset with 800 samples in each class has been used for training ANFIS based phoneme

recognition model. The model is tested using the test dataset a subset of with maximum of 15600

data points contributed with 400 samples from each class. LDA has been applied on the DWTFS

dataset to perform dimensionality reduction. Finally the nine dimensional input vectors are passed

to the ANFIS, where each input propagates through one of three nodes dedicated to the respective

linguistic terms defined for that input. Thus layer 1 of this ANFIS is designed with 27 nodes,

96

where each set of three nodes defining the three linguistics terms of a given input value. With 27

nodes defined in layer 1, layer 2, 3 and 4 follows with 27 nodes each. With this infrastructure

defined, the ANFIS model for Tamil phoneme recognition is trained with 500 epochs. The model

built so, is tested further for its efficiency with the test dataset.

The precision, recall and F-measure observed in ANFIS models by increasing the number

of samples in training sets are portrayed in Table XI. It is observed that the efficiency of the

ANFIS acoustic model improves with the number of samples in the training dataset, but it is

observed that the rate of improvement in precision, recall and F-measure is minimal when

compared to the rate of increase in number of samples. The average precision, recall and F-

measure observed for the training dataset of size 31200 is 0.61, 0.56 and 0.5839 respectively.

Table XI Average Precision, Recall and F-measure Observed for ANFIS Model

Built for Phoneme Dataset of Various Sizes

Training

Dataset

Size

Average

Precision

Average

Recall
F-measure

7800 0.34 0.45 0.3873

15600 0.38 0.51 0.4355

23400 0.58 0.54 0.5592

31200 0.61 0.56 0.5839

From Table XII, the number of rules generated by the ANFIS model and the execution time

is observed to be increasing at greater rates with increase in the number of samples. The number

of rules generated is 121, 384, 665 and 956, where as the execution time taken by ANFIS to build

the model from the training dataset is observed as 153, 198, 285 and 360 minutes respectively for

a dataset of size 7800, 15600, 23400 and 31200 samples when executed with a system with i3

processor. It can also be seen that the precision, recall and F- measures increase rate is

diminishing with the greater overheads of knowledge base size i.e. number of rules and execution

time for ANFIS model. The greater increase in the number of rules generated in ANFIS as shown

in Fig. 4.6 is due to the increase in dataset size by adding more number of samples from different

speakers. This shows the high variability in the features representing the phonetic units of the

language, reflecting the characteristics of multiple speakers and the effect of co-occurring

phonemes because the numbers of samples in the datasets are increased by including samples

97

from more speakers. The time taken is also observed to be high for training ANFIS even for a

smaller dataset of size 7800. The study also shows that the increase in the number of samples does

not reflect the ANFIS model efficiency much as expected in terms of accuracy rather it increases

the time overhead in training and classifying the data points.

Table XII Number of Rules Generated and Time Taken by ANFIS

for Various Sizes of Training Dataset

Number of

Samples in

Training

dataset

Number of

rules

generated

Execution

time

(in minutes)

7800 121 153

15600 384 198

23400 665 285

31200 956 360

Fig. 4.6 Comparison of Number of Rules Generated and Time Taken by ANFIS with

Respect to Dataset Size

The recognition rates for the various categories vowels, nasals, stops and others are

observed as 74%, 67%, 48% and 59% respectively with an average accuracy of 62% for the

ANFIS model trained with dataset of size 31200. The phoneme error rate of the ANFIS model

was evaluated as 38%. The recognition rates for various categories show that the ANFIS model is

0

200

400

600

800

1000

1200

1400

7800 15600 23400 31200

Dataset size

Execution time (in
minutes)

No. of rules

98

capable of recognizing the vowels with greater accuracy when compared to the other type of

phonemes in Tamil. During the experiments the phonetic units that span for longer duration are

observed to be classified correctly when compared to the phonetic units with shorter duration,

thus reflecting greater accuracy for vowels compared to the other categories. The results show

decent and comparable recognition accuracy to the state of art models in the literature [14, 83].

Performance Comparison of ANN and ANFIS Phoneme Recognition Model

The results of ANN based phoneme recognition model is compared with the results of

ANFIS model with various metrics such as overall precision, recall, F-measure and accuracy in

Table XIII. The overall average precision observed for ANN and ANFIS is 0.62 and 0.61

respectively, where as the recall is observed as 0.59 and 0.56 respectively. The average F-

measure that resulted for the models ANN and ANFIS is 0.6 and 0.5839 respectively. The best

accuracy of the two models is observed as 64.5% for ANN when compared to ANFIS’s accuracy

of 62%.

Table XIII Performance Comparison of ANN and ANFIS Phoneme Recognition Models

Model Precision Recall F-measure Accuracy (%)

ANN 0.62 0.59 0.60 64.5

ANFIS 0.61 0.56 0.5839 62

From the comparative analysis of ANN and ANFIS models, it is proved that the

efficiency to classify Tamil phonetic segments is better with ANN model when compared to

ANFIS model. Generalizing the variability observed in the phonemes in a precise way is better

implemented with ANN when compared to the model built using ANFIS. This is realized with

the exponential growth of the knowledge base of ANFIS and in turn complicating the

classification task. The recognition rate perceived with ANN is found to outperform ANFIS

model for all considered phoneme categories and portrayed in the Fig. 4.7.

99

Fig. 4.7 Recognition Rate of ANN and ANFIS Models for Various Categories of Phonemes

Findings

The fact here is, the variability in the characteristics of speakers and co-occurrences of

phonemes in continuous speech adds more complexity to the problem. The reflection of the

complexity of the problem is seen in the complexity of the ANFIS model built. It is inferred with

increase in knowledge base size proportionately to the increase in the training dataset size which

is handled better with ANN model elucidated earlier in this chapter. Building an ANFIS model

requires less number of instances to train the model which is a back track for the phoneme

recognition problem inbuilt with high variability. A simple ANN Tamil acoustic model is

observed to be more generalized when compared to ANFIS model, thus providing better

classification and proved its efficiency in terms of various performance measures. ANN is found

to be capable of capturing more complex and variable features representing the phonetic units of

the Tamil language which is observed to lack in ANFIS because of the inability to generalize the

phonetic classes.

100

SUMMARY

This chapter elucidated the process of building artificial neural network and adaptive

neuro-fuzzy inference system models for Tamil phoneme classification problem. The

methodology and detailed procedures used for training the models were discussed. Details on the

experiments conducted and the results observed were explicated. The key findings on the

research accomplished during the experiments were summarized. The results of the experiments

conducted motivated to apply recent deep learning techniques for building more efficient model

for phoneme classification. The model build so will be capable of handling the variability in the

feature space and to reduce the time complexity incurred in model building process. The DBN, a

deep learning architecture is chosen for further research and the respective models will be

presented in the forth coming chapters.

Remarks

 The article titled ‘ANFIS for Tamil Phoneme Classification’ is published in International

Journal of Engineering and Advanced Technology, Vol. 8, No. 6, pp. 2907-2914, 2019,

ISSN: 2249-8958, Blue Eyes Intelligence Engineering and Science Publication. DOI:

10.35940/ijeat.F8804.088619 (Published-Scopus Indexed)

