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4. ARTIFICIAL NEURAL NETWORKS AND ADAPTIVE NEURO-

FUZZY INFERENCE SYSTEM FOR PHONEME RECOGNITION 

This chapter discusses the pilot study undergone during the initial stage of the research on 

building a phoneme recognition model. The study has been conducted by building two models; 

one using ANN and the other using Adaptive Neuro-Fuzzy Inference System (ANFIS) to classify 

the phonemes in the dataset. The performance of the acoustic models discussed in this chapter has 

been analyzed based on the various standard measures in the literature namely precision, recall, F-

measure and classification accuracy on the broad classes of phonemes namely, vowels, nasals, 

stops and others and are detailed in the experiments and results section. The experiments show the 

performance of ANN phoneme recognition model outperforming to the performance of ANFIS 

phoneme recognition model. 

4.1 TAMIL PHONEME RECOGNITION MODEL USING ANN 

The phases involved in building ANN phoneme recognition model is shown in Fig. 4.1. The 

dataset developed as described in chapter 3 is used to build the ANN phoneme recognition model. 

The class of ANN, namely the Multilalyer Perceptron (MLP) is used here. First the infrastructural 

parameters like number of layers and number of neurons in each layer are defined. The training 

dataset is passed batch-wise to this simple ANN with one hidden layer where the input feature 

vectors of the phonemes are fed to the input layer of the ANN and propagated to the output layer 

through the neurons activated in the hidden layer. The supervised training is performed by 

evaluating the error observed at the output layer and propagating it back through the layers of the 

network from the output layer to the input layer. The learning process is repeated for the required 

number of epochs until the network converges to the expected level of accuracy. For the training 

phase of the model, the model parameters namely connection weights and bias to each neuron are 

initialized. The test dataset is then fed to the model to evaluate the performance of the model 

built. The complete process involved in model building is portrayed in the following algorithm. 
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Fig. 4.1 Architecture of ANN Based Phoneme Recognition Model 

Algorithm 4.1Building ANN based phoneme recognition model using back propagation 

algorithm 

Step 1: Define hyperparameters namely, the number of hidden layers m-1, number of neurons in 

each layer of ANN ri, for  i=0,1,….m, the learning rate γ, number of epochs and batch 

size. 

Step 2: Randomly initialize the connection weights    
 , for all connections from j node in layer 

k-1 to i nodes in layer k and biases of all nodes represented as   
  for i

th
 node in layer k. 

Step 3: Repeat steps 3 to 7 for the given number of epochs 

Step 4: Repeat steps 4 to 7 for each batch of the training dataset. 

Step 5: Perform the forward pass by supplying the data points in the current batch to the input 

layer until it reaches the output layer 
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a. Initialize input layer    by assigning   
    , where   

  is the output of layer    and 

  , the input vector. 

b. For all hidden layers in sequence from            

     Do for k from 1 to m-1 

i. Calculate product sums of input to neuron, 

  
    

      
   

                
    

   
 

ii. Calculate   
      

                

c. Evaluate the output at the output layer    

i. Calculate   
    

      
   

                
    
    

ii. Calculate   
      

   

Step 6: Evaluate the mean squared error at the output layer as follows, 

      
 

 
        

  
   , where   , is actual output vector and   , is expected output 

vector for the given input vector, xi. 

Step 7: Back propagate the change in error from the output layer to the input layer to fine tune 

the weight and bias parameters of the network. 

a. Calculate change in weights as follows, 

    
    

     

    
  

b. Calculate change in biases as follows, 

   
    

     

   
  

c. Update all weight and biases as follows, 

   
     

      
         

    
     

   

Thus to build an ANN based acoustic model, the hyperparameters like the number of 

layers, number of neurons in each layer, the activation function used are decided and the 

respective parameters of ANN like bias and connection weights are initialized. The model is then 
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pretrained using contrastive divergence technique and then trained using backpropagation which 

propagates the error observed in the output layer.  

Experiment and Results 

In this experiment, a DWTFS dataset of Kazhangiyam corpus discussed in section 3.4 is 

used for building a phoneme classification model. The DWTFS dataset used here is a collection 

of data points, where each data point represents the DWT features of segmented phonemes of the 

speech corpus. Each phoneme is defined as a data point with 90 DWT features. From a total of 

667260 phoneme samples defined in the dataset excluding the data points falling into ‘sil’ class, 

the remaining 635030 data points are split into training set and testing test with 70:30 proportion 

contributing 444521 instances in training dataset and 190509 instances in the test dataset.  

The experiment is conducted in MATLAB R2013a. The hyperparameters for ANN to build 

the phoneme recognition model are set as follows. The number of neurons in input layer is set as 

90, number of neurons in output layer as 38, learning rate or step ratio as 0.01 and number of 

epochs as 500. The activation function of neurons is defined as a sigmoid function. The 

experiment is conducted by varying the number of hidden neurons as 70, 150, 200 and 250. The 

accuracy of the model when trained with datasets by varying the number of instances as 31200, 

62400, 124800, 249600 and 444521 are evaluated which is portrayed in Table IX and Fig 4.2. 

The ANN model is perceived to improve its accuracy with the increase in the number of neurons 

in the hidden layer but tends to start decreasing at some point when exceeding beyond 200 for this 

problem. Further investigation on the performance of ANN continued with 200 hidden neurons.  

Table IX Phoneme Recognition Rate (%) of ANN Model by Varying the Size of 

Hidden Layer 

Training 

Dataset 

Size 

Number of Neurons in Hidden Layer 

70 150 200 250 

31200 50.4 50.2 51.3 50.8 

62400 53.2 54.1 54.8 53.5 

124800 57.8 58 58.1 57.8 

249600 59.5 60.2 60.4 58.2 

444521 63.9 64.2 64.5 64.1 
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Fig. 4.2 Phoneme Recognition Rate Observed for ANN Model with Varied Number of 

Neurons in  the Hidden Layer 

The results were observed and recorded in terms of precision, recall and F-measure and are 

manifested in Table X. The model turned out with an increasing precision, recall and F-measure 

values for datasets with increasing samples. The maximum precision, recall and F-measure 

observed are 0.62, 0.59 and 0.6 respectively for the training dataset of size 444521. The minimal 

increase observed for the last case as shown in Fig 4.3. implies some sort of stabilization reached 

by the model. The higher recognition rate of 78% is observed for vowels in ANN with an 

average recognition rate of 64.5%. The recognition rate of the categories nasals, stops and others 

are noted to be 69%, 51% and 60% respectively for ANN model. For the model built using the 

training dataset of size 444521, the PERwas evaluated as 35.5%. 

Table X Precision, Recall and F-measure of ANN Model by Varying the Training Set Size 

Training 

Dataset Size 

Average 

Precision 

Average 

Recall 
F-measure 

31200 0.49 0.48 0.48 

62400 0.51 0.49 0.5 

124800 0.56 0.54 0.55 

249600 0.6 0.57 0.58 

444521 0.62 0.59 0.60 
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Fig. 4.3 Comparison of Performance metrics with Varying the Dataset Size 

Findings 

The experiments conducted in this work to build ANN based phoneme recognition model 

exposed certain facts. As speech is a highly variable data, it requires a considerable number of 

hidden neurons to capture the patterns of phoneme spoken by different people at different 

instances. Too less number of neurons in the hidden layer lack the capability in capturing the 

variability details and too high counts of neurons in hidden layer lacks with the level of 

generalization, as the networks does not provide probable situation  to learn due the availability 

of more number of neurons to capture varied collection of information. 

4.2 TAMIL PHONEME RECOGNITION MODEL USING ANFIS 

In the second case, an ANFIS based acoustic model has been built in order to explore the 

performance of ANFIS on Tamil phoneme recognition problem. Before a formal description on 

the methodology of ANFIS based phoneme recognition model, Linear Discriminant Analysis – a 

dimensionality reduction technique, architecture of ANFIS and its learning procedure are 

elaborated here. 

Linear Discriminant Analysis (LDA) is a dimensionality reduction technique and is 

supervised. Its objective is to project the input feature space into linear subspace in the direction 

that maximizes the separation between the elements of various classes that helps to avoid 

overfitting. It also gives an additional benefit of reducing the computational cost as a result of 

reducing the input dimension. The steps involved in LDA algorithm is summarized below. 
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Algorithm 4.2 LDA 

Step 1: For each of m different classes in the dataset D, evaluate the d-dimensional mean vectors 

            for the given input matrix X of order     . 

Step 2: Compute the scatter matrices. 

Step 3: Compute within class scatter matrix       
 
   , where                  

  ) with   ⊂  holding the samples of class i. 

Step 4: Compute between class scatter matrix                     
   , where   is the 

overall mean,   and   are mean and number of samples of each respective class. 

Step 5: Solve using general eigen value formulate as   
        , to evaluate the eigenvectors 

e=              and their corresponding eigenvalues                 respectively. 

Step 6: Arrange the eigen values in decreasing order and select k eigenvectors corresponding to 

the first k eigenvalues to form a       order matrix W. 

Step 7: The transformed feature space is evaluated using        

The LDA algorithm assumes the data in the attributes under consideration to be in 

Gaussian distribution of same variance. With this assumption, it calculates the mean of each 

attribute and scatter matrices as given in step 1 and 2. The within class scatter matrix defines the 

separability or variance between different classes and is given by the mean differences of the 

classes. The between class scatter matrix defines the distance of each instance to the mean of its 

class. The scatter matrices obtained are used to formulate an eigen value problem, from whose 

resulting set of eigen vectors and values, few eigen vectors with greater eigen values are selected 

to form a transformation matrix. The transformation matrix is then applied on the input matrix to 

build the transformed feature space with fewer dimensions. 

The output of LDA is given as input to adaptive neuro-fuzzy inference system to build the 

acoustic model. It is a combination of adaptive neural networks and fuzzy logic which takes the 

advantage of soft computing techniques of neural networks and the ability of fuzzy logic to 

transform human knowledge into quantitative rules [80]. The type-3 ANFIS with an adaptive 

network is a feed forward network that has the capability to learn itself. The type-3 ANFIS [81] is 

a five layer feed forward network whose structure with two inputs, one output and nine rules is 

shown in the Fig. 4.4, where the square node denote the adaptive nodes, that are capable of 
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learning and the circle nodes are fixed nodes.  The rules of the network are Takagi and Sugeno 

type, which takes the form “If Input1=x1 and Input2=x2 Then Output is y=ax1+bx2+c”. The 

consequent part of the rules’ generated are built as a linear combination of the inputs and a 

constant term. The weighted average of the outputs from each rule is given as the final output of 

the network. The type-3 ANFIS architecture can be explained as follows: 

Layer 1: This layer is a fuzzification layer, where the inputs are fuzzified to represent the 

linguistic terms of the system. The nodes of this layer are adaptive and are represented by some 

continuous piecewise differentiable functions like trapezoidal, triangular or bell-shaped functions. 

Each node of this layer is defined with a membership function and is represented as follows, 

    
          (4.1) 

 

Fig. 4.4 Architecture of Type-3 ANFIS 

 

where x is the input for the node i, and Ai is a function representing the linguistic term associated 

with the node. For a bell-shaped membership function, the membership values usually lies 

between 0 and 1 and is given as follows, 
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 (4.2) 

where the parameter defining the bell-shape ai, bi  and ci forms the parameter set. These 

parameters are thereby referred as premises parameters, as they help defining the premises part of 

the rule set. 

Layer 2: Each node in this layer is a circle node whose function is to produce the product of 

all incoming signals from the previous layer. The output of the nodes in this layer indicates the 

firing strength of the rule, which is represented as, 

                    (4.3) 

With i=1,2 for two input network, μAi(x)  and μBi(y) denoting the membership function for 

the respective inputs. 

Layer 3: This layer represented with nodes labelled N, gives the ratio of the firing strength 

of the i
th

 rule to the sum of firing strengths of all rules. For the given nine rule network, this ratio 

is calculated as follows, 

       
  

   
 
    

 (4.4) 

Layer 4: Each node in this layer is represented as a combination of the output of layer 3 and 

linear function of inputs and given by 

    
                       (4.5) 

where (     )  is the output of previous layer and pi, qi and  ri are the consequent parameters, the 

parameters of layer 4. 

Layer 5: This layer is the output layer, which provides the summation of all incoming 

signals and is given by, 

    
     

 
  (4.6) 

With this structure, the ANFIS model follows a hybrid learning rule, which employs two 

passes, the forward pass and the backward pass. In the forward pass, the network learns from the 

functional signals that moves forward through the layers of the network. In the backward pass, the 

least square error is calculated and is back propagated to each layer through gradient descent. 
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During the training process, in the backward pass, the error observed in the output layer is 

back propagated to the previous layers to fine tune the premise parameters            that defines 

the shape of the membership functions [82]. The error at the output layer is calculated as a 

squared error follows: 

             
   

  
    (4.7) 

where    is the     component of the desired output, vector     
  is the     component of the 

actual output of ANFIS in forward pass for p
th

 input data vector,   denotes the number of nodes 

in layer L. The error starts propagating backward through each and every node of layer 4 of the 

network as a derivative of square error which is given by, 

       
   

    
            

   (4.8) 

    node in layer L. Further, the internal nodes lying in the other layers (l) of ANFIS are updated 

by using the chain rule as follows, 

  
   

     
  

   

     
   

    
    

     
   

     
 (4.9) 

With the internal node updated with the error as in the above equation, any parameter   of some 

set of nodes, S in the networks can be updated as follows, 

 
   

  
  

   

     
  

  
  (4.10) 

Thus the overall error of parameter y is given as a summation of error contributed by each 

input data and the gradient descent for the parameter y is given as 

       
  

  
 (4.11) 

with γ being the learning rate. 

The methodology of building ANFIS based acoustic model is shown in Fig. 4.5. Initially 

LDA is applied on the dataset to reduce the dimensionality of the feature space by linearly 

transforming the features from the original space into a new space with lower dimensionality. The 

transformed feature space inputs are given to the ANFIS training module where each input 

variable is fuzzified with three linguistic terms namely low, medium and high and represented by 

Gaussian functions. The layer 1 of ANFIS model has nodes representing the linguistic units of 
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features in the new space with each linguistic term represented as Gaussian function. The model is 

then trained with the training dataset using two passes, where the ANFIS learns by propagating 

the input till the output layer and fine tunes the parameters in the backward pass using gradient 

based back-propagation technique to propel the error observed in the output layer as discussed 

earlier in this section. This learning procedure of forward and backward pass is repeated to few 

hundred epochs to train the network. The training phase is followed by a testing phase with the 

test dataset to evaluate the performance of the ANFIS phoneme recognition model. The 

experimental results of training the ANFIS for kazhangiyam phoneme dataset are discussed in the 

following section. 

 

Fig. 4.5 Architecture of ANFIS Based Phoneme Recognition Model 

Experiment and Results 

ANFIS algorithm is implemented using the DWTFS dataset in kazhangiyam speech corpus 

for building a Tamil phoneme classification model. The dataset is divided into the training set and 

testing set where a subset with maximum of 31200 data points spanning all the 39 classes of the 

dataset with 800 samples in each class has been used for training ANFIS based phoneme 

recognition model. The model is tested using the test dataset a subset of with maximum of 15600 

data points contributed with 400 samples from each class. LDA has been applied on the DWTFS 

dataset to perform dimensionality reduction. Finally the nine dimensional input vectors are passed 

to the ANFIS, where each input propagates through one of three nodes dedicated to the respective 

linguistic terms defined for that input. Thus layer 1 of this ANFIS is designed with 27 nodes, 
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where each set of three nodes defining the three linguistics terms of a given input value. With 27 

nodes defined in layer 1, layer 2, 3 and 4 follows with 27 nodes each. With this infrastructure 

defined, the ANFIS model for Tamil phoneme recognition is trained with 500 epochs. The model 

built so, is tested further for its efficiency with the test dataset.  

The precision, recall and F-measure observed in ANFIS models by increasing the number 

of samples in training sets are portrayed in Table XI. It is observed that the efficiency of the 

ANFIS acoustic model improves with the number of samples in the training dataset, but it is 

observed that the rate of improvement in precision, recall and F-measure is minimal when 

compared to the rate of increase in number of samples.  The average precision, recall and F-

measure observed for the training dataset of size 31200 is 0.61, 0.56 and 0.5839 respectively.  

Table XI Average Precision, Recall and F-measure Observed for ANFIS Model  

Built for Phoneme Dataset of Various Sizes 

Training 

Dataset 

Size 

Average 

Precision 

Average 

Recall 
F-measure 

7800 0.34 0.45 0.3873 

15600 0.38 0.51 0.4355 

23400 0.58 0.54 0.5592 

31200 0.61 0.56 0.5839 

 

From Table XII, the number of rules generated by the ANFIS model and the execution time 

is observed to be increasing at greater rates with increase in the number of samples. The number 

of rules generated is 121, 384, 665 and 956, where as the execution time taken by ANFIS to build 

the model from the training dataset is observed as 153, 198, 285 and 360 minutes respectively for 

a dataset of size 7800, 15600, 23400 and 31200 samples when executed with a system with i3 

processor. It can also be seen that the precision, recall and F- measures increase rate is 

diminishing with the greater overheads of knowledge base size i.e. number of rules and execution 

time for ANFIS model. The greater increase in the number of rules generated in ANFIS as shown 

in Fig. 4.6 is due to the increase in dataset size by adding more number of samples from different 

speakers. This shows the high variability in the features representing the phonetic units of the 

language, reflecting the characteristics of multiple speakers and the effect of co-occurring 

phonemes because the numbers of samples in the datasets are increased by including samples 
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from more speakers. The time taken is also observed to be high for training ANFIS even for a 

smaller dataset of size 7800. The study also shows that the increase in the number of samples does 

not reflect the ANFIS model efficiency much as expected in terms of accuracy rather it increases 

the time overhead in training and classifying the data points. 

Table XII Number of Rules Generated and Time Taken by ANFIS  

for Various Sizes of Training Dataset 

Number of 

Samples in 

Training 

dataset 

Number of 

rules 

generated 

Execution 

time  

(in minutes) 

7800 121 153 

15600 384 198 

23400 665 285 

31200 956 360 
 

 

Fig. 4.6 Comparison of Number of Rules Generated and Time Taken by ANFIS with 

Respect to Dataset Size 

The recognition rates for the various categories vowels, nasals, stops and others are 

observed as 74%, 67%, 48% and 59% respectively with an average accuracy of 62% for the 

ANFIS model trained with dataset of size 31200. The phoneme error rate of the ANFIS model 

was evaluated as 38%. The recognition rates for various categories show that the ANFIS model is 
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capable of recognizing the vowels with greater accuracy when compared to the other type of 

phonemes in Tamil. During the experiments the phonetic units that span for longer duration are 

observed to be classified correctly when compared to the phonetic units with shorter duration, 

thus reflecting greater accuracy for vowels compared to the other categories. The results show 

decent and comparable recognition accuracy to the state of art models in the literature [14, 83]. 

Performance Comparison of ANN and ANFIS Phoneme Recognition Model 

The results of ANN based phoneme recognition model is compared with the results of 

ANFIS model with various metrics such as overall precision, recall, F-measure and accuracy in 

Table XIII. The overall average precision observed for ANN and ANFIS is 0.62 and 0.61 

respectively, where as the recall is observed as 0.59 and 0.56 respectively. The average F-

measure that resulted for the models ANN and ANFIS is 0.6 and 0.5839 respectively. The best 

accuracy of the two models is observed as 64.5% for ANN when compared to ANFIS’s accuracy 

of 62%. 

Table XIII Performance Comparison of ANN and ANFIS Phoneme Recognition Models 

Model Precision Recall F-measure Accuracy (%) 

ANN 0.62 0.59 0.60 64.5 

ANFIS 0.61 0.56 0.5839 62 

 

From the comparative analysis of ANN and ANFIS models, it is proved that the 

efficiency to classify Tamil phonetic segments is better with ANN model when compared to 

ANFIS model. Generalizing the variability observed in the phonemes in a precise way is better 

implemented with ANN when compared to the model built using ANFIS. This is realized with 

the exponential growth of the knowledge base of ANFIS and in turn complicating the 

classification task. The recognition rate perceived with ANN is found to outperform ANFIS 

model for all considered phoneme categories and portrayed in the Fig. 4.7. 
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Fig. 4.7 Recognition Rate of ANN and ANFIS Models for Various Categories of Phonemes  

 

Findings 

The fact here is, the variability in the characteristics of speakers and co-occurrences of 

phonemes in continuous speech adds more complexity to the problem. The reflection of the 

complexity of the problem is seen in the complexity of the ANFIS model built. It is inferred with 

increase in knowledge base size proportionately to the increase in the training dataset size which 

is handled better with ANN model elucidated earlier in this chapter. Building an ANFIS model 

requires less number of instances to train the model which is a back track for the phoneme 

recognition problem inbuilt with high variability. A simple ANN Tamil acoustic model is 

observed to be more generalized when compared to ANFIS model, thus providing better 

classification and proved its efficiency in terms of various performance measures. ANN is found 

to be capable of capturing more complex and variable features representing the phonetic units of 

the Tamil language which is observed to lack in ANFIS because of the inability to generalize the 

phonetic classes.  
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SUMMARY 

This chapter elucidated the process of building artificial neural network and adaptive 

neuro-fuzzy inference system models for Tamil phoneme classification problem. The 

methodology and detailed procedures used for training the models were discussed. Details on the 

experiments conducted and the results observed were explicated. The key findings on the 

research accomplished during the experiments were summarized. The results of the experiments 

conducted motivated to apply recent deep learning techniques for building more efficient model 

for phoneme classification. The model build so will be capable of handling the variability in the 

feature space and to reduce the time complexity incurred in model building process. The DBN, a 

deep learning architecture is chosen for further research and the respective models will be 

presented in the forth coming chapters. 
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