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5. DEEP BELIEF NETWORKS FOR PHONEME RECOGNITION 

Application of deep neural networks for solving various complex problems successfully 

[84] has motivated its application in speech recognition. The objective of this chapter is to 

elucidate on the proposed models to build DBNs for phoneme recognition in continuous Tamil 

speech and show its competence by comparing with state of art models. Two types of DBN, 

namely Bernoulli – Bernoulli DBN (BBDBN) and Gaussian - Bernoulli DBN (GBDBN) are 

applied on Tamil continuous speech data to handle the greater variability characteristics of 

phonemes observed in the previous chapter. The models built so to identify the spoken phonemes 

are analyzed for their competences.  

5.1 TAMIL PHONEME RECOGNITION MODEL USING DEEP BELIEF NETWORKS 

The proposed methodology to build Tamil phoneme recognition model is shown in Fig. 

5.1. One of the challenges faced while modelling DBNs is formulating an appropriate training 

strategy to train the network. Greedy method and random method are methods generally used to 

initialize the parameters of the network.  

 

Fig. 5.1 Architecture of BBDBN/GBDBN Based Acoustic Model to Recognize 

Phonetic Units of Tamil Continuous Speech 

Testing   

Phase 

 

Pre-processing Phase 

Training Phase 

 

BBDBN/ GBDBN 

Acoustic  

Model 

 

Filtering 
 

DWT Feature 

Extraction 

Initialize DBN 

parameters and 

pretrain using 

contrastive 

divergence 

 

Test  

Dataset 

Phoneme 

Classification 

Training 

Dataset 

Train DBN 

using back 

propagation 

(with MSE 

loss function)  

 

DWTFS dataset 

Graph cut based segmentation 

Continuous Speech from 

Kazhangiyam Speech Corpus 

Build 

Weighted 

Multigraph 

Bipartite Multigraph 

until required 

segmentation level 

achieved 



102 

 

The model building process in DBN is a general discriminative training method which 

considers each pair of layers that is bipartite in nature, as a restricted boltzmann machine. This 

method initializes the DBN parameters randomly, pre-trains using contrastive divergence and 

further trains using back propagation technique. The steps to build BBDBN or GBDBN acoustic 

model is given algorithm 5.1. The continuous Tamil speech is the input to the algorithm which is 

initially subjected to segmentation process as explained in chapter 3 to build the dataset. The 

architectural parameters like number of layers or RBMs and number of neurons in each layer of 

the model under consideration either BBDBN or GBDBN are decided. The model parameters 

namely bias of individual neurons, connection weights of the links in the DBN are initialized 

with random number between 0 and 1. The training dataset is used first to pre-train the BBDBN 

or GBDBN using the contrastive divergence technique as explained below. It thus identifies the 

initial values for neuron biases and connection weights of the DBNs.  

Algorithm 5.1 Steps to build BBDBN/GBDBN based acoustic model 

Step 1: Segment the continuous Tamil speech data into phonetic segments using Graphcut 

based segmentation algorithm. 

Step 2: Build the monophone training dataset and test dataset. 

Step 3: Decide the DBN architectural parameters number of layers in DBN and number of 

neurons in each layer and design the BBDBN/GBDBN. 

Step 4: Initialize the weight and bias parameters of BBDBN/GBDBN with random values in 

the range (0, 1). 

Step 5: Pre-train the DBN using contrastive divergence. 

Step 6: Train DBN with back propagation technique with monophone train dataset. 

Step 7: Test the acoustic model build with monophone test dataset. 

Pre-Training DBN Using Contrastive Divergence 

Contrastive divergence [85] is an efficient training procedure performing an approximate 

training for RBMs. The procedure repeatedly tries to reconstruct the visible vector from the 

hidden vector generated from the visible vector thus updating the weight parameters of the RBM. 

The training dataset is sent as input to the first RBM. Each RBM in DBN is trained one by one, 

where the output of one RBM turns as the input to the next RBM in the stack. The weight 

parameters wij are updated during the training process as follows, 
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                           (5.1) 

In the above equation, the change in weight parameter      is calculated. The first term 

         refers the measured frequency between the visible units i and the hidden units j where 

visible units are initially populated with training data samples and hidden units the posterior 

probabilities determined using equation 2.12. the second term          refers the measured 

frequency for visible units, the reconstructed data constructed using equation 2.13 when the 

hidden units were constructed using equation 2.12. Similarly, the posterior probabilities and 

reconstructed data for visible units are evaluated for pre-training GBDBN using equation 2.14 

and 2.15. Training RBM using contrastive divergence is depicted in the Fig. 5.2 and is repeated 

for all the RBMs of DBN in sequence. 

 

Fig. 5.2 Training RBM using contrastive divergence 

Training DBN using Back Propagation 

The pre-training phase used to initialize the DBN parameters is followed by the 

backpropagation training. This phase uses back propagation technique to fine tune the parameter 

values obtained in the previous phase. The training data is initially passed through the input layer 

of DBN and forwarded to the output layer as explained in the learning of BBDBN and for 

GBDBN in chapter 2 respectively. The input data is forwarded to the consecutive layers by 

evaluating the conditional probabilities of the hidden units defined in terms of the sigmoid 

activation function of the neurons. At the output layer, the error is calculated and propagated to 

all the preceding layers. The MSE loss function used to calculate the error at the output layer. 

The equations involved to backpropagate the error observed at the output layer to fine tune the 

model parameters are listed below. The error at the output layer is calculated using equation 5.2. 
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and the error for hidden layers is calculated by, 
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The error is back propagated to the layers using their partial derivatives for each layer 

l=L−1, L−2,...2, given by  

 
  

    
      

     
       (5.4) 

and the network weights are updated using negative gradients given by,  
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and the bias of each layer is updated using  

 ▵b
(l)

j
=−γδ

(l+1)

j
 (5.6) 

where 1<l<L denotes the hidden and output layers, y(l) denotes the output layer of lth RBM, 

w
(l+1)

ij
, connection weight of ith neuron in (l)th layer to jth neuron in (l+1)th layer, γ, the 

learning rate. 

The trained DBN acoustic model is then tested for its efficiency with the test dataset using 

various performance metrics. 

5.2 EXPERIMENT AND RESULTS 

Both DBNs BBDBN and GBDBN, are pre-trained by applying contrastive divergence 

learning procedure on RBM for 1000 epochs each. The pre-training process trains one RBM at a 

time in the stack and proceeds to the next one in the stack. Once the pre-training is complete for 

all the RBMs in the DBN, the whole DBN is trained using back propagation learning is 

conducted for 1000 epochs with a batch size of 100 data points, step size 0.1, initial momentum 

0.5, final momentum 0.9 and weight cost 0.0002. 
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Experiments are conducted on BBDBN and GBDBN with DWTFS dataset of 

Kazhangiyam corpus. The RMSE values observed during the contrastive divergence pre-training 

of each of the six RBMs in the stack of DBN with 5 hidden layers is shown in Fig. 5.3. The 

RMSE values tend to decrease with the pretraining of deeper RBMs. The RMSEs witnessed 

during pretraining RBM6 is lesser than RMSE recorded for RBM5, which is lesser than for 

RBM4, and soon. 

Fig. 5.3 RMSE Observed during Contrastive Divergence Pretraining of RBMs Constituting 

GBDBN 
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The efficiency of the models is experimented to analyze the impact of deeper networks. This is 

done through implementing DBNs by increasing the number of hidden layers from 4 to 6 and 

evaluating their performances. The architecture of DBNs with 3 hidden layers is 

90x100x120x70x39, DBNs with 4 hidden layers is 90x100x120x100x70x39, DBNs with 5 

hidden layers is 90x100x120x120x100x70x39 and DBNs with 6 hidden layers is 

90x100x100x120x120x100x70x39. The sigmoid function is used as the activation function of 

neurons. The time taken to build various models in an i7 processor machine is shown in Table 

XIV. It shows the increase in the number of layers of any DBN increases the time taken to build 

the model due to the fact that each RBM in the stack is pretrained in isolation and one after the 

other in their order in the stack. 

Table XIV Time Taken (in mins) for Building 3, 4, 5 and 6 – hidden Layer  

BBDBN and GBDBN Models 

Models 3 4 5 6 

BBDBN 135 189 234 277 

GBDBN 148 178 246 289 

The DBNs pretrained with contrastive divergence are then observed during their 

backpropagation training. The RMSE values recorded in their backpropagation training phase is 

portrayed in Fig. 5.4. The RMSE values for BBDBN is observed to be much better when 

compared to the RMSE observed for GBDBN. Screenshots showing the pretraining and training 

phases of DBN are given in Appendix C. 

 

Fig. 5.4 RMSE Observed during BBDBN and GBDBN Training 
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The results of the experiments in terms of RMSE values are shown in Table XV. The 

RMSE values while training or testing BBDBN seems to be much lower than training or testing 

GBDBN for all models with diverse hidden layers. The RMSE values observed while testing 

BBDBN with 3, 4, 5 and 6 hidden layers are 0.01708, 0.14913, 0.01529 and 0.15281 

respectively whereas the RMSE values observed while testing GBDBN with 3, 4, 5 and 6 hidden 

layers are 0.06933, 0.059303, 0.062027and 0.064215 respectively. The RMSE values of 4 

hidden layers architecture performs better when compared to the other architectures for both 

BBDBN and GBDBN acoustic models. 

Table XV Performance Comparison with respect to RMSE Values of BBDBN  

and GBDBN Models for Different Number of Layers 

Model/No. of Layers 3 4 5 6 

BBDBN-Training 0.01743 0.015124 0.015266 0.015232 

GBDBN-Training 0.06921 0.05973 0.061828 0.063849 

BBDBN-Testing 0.01708 0.014913 0.01529 0.015281 

GBDBN-Testing 0.06933 0.059303 0.062027 0.064215 

 

The Phoneme Error Rate (PER) recorded for the train and test dataset of DWTFS on 

BBDBN and GBDBN is shown in Table XVI. The best PER observed is 14.62 % for 6-hidden 

layer BBDBN and 20.53 for 5 and 6 hidden layer GBDBN. It is seen that the phoneme error rate 

is better in BBDBN with various depth of the network when compare to their equivalents in 

GBDBN. The observation also shows that increasing the number of layers in the network 

reduces the error rate by increasing the performance the network classification except very few 

situations. From Fig. 5.5 it is clear that 6-hidden layer BBDBN model has produced lower PER 

and outstanding to the other BBDBN models experimented here with similar PER during both 

training and testing phases. Similarly, when observing the various models of GBDBN, the 5 and 

6-hidden layer models of GBDBN is better to 3 and 4-hidden layer GBDBN models with lower 

PER observed in testing phase that in training phase. 
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Table XVI PER during Training and Testing 3, 4, 5 and 6-hidden  

Layer BBDBNs and GBDBNs 

Model/No. of Layers 3 4 5 6 

BBDBN-Training 19.05 18.42 18.78 14.62 

GBDBN-Training 28.51 27.56 22.34 22.34 

BBDBN-Testing 20.32 17.28 19.94 14.97 

GBDBN-Testing 30.74 29.24 20.53 20.53 

  

 

Fig. 5.5 Phoneme Error Rate (PER) During Training and Testing 3, 4, 5 and 6-hidden 

Layer BBDBNs and GBDBNs 

Further evaluations with respect to the precision, recall, F-measure and accuracy of the 

models experimented is portrayed in Table XVII and Fig. 5.6. The F-measures observed for 

various BBDBNs are 0.218716, 0.274306, 0.26776 and 0.285486 for 3, 4, 5 and 6-hidden layer 

BBDBNs respectively. Similarly, the F-measures recorded for various GBDBNs are 0.172116, 

0.191223, 0.196193 and 0.201997 for 3, 4, 5 and 6-hidden layer GBDBNs respectively. The 4-

layer BBDBN stands out with the highest precision of 0.299081, whereas 6-hidden layer 

GBDBN stands out in its group with a highest precision of 0.196765.  

 

0 

5 

10 

15 

20 

25 

30 

35 

3 4 5 6 

P
h

o
n

e
m

e
 E

rr
o

r 
R

at
e

 (
%

) 

Hidden Layers 

BBDBN-Training 

GBDBN-Training 

BBDBN-Testing 

GBDBN-Testing 



109 

 

Table XVII Comparative Performance Results of Various Models 

Performance 

Measure 

     Model 
Precision Recall F-Measure Accuracy(%) 

3-hidden layer 

BBDBN 
0.32461 0.31312 0.318763 80.32 

4- hidden layer 

BBDBN 
0.39908 0.35332 0.37481 82.15 

5- hidden layer 

BBDBN 
0.37449 0.36136 0.367803 80.64 

6- hidden layer 

BBDBN 
0.38768 0.38332 0.38549 85.21 

3- hidden layer 

GBDBN 
0.27439 0.2699 0.272126 70.38 

4- hidden layer 

GBDBN 
0.29563 0.28701 0.291257 71.6 

5- hidden layer 

GBDBN 
0.29434 0.29808 0.296199 78.57 

6- hidden layer 

GBDBN 
0.29677 0.30751 0.302044 78.57 

 

  

  

                                              BBDBN                             GBDBN 

Fig. 5.6 Performance Comparison of Various Models (a) Precision (b) Recall (c) F-measure 

(d) Accuracy 
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When analyzing the recall, it is observed to be more for 6-hidden layer architectures of 

both BBDBN and GBDBN models with values 0.283322 and 0.207514 respectively. The 

accuracies recorded for 3, 4, 5 and 6 –hidden layer BBDBNs are 80.32%, 82.15%, 80.64% and 

85.21% respectively marking greater accuracy for 6-hidden layer model. Similarly, the 

accuracies observed for GBDBNs of 3, 4, 5 and 6 –hidden layer models are 70.38%, 71.6%, 

78.57% and 78.57% respectively marking greater accuracy for 5 and 6 –hidden layer models. 

The best result of the current experiments is compared with the results of ANN and ANFIS 

models of chapter 4. The comparative results with respect to PER is given in Table XVIII to 

prove the strength of DBN.  

Table XVIII Comparative Performance of BBDBN and GBDBN  

with ANN and ANFIS 

 

 

Using BBDBN for Phoneme recognition of Tamil speech turned out with 14.97% PER, 

where as it was 14.97% for GBDBN. Thus BBDBN out performs ANN, ANFIS and GBDBN for 

the DWTFS dataset and is shown in Fig. 5.7. 

 

 

Fig. 5.7 PER Comparison of Various Models 
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Findings 

The notion of using DBN for capturing the greater variability in the speech characteristics of 

different speakers is met to an extent. This is inferred from the fact that these models give more 

efficient models than the ones built with ANN or ANFIS providing better phoneme recognition 

accuracies. It is also seen that deeper networks capture more variability in data to build better 

models. The results show the efficiency of the network stagnates or degrades when the network 

depth crosses a threshold depth which is dependent on the problem under consideration. In 

addition, it is also observed the models built with BBDBN outperform the equivalent models 

built with GBDBN for this phoneme recognition problem. It is inferred that DBNs are 

appropriate to build prominent phoneme recognition models. In spite of the efficiency observed 

in DBN,  this model building process suffered from an intolerable increase in time overhead with 

the increase in the depth of the network. This is evitable due to the use of contrastive divergence 

for pretraining the network that works on a single RBM at a time which also needs further 

attention in this research. In addition the model also risks the solution to be trapped in local 

minima due to the use of gradient descent based backpropagation. 

SUMMARY 

This chapter discussed the implementation of deep belief networks for the phoneme 

recognition problem. It elucidated the pretraining phase of DBNs with contrastive divergence 

and intensive learning through backpropagation. Varied phoneme recognition models developed 

with 3, 4, 5 and 6-hidden layers BBDBNs and GBDBNs were described. The performances of 

models built were compared and the comparative analysis is presented with tables and charts. 

The challenges of time complexity and the risk of solution being trapped to local mimimum are 

handled by proposing better pretraining techniques which will be elaborated in the forthcoming 

chapters.  
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