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CHAPTER 2 

2. MACHINE LEARNING 

Machine learning is a technique that allows computers to automatically predict the accuracy on 

previous observations [33]. Primary aim of machine learning is to automate the process of extracting 

hidden information from data by deploying both computational and statistical techniques. These 

machine learning techniques [34] are extensively deployed to resolve issues related to natural language 

processing which includes speech recognition, document categorization, document segmentation, part-

of-speech tagging, word-sense disambiguation, named entity recognition, parsing, machine translation 

and transliteration.  

The two different kinds of learning are inductive and deductive. Massive data sets are used 

during inductive learning to extract rules and patterns. Learning/training and prediction are the two 

essential processes that comprise machine learning. Training data here is used by the system which is 

essentially a set of examples. The focus is to automatically derive effective and accurate model using 

the training data or set of examples. Training data provides knowledge to the domain which is the 

domain features based on which examples are drawn. The larger the training set will determine the 

higher quality of the model [35] [36]. 

Prediction forms the second phase of machine learning wherein a series of inputs are mapped 

according to their respective target values. Machine learning aims at creating a good prediction 

performance model that can use the test data and engender high quality generalization capability for 

unseen data. 

Machine learning algorithms are segregated as supervised learning [37], unsupervised learning 

[38] [39], semi-supervised learning [40], reinforcement learning and transduction. The target function 

is identified using training data in supervised learning, wherein every example has a corresponding 

label. If the label is found to be discrete, the task is known as classification. However, if the label is a 

real value the task then poses regression issues. Target function is deployed to predict the label for new 

case. May infer that learning in the training set is not limited to being a task of remembering examples 

but also as a means of generalization for unseen cases [41].  

http://en.wikipedia.org/wiki/Deductive_reasoning
http://en.wikipedia.org/wiki/Algorithm
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The system during unsupervised learning, attempts to mine patterns that do not contain precise 

information about the target concept in the data. These systems focus on analyzing data and then 

categorize it using the training examples which have no class labels.  

Semi-supervised learning deploys labeled and unlabeled examples to create a model. Learning 

involves incorporating a rule which can help to determine the action to be taken based on the 

observation. Transduction and supervised learning have certain similarities. The learning as such 

doesn’t exclusively create a model but the algorithm used focuses on predicting the output depending 

on the details of the training input, training output and test input inherent during training. 

2.1. SUPERVISED CLASSIFICATION ALGORITHM 

Supervised classification considered as automatic learning that focuses on the inherent modeling 

input/output relationships [42]. Supervised learning aims at optimal function identification mapped 

between input data X and output variable which is class label Y such that Y = f(X). The above 

mapping is performed and is based on observations drawn as a sample of input variables X that feature 

examples of the given problem. 

Supervised learning main task is to chart out a classifier based on a set of classified training 

examples. The labeled example here consists of a pair of object and the respective class label. Labeled 

examples that provide the learning algorithm are referred to as the training set. Classifier is created 

based on training data that is provided to the classification algorithm. Major issue here related to 

supervised learning algorithm is that of generalization or in other words the ability for correct label 

prediction even in unseen data. 

Performance evaluation of the classifier is determined by deploying several varying labeled 

examples referred to as the test set. Most learned classifiers can accurately predict the correct class 

label based on the model developed from training examples, it is not for new examples. Therefore 

using a different data set is apt while testing the learned model ability and for generalizing new data 

points. Percentage of correct classified test examples is referred to as the classification rate or also as 

the prediction accuracy. If the dataset is larger, valuing classification accuracy also reaches its height. 
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Some of the supervised learning algorithms used for solving classification problems are Linear 

Models, Neural Networks, k-Nearest Neighbor (k-NN), Decision Trees, Naïve Bayes, Support Vector 

Machine.  

2.2. SUPPORT VECTOR MACHINE 

Support Vector Machine is a newfangled approach deployed in supervised pattern classification 

and one whose application to a varied pattern recognition issues has proven to be successful. SVM as a 

supervised machine learning method is rewarding as well-developed learning theory which is apt for 

statistical learning theory [43]. SVM is primarily based on strong yet simplified mathematical 

foundations and results but extremely powerful algorithms [44]. A binary classifier used for 

constructing a hyperplane separating class members from non-members in the input space is a simple 

process. SVM additionally identifies nonlinear decision function in the input space through the process 

of data mapping into a higher dimensional feature space and furthermore separating it using maximum 

margin hyperplane. Automatically here the system selects its subset of informative points referred to as 

the support vectors. These are then used to represent the separating hyperplane which is a bare linear 

combination of these points. The SVM training algorithm thus resolves the simple convex optimization 

problem [45] [46].  

2.2.1. Geometrical Interpretation of SVM 

Typically, the machine is offered through a set of training examples, (xi, yi) where the xi are the 

real world data instances and the yi are the labels that show the class to which each of these instances 

belong. For the two class pattern recognition problem, yi = +1or yi = -1. A training example (xi, yi) is 

called positive if yi = +1and negative in varying situations. SVMs construct a hyperplane demarcating 

these two classes. This facilitates the SVM algorithm to achieve maximum separation between the 

classes [47] as shown in Fig 2.1. 



30 

 

 

Fig. 2.1 Maximum Margin Classifier 

Differentiating classes using a large margin almost eliminates effect on expected generalization 

error. A minimum generalization error here refers to the new examples (data points with unknown 

class values) that arrive for classification, possibility of error during prediction (of the class which it 

belongs) with respect to the learned classifier (hyperplane) can be possibly low.  

It is obvious that such a classifier is one that achieves maximum separation-margin between 

classes. Fig 2.1 elucidates the concept of maximum margin.  Parallel to the classifier the two planes 

and those in the data that pass through one or more points are known as bounding planes. Distance 

between bounding planes is known as margin and SVM learning, indicates finding a hyperplane that 

can maximize the margin.  

Margin 

Support Vectors 
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The dataset shows points that fall on the bounding planes and are referred to as the support 

vectors. In classification these points have a significant role, thus the algorithm is known as the 

Support Vector Machines. The term machine refers to algorithm [47].  

In [46] clearly shows that when the training vectors are separated using an optimal hyperplane 

without errors, test sample expected error rate is confined by the ratio of expectation of support vectors 

to number of training vectors. As this ratio is independent of any inherent problem regarding 

dimension and if number of support vectors is less, in that scenario excellent generalization is rest 

assured. However, is misclassification of data points as shown in Fig. 2.2, occurs when minimizing 

number of misclassifications whilst simultaneously maximizing the margin in correctly classified 

examples. In this scenario it can infer that SVM training algorithm allows a training error. 

 

Fig. 2.2 Linear Classifier with Training Error 
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Another situation may exist in such a scenario where the clustered points have two classes and 

are not linearly separable as illustrated Fig. 2.3 and the linear classifier subsequently would be required 

to tolerate a considerably extensive training error.  In these scenarios, non-linear mapping of data into 

some higher dimensional space is referred to as feature space, F, which allows it to become linearly 

separable. For distinguishing between these two types of spaces, the data point’s original space is 

named as the input space. In the feature space the hyperplane corresponds to a highly non-linear that 

resolute the surface in the original input space. Thus the classifier is known as the non-linear classifier 

[47].    

 

Fig. 2.3 Nonlinear Classifier 

Data mapping into higher dimensional space includes substantial computation particularly when 

the date itself could be one with high dimensional is shown in Fig. 2.4.  However, explicit mapping is 

not required for higher dimensional space to determine hyper plane or classifier, all computations are 

performed in the input space itself [47].  

Feature 

map 

Separating 

Hyperplane 

Complex in low dimensions 

Simple in higher dimensions 
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Fig. 2.4 Input Space and Feature Space 
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2.2.2. SVM Formulation - Hard Margin 

The following notations are used 

m = number of data points in the training set 

n = number of features (variables) in the data 

1

2

i

i

i

in

x

x

x

 
 
 =
 
 
 

x ,  n - dimensional vector which represent a data point in input space. 

di = Dii = Target value of the ith data, it takes +1 or -1 value 

1

2

m

d

d

d

 
 
 =
 
 
 

d , a vector representing target value of m data points 

1

2

0 0

0 0

.

0 0 m

d

d
diag( )=

d

 
 
 
 
 
 

D = d  

1

2

n

w

w

w

 
 
 =
 
 
 

w  , weight vector orthogonal to the hyper plane  

1 1 2 2 0n nw x w x w x + + − = .                                                                 (2.1) 

  is a scalar which is generally known as bias term  
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T
AA is called linear kernel of the dataset 

(.) → x  A nonlinear mapping function that maps input vector x  into a high dimensional 

feature vector 
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. . .
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 
 

x x x x x x
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K is called the non-linear Kernel of input dataset.  

Q =  anmxm matrix whose (i,j)th element is  ( ) ( )T

i j i jd d  x x  

( ) K * T=Q  . d * d ,   where *.  represent element wise multiplication 

The SVM build the optimal hyper plane with the view of geometrical calculation which is 

represented as w T x -   = 0 among 2 classes of samples. Here, ‘w’ represents the vector weight values 

and the ‘’ represents the threshold value. The main goal is to divide the combined places with 

maximum variation.  

wT x -   = 1         (2.2) 

wT x -   = -1         (2.3) 

such that data points with d = -1 satisfy the constraints  

wT x -   ≤ -1         (2.4) 

and data points with d = +1 satisfy  
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wT x -   ≥ 1.         (2.5) 

The perpendicular distance of the bounding plane w T x -   = 1 from the origin is 

 |-  + 1|/||w||         (2.6) 

and the perpendicular distance of the bounding plane w T x -   = -1 from the origin is 

 |-  - 1|/||w||.         (2.7) 

 The margin between the optimal hyperplane and the bounding plane is 1/||w||, and so the 

distance between the bounding hyperplanes is 2/||w||. Then the learning problem is formulated as an 

optimization problem as given below 

The training of SVM consists of finding w and γ, given the matrix of data points A and the 

corresponding class vector d. Once   and w  are obtained, the decision boundary can be obtained 

as 0−  =T
w x . The decision function is given by ( )f x =sign( )− T

w x . This decision boundary is 

calculated based on decision function which is calculated as f(x) = sign (wTx- γ). Here sign value of 

wTx- γ is used to classify newly arrived data point. By adapting the lagrangian dual variables, SVM 

learning can be done easily. 

Lagrangian dual  

The dual of the primal problem is using Lagrangian dual is given by. 

,0
max min L( , ,



 
  wu

w u         (2.8) 

Where 

  L( , , )w u =
21

2
w -

m
T

k k k

k 1

[d ( ) 1]u
=

−  − w x   

 

(2.9) 

.,,1,1)(       subject to

2

1
    Minimize

2

liD i

T

ii =−

=

xw

w
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The problem is solved using Lagrangian duality to find values of w and   which minimizes 

L( , , )w u for a given u.   

  ( )L , , 0


 =


w u and ( )L , , 0
w


 =


w u   (2.10) 

This leads to 

   
1

0
m

k k

k

u d
=

=                                              (2.11) 

and 

   
m

k k k

k 1

u d
=

=w x     (2.12) 

Substituting  

  
m

k k k

k 1

u d
=

=w x into L( , , )w u     (2.13) 

L( , , )w u =
21

2
w - 

m
T

i i i

i 1

u [d ( ) 1]
=

−  − w x  

 = 
T1

( )
2

w w -
m

T

i i i

i 1

u [d ( ) 1]
=

−  − w x  

 =
m m

T

i j i j i j

i 1 j 1

1
u u d d ( )

2 = =

 x x -
m

T

i i i

i 1

u d ( )
=

 w x  +
1

m

i i

i

u d
=

 +
=

m

i

iu
1

 (2.14) 

Since 
1

0
m

i i

i

u d
=

=  

L( , , )w u  =
m m

i j i j i j

i 1 j 1

1
u u d d ( )

2 = =

 x x
T -

m m

i j j i j i

i 1 j 1

u u d d ( )
= =

 x x
T  +

=

m

i

iu
1

 

  =
=

m

i

iu
1

-
m m

T

i j i j i j

i 1 j 1

1
u u d d ( )

2 = =

 x x                                (2.15) 
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Now Lagrangian is a function of u and is given by 

 
DL ( ) =u 

=

m

i

iu
1

-
m m

T

i j i j i j

i 1 j 1

1
u u d d ( )

2 = =

 x x   (2.16) 

U must satisfy the condition  

   
1

0
m

k k

k

u d
=

=     (2.17) 

The optimization problem now reduces to  

Max  
DL ( ) =u 

=

m

i

iu
1

- 
m m

T

i j i j i j

i 1 j 1

1
u u d d ( )

2 = =

 x x   (2.18) 

Subject to
1

0
m

i i

i

u d
=

= , 0iu , mi ,,2,1 =  

The above quadratic programming problem yields sui  and the decision function is given by  

  ( )f x = Tsign( )− w x =
m

T

i 1

sign( )i i iu d
=

−  x x            (2.19) 

Where γ is measured by considering the margin with ui  0. There is an presence of dual vairable 

ui for every data xi. Most of the time, value of ui is zero and the remaining non zero ui  values are 

refereed as support vectors due to their property of decision function f(x). The decision function f(x) 

can be represented as given in following equation where the set of index of support vectors are 

declared as svmindex 

  
Tsign( )i i i

i svindex

u d


−  x x      (2.20) 

2.2.3. SVM Formulation with Soft Margin - L1 Norm 

As shown in Fig. 2.5, the data points with noisy features can be divided optimally over the 

regions A+ and A- with reduced training error which would cause worst generalization. This can be 

avoided by dividing the plane maximally with the assignment of small number of points on negative 

side.  This deviation occurred with the bounding place is called as error. 
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Fig. 2.5 Data which Require Linear SVM Formulation with Soft Margin 

The main goal of the SVM is to find the classifier which can separate the places with maximum 

bounding value and reduced error value. However, these maximum margin value and reduced error for 

the smaller data point learning is contradict to each other. That is maximum value of margin would 

cause more error. This is resolved by introducing the control parameter C which can adjust the value of 

weight so that contradiction can be controlled efficiently [47].   

 Here there is a chance of misclassification error which can be handled and corrected by 

introducing the slack variable ξi, so that violation that occurs due to specifications of some constraints 

can be avoided. This is called as SVM with soft margin and it is calculated as  

   

, ,
1

1
min

2

subject to ( ) 1 0, 1

0, 1

m
T

i

i

T

i i i

i

C

d i m

i m




 



=

+

− + −   

  


w

w w

w x



                       (2.21) 

Use of very powerful kernels 

causes over fitting 

Class +1 

Class -1 

Dataset with noise 
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The attempt to minimizing error and quantity 
1

2
C +e w w

T T for the varying parameter 

values of w and £ leads to increased separation outcome of bounding places with increased number of 

data points. Here C is referred as regularization parameter value whose main goal is to achieve the 

trade-off between the different objective function. The optimal selection C value would ensure the best 

generalization outcome of the classifier. This can be represented as Lagrangian as follows: 

1 1 1

1 1 1 1

1
( , , , , ) ( ) 1

2

1
( )

2

m m m
T T

i i i i i i i

i i i

m m m m
T T

i i i i i i i i i

i i i i

L C u d

C u u d u d u

     

  

= = =

= = = =

 = + − − + − − 

   
= + − − − − +   

   

  

   

w w w w x

w w x w

u 

(2.22) 

 

where u,  are the Lagrange multipliers, the Wolfe dual of the problem is: 

    

max ( , , , , )

subject to

0

0 1
i

L

L

L

L
i m








=




=




=  







w

0
w

0

0

u

u

 



,u

                              (2.23) 

The constraint 0
L
=

w
 implies 

   
1

0
=

− =
m

T T

i i i

i

u dw x                                                            (2.24) 

That is  

   
1=

=
m

i i i

i

u dw x                                                                 (2.25) 
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The constraint 0
L




=


implies 

      
1


=


m

i i

i

d = 0                      (2.26) 

The constraints 
i

L






= 0 imply 

 0, 1 .− − =  i iC u i m                 (2.27) 

Note that  0u ,   0 , and 0  iu C . 

Substituting these results into ( , , , , )L w u  : 

  

1 1

1

1 1 1

1
( , , , , ) 0 0

2

1

2

1

2

m m
T T

i i

i i

m
T

i

i

m m m
T

i i j i j i j

i i j

L u

u

u d d u u

  
= =

=

= = =

= +  − −  +

= − +

= −

 



 

w w w w w

w w

x x

u 

            (2.28) 

The dual problem is  

 

1 1 1

1

1
max ( )

2

subject to 0

0 1

m m m
T

D i i j i j i j

i i j

m

i i

i

i

L u d d u u

d u

u C i m

= = =

=
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=

   

 



x x
u

u

    (2.29) 

or 

  

1 1 1

1

1
min ( )

2

subject to 0

0 1

m m m
T

D i j i j i j i

i j i

m

i i

i

i

L d d u u u

d u

u C i m

= = =

=

= −

=

   

 



x x
u
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   (2.30) 
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In matrix form the dual problem can be written as follows: 

Minimize 
DL ( ) =u

T T1

2
u u - e uQ  

  T
d u =0, C 0 u e        

Here T
Q = DAA D and A is data matrix. Each data is a row vector in matrix A and u can be 

obtained by solving this quadratic programming problem.  

Q can be computed as T) *( * )( •
T

Q = A* A d d  

KKT complementary conditions have the following three cases for 
iu  

1. 0iu = . Then 
i =0 (corresponding data points do not require positive

i ). Thus 
ix  (ith data point in 

the training set) is correctly classified. 

2. 0 iu C  . Then ( ) 1T

i i id  − + =w x and 0i = . Then 
ix  is a support vector. Such support vectors 

with 0 iu C   are called unbounded support vectors 

3. 
iu C= then ( ) 1T

i i id  − + =w x  and 0i  . Then 
ix  is a support vector. Such support vectors with  

iu C=  are called bounded support vectors.  If 0 1i  , then 
ix  is correctly classified, and if 1i   

it is misclassified.  

For computing , one of those points whose Lagrangian multiplier falls between 0 and C can be 

used, that is one of those points which falls on the hyper planes. For these points
T

i id− =w x . 

Such that T T

i i j j j i i

j svmindex

d u d d


= − = −w x x x  and   can be measured from the available data 

points based on their average value. Here the SVM depends on the final set of support vector indices 

based on which data separation between hyper planes can be ensured. 

 

 

 



43 

 

2.2.4. L2 Norm Linear SVM 

The L2 norm SVM ensures the minimization of sum of square values of data points and also 

reduction of the squared margin value between the bounding planes [47]. This formulation procedure 

is given as follows: 

  

2

, ,
1

1
min

2 2

subject to ( ) 1 0, 1

0, 1

m
T

i

i

T

i i i

i

C

d i m

i m




 



=

+

− + −   

  


w

w w

w x



  (2.31) 

The Lagrangian is: 

2

1 1

2

1 1 1 1

1
( , , , ) ( ) 1

2 2

1

2 2

m m
T T

i i i i i

i i
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   

  

= =

= = = =

 = + − − + − 

   
= + − − − +   

   

 

    

w w w w x

w w x w

u

(2.32) 

where u  are the Lagrange multipliers. 

Lagrangian multiplies in terms of constraint values 0, 1i i m     cannot be assumed as Lagrangian 

L due to property of 
i  which is a function of

iu . Here the values of 
iu s are unbounded (on positive 

side) which is measured as follows: 

The Wolfe dual of the problem is: 

   

max ( , , , , )

subject to

0

0 1
i

L

L

L

L
i m








=




=




=  





w

0
w

0

u

u

 
u ,

                                        (2.33) 
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The constraint 0
L
=

w
 implies: 

    
1

0
=

− =
m

T T

i i i

i

u dw x                                               (2.34) 

or 

   
1=

=
m

i i i

i

u dw x               (2.35) 

The constraint 0
L




=


implies 

     
1

m

i i

i

u d
=

 = 0             (2.36) 

The constraints 
i

L






= 0 imply 

  0, 1 .i iC u i m − =                          (2.37) 

where  0u  

Substituting these into ( , , , )L w u : 

2 2

1 1 1

2

1 1

2

1 1 1 1

1 1 1
( , , , ) 0

2 2

1 1

2 2

1 1

2 2

m m m
T T

i i i

i i i

m m
T

i i

i i

m m m m
T

i i j i j i j i

i i j i

L u u u
C C

u u
C

u d d u u u
C

 
= = =

= =

= = = =

= + − −  − +

= − + −

= − −

  

 

  

w w w w w

w w

x x

u

 

  
1 1 1

1
 = ( )

2

m m m
ijT

i i j i j i j

i i j

u d d u u
C



= = =

− +  x x     (2.38) 

Therefore the dual problem is: 
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1 1 1

1

1
max ( )  = ( )

2

subject to 0

0 1

m m m
ijT

i i j i j i j

i i j

m

i i

i

i

L u d d u u
C

d u

u i m



= = =

=

= − +

=

  

 



x x
u

u

  (2.39) 

The standard form in matrix format is 

  

1
min ( )  ( )

2

subject to 0

T T T

T

L
C

= + −

=

 0

u

I
u u D AA Du e u  

d u

u

   (2.40) 

 

or,  

   

1
min ( )  

2

subject to 0

T T

T

L = −

=

 0

u
u u Qu e u  

d u

u

    (2.41) 

where Q can be computed as T=( * / ) *( * )TC+Q A A I . d d  

 is computed as below: 

According to the KKT complementary theorem, at optimal point: 

  ( )( ) 1 0T

i i i iu d  − + − =w x .      (2.42) 

  So either 0iu =  or ( )( ) 1 0T

i i id  − + − =w x   (2.43) 

that is , if 0iu  , then ( )( ) 1 0T

i i id  − + − =w x  

Substituting the optimal values of 
i  and w  ,  

1

1 0
m

T i
i j j j i i

j

d
d u d x x u

C


=

 
+ − − = 

 
  ;   [because 1i id d = + ] 
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1

1 0
m

ijT

i j j j i

j

d u d x x
C




=

  
+ − − =   

  
  

1

1m
ijT

j j j i i

j i

u d x x d
C d




=

 
+ − = = 

 
  

   
1

m
ijT

j j j i i

j

u d x x d
C




=

 
= + − 

 
     (2.44) 

 Thus   can be obtained by taking a point whose 0iu   (which corresponds to a support vector) 

and by using the above formula. The average of    may be estimated from each such support vectors. 

The above quadratic programming problem yields sui  and the decision function is given by 

  ( )f x = Tsign( )− w x =
m

T

i 1

sign( )i i iu d
=

−  x x                          (2.45) 

If the set of index of support vectors (or data points whose 0iu ) is denoted as svindexthen 

( )f x  can be written as 
Tsign( )i i i

i svindex

u d


−  x x                      (2.46) 

2.2.5 Non-linear SVM and Kernel Trick 

It can be noted that the solution of SVM finally requires Q, d and C where Q is obtained from 

T
A* A  and

T
d * d .  

1 1 1 1.

.

. . . .

T T T

2 m

T

T i j

T T T

m 1 m 2 m m

. .

 
 
 =
 
 
  

x x x x x x

x x
AA

x x x x x x

= K    (2.47) 

 Consider the (i,j)th element of 
T

AA  is
T

i jx x
. This representation of matrix is called as linear 

kernel matrix. That is, required information would be gathered from the training process by utilizing 

dot products between training vectors. In case of non linear separable data as shown in Fig., 2.6, 



47 

 

mapping of data xi  can be done by using the function (.)  which is performed on high dimensional 

space. This is used to identify the maximally separating hyperplane for the corresponding classifier. 

 Here SVM training phase needs values for measuring ) )T

i j( ( x x  for all  and  i j  for all i and j 

which requires more computation overhead for the measurement values of mapping data points in the 

high dimensional space. This is applied by integrating the kernel function which doesn’t require dot 

product values for the mapping data to high dimensional space [47]. The merits of non-linear SVM 

classifier are given as follows: 

The training algorithm is the same as that of the linear classifier. 

• The problem of ‘curse of dimensionality’ is tackled in a simple way. 

 

Fig. 2.6 Data which Require Non Linear Classifier 

 The kernel function K (xi, xj) is input value function which is mainly used to avoid the mapping 

( ) x process. The kernel ( i j, )K x x measurement leads to direct computation of scalar products from 

Non - linear Separation 

boundary 

Linear separation 

boundary 

Points misclassified by 

linear separation boundary 

are crossed 

Class 1: y = +1 

Class 2: y = -1 
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the input feature space T

i j( ) ( ) x x to train the input data vectors. Likewise we can process the high 

dimensional feature space F in the efficient way. The infinite dimension space for the SVM can be 

built by selecting the more suitable value of kernel ( i j, )K x x . The kernel function K representation 

can be given as: 

  ( T

i j i j, )= ( ) ( ) K x x x x     (2.48) 

 

 
 

Fig. 2.7 Non-Linear Mapping into Feature Space 

There are more traditional Kernel functions are available in real time namely linear, polynomial, 

Radial Basis Function (RBF) [48] [49]. Among this linear kernel found to be most popular and simpler 

kernel function which is defined as ( i j, )K x x = T

i j( ) ( )x x .  

The format of polynomial kernel is given as 
( , y)K x

= 
T dy+1)(x  

 The format of RBF kernel is represented as ( , )k x y = 
2

exp( )− x - y  where   is a positive 

parameter controlling the radius. 

 The Mercer’s condition is adapted by the kernel function to define that positive semi-definite 

kernel value k (x, y) is declared as dot product in a high dimensional space [50] - [52].  
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Normalization of Kernels 

 The support vector training process becomes more complex with increased size of number of 

variables which would lead to increased/decreased kernel size. This can be resolved by normalizing the 

value of kernel and the variables. The normalization of variables can be done between the range [0, 1] 

or [-3, +3] by applying the formula ( ) /i i ix  − , where 
i  and 

i  are the mean and standard deviation 

of the ith predictor variable. There would be presence of n number of kernels for the n number of 

variables which are normalized in the range of [0, 1]. The normalized variable value 1, it would lead to 

maximal value generation which forms polynomial kernel representation as ( )1
p

n + . Here the 

normalized kernel value is defined as
y+1

k( ,y
1

p
T

n

 
 

+ 

x
x ) = , where p is defined as degree of polynomial 

kernel. The maximum value of RBF kernel for n number of variable is
2

x - y . And the normalized 

kernel is measured as
2

k( , )exp(-
n


x y) = x - y . 

2.2.6. SVM Formulation of Non-Linear Kernels with Soft Margin - L1 Norm 

The formulation can also be written as:  

 

, ,
1

1
min

2

subject to ( ( ) ) 1 0, 1

0, 1

m
T

i

i

T

i i i

i

C

d i m

i m




  



=

+

− + −   

  


w

w w

w x



   (2.49) 

The Lagrangian is  

1 1 1

1 1 1 1

1
( , , , , ) ( ( ) ) 1

2

1
( ) ( )

2

m m m
T T

i i i i i i i

i i i

m m m m
T T

i i i i i i i i i

i i i i

L C u d

C u u d u d u

      

   

= = =

= = = =

 = + − − + − − 

   
= + − − − − +   

   

  

   

w w w w x

w w x w

 u

   

        

(2.50) 

where u,  are the Lagrange multipliers and the Wolfe dual problem are: 
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max ( , , , , )

subject to

0

0 1
i

L

L

L

L
i m








=




=




=  







w

0
w

0

0

u

u

 



,u

   (2.51) 

 

The constraint 0
L
=

w
 implies: 

   
1

( ) 0
m

T T

i i i

i

u d 
=

− =w x    (2.52) 

 

Or, equivalently,  

    
1

( )
m

i i i

i

u d 
=

=w x    (2.53)

 

The constraint 0
L




=


implies: 

   
1


=


m

i i

i

d = 0      (2.54)

 

The constraints 
i

L






= 0 imply: 

0, 1 .− − =  i iC u i m
  

Where  0u ,  0 , 0  iu C  

Substituting these results into ( , , , , )L w u  : 
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1 1

1

1 1 1

1
( , , , , ) 0 0

2

1

2

1
( ) ( )

2

m m
T T

i i

i i

m
T

i

i

m m m
T

i i j i j i j

i i j

L u

u

u d d u u

  

 

= =

=

= = =

= +  − −  +

= − +

= −

 



 

w w w w w

w w

x x

 u

   (2.55) 

Then the dual problem is:  

 

1 1 1

1

1
max ( ) ( ) ( )

2

subject to 0

0 1

m m m
T

i i j i j i j

i i j

m

i i

i

i

L u d d u u

d u

u C i m

 
= = =

=

= −

=

   

 



x x
u

u

   (2.56) 

In matrix form it can be written as:  

  Minimize 
DL ( ) =u

T T1

2
u u - e uQ     (2.57) 

T
d u =0, C 0 u e  

whereQ = DKD and K is kernel matrix.   

Q can be computed as TK *( * )•Q = d d     

2.2.7 Multi-Class Support Vector Machines   

If amount of classes is higher than two, then the problem is known as multiclass SVM. Two 

different types of methods are available for multiclass SVM. In first method which is said to be as 

indirect method where various binary SVM’s has been constructed and classifier’s output is made to 

combine in the sense of finding final class. In second approach namely direct method in which single 

optimization formulation has been considered [47].  
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Indirect Methods of Multiclass SVM 

 Three approaches are comes under this category such as One against all which means one 

versus rest, One against one which means pair-wise and DAGSVM which means Directed Acyclic 

Graph SVM. These approaches mentioned above are simple in nature and highly used, since it does 

not cause any of numerical difficulties during training. 

One against all 

This method used for every class as a binary SVM classifier gets constructed, discrimination of 

data points in class against the one remain. If N classes are there, N binary SVMs are made to build. 

During testing process, every classifier would yields a decision value for test data point and classifier 

possessing highest positive decision value which assigns their label to data point. The comparison has 

been made between decision values which are produced by various SVMs that are still valid due to the 

presence of training parameters and dataset who remains as same. The testing process for a new data 

has been shown diagrammatically in the Fig. 2.8. In this three classes are there such as, H, E and C.  

Thus three SVM classifiers are there to which new data has subjected to testing.  

 

Fig. 2.8 Prediction using One Against All SVM 

New data has been assigned for class label that depends on decision rule which follows 

 
 

k H,E,C
arg max ( ) ,  ( ) , ( )  T T T

H H E E C C     


− − −w x w x w x      (2.58) 
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One against one  

Another one is indirect way of extending the SVMs in the aim of solving the multiclass problems 

using one against one method. In such a case, for N classes, the N (N-1)/2 classifiers are made, one for 

the every pair of classes. Prediction of the class for new data point is depending on voting scheme. Fig 

2.9 shows up the architecture of prediction scheme for specifically three classes that considered earlier.   

 

Fig. 2.9 Prediction using One Against One SVM 

Directed Acyclic Graph SVM 

In this type, the training phase is similar as one against one method. But for the testing, it has 

been used as directed acyclic graph [53]. Each node is act as binary classifier. For three classes namely 

H, E, C could be considered in above and prediction structure has shown in Fig. 2.10.  Test data has 

been given, starting from root node, binary decision function of classifier H/E gets evaluated. Then 

node is exited at left edge if they do not belonging to H or the right edge if it does not belong to E. 

Next node’s decision function is then made to evaluate. Finally input reaches the leaf node which 

indicates class label of input data. The benefits of using DAG is some analysis over generalization 

could establish [53]. 
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Fig. 2.10 Prediction using DAGSVM 

Direct Methods of Multiclass SVM 

Basically, two direct approaches are presented in [46] [54] [55].  These methods try to 

attempting the finding of separate boundaries for all classes in only one step. For every class, the 

methods could define the decision rule which is similar to binary SVMs and while during testing 

process of test data point has been assigned to the label of decision rule which yields the largest 

namely positive margin.  The formulation for two popular approaches is mentioned below. 

Vapnik and Weston Method 

This approach is same as one – against - all approach. If N classes are present, then it constructs 

the N two-class rules where kth discriminant function ( )T

k kw x −  could separates the training vectors 

of class k from other vectors. The primal formulation of that multiclass SVM is written as   

Minimize  
1 1

1

2
i

N m
T i

k k k

k i k k

w w C 
= = 

+        (2.59) 

Subject to the constraints 
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( ) ( ) 2 ,  

0 , 

i i

T T i

k i k k i k k i

i

k i

k k

k k

    



−  − + −  

  

w x w x
   (2.60) 

Where
ik  is the class to which the training data 

ix  belong.  

Decision function for new input data as jx  is by  

   
k

ˆ arg  max ( )j k jd f= x ,     (2.61) 

Where ( ) ( )T

k j k j kf  = −x w x  

Crammer and Singer Method 

The formulation for this approach [55] is as below  

Minimize 

  
1 1

1

2

N n
T

k k i

k i

C 
= =

+ w w      (2.62) 

Subject to the constraints 

i( ) ( )   , k k
i

T T i i

k i k i ke  −  −  w x w x
    

(2.63) 

Where, 
ik  as class, the training data 

ix  belonging as,   1i i

k ke c= −  ,  

  
i

i

1 if k

0 if k

i

k

k
c

k

=
= 

      

(2.64) 

The main difference from method of Vapnik and the Weston is this approach has only n slack of 

variables i have used and this does not possess coefficients
k . 

2.3. DEEP LEARNING 

Deep learning [56] can also be said as deep structured learning or the hierarchical learning which 

is a part of broader family of the machine learning methods [57][58]. Most of the deep learning 

architecture consists of neural networks whereas some uses decision trees and other techniques. But 

deep learning with neural networks is most powerful with intellectual property of feature learning. 
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Learning can be supervised, partially supervised or unsupervised. There are different deep learning 

architectures namely the deep neural networks, the convolutional deep neural networks, the deep belief 

networks, and the recurrent neural networks. These networks are then applied for fields that including 

the computer vision, the speech recognition, the natural language processing, the audio recognition, the 

social network filtering, the machine translation, the bioinformatics and the drug design, are producing 

results that made to comparable and in some of cases they may superior to the human experts. This 

research focus towards development of writer identification model using convolutional neural network. 

A brief description of artificial neural network is presented in section 2.3.1 before elaborating the 

architecture of CNN. 

2.3.1. Artificial Neural Network  

Artificial Neural Networks shortly ANNs [57] [58] is a computing systems contains number of 

neurons like biological neural networks constituting animal brains. Those systems could learn to carry 

out the tasks by consider the examples, in general without the task-specific programming. They have 

been found as most using applications that are difficult in expressing a traditional computer approach 

uses rule-based programming. 

It derives computational model stimulate by means of biological neural networks, and used for 

approximate the functions which are mysterious in general. It works like the behavior neurons and 

electrical signals that conveys between the input, processing, and the output from brain. The way of 

neurons could semantically communicate is area where in ongoing research [59] [60]. The majority of 

Artificial Neural Networks look somewhat like similar neuron which makes more complex biological 

counterparts, but they are effective at intended tasks. 

ANNs process the information and the show some of acquaintance and they could behave the 

exhibiting intelligence in such way namely pattern recognition, learning and the generalization. ANN 

is depending on collection of units that are connected namely artificial neurons [61]. Every connection 

which means synapse that is between neurons which can transmit signal to another neuron. The 

receiving postsynaptic or neuron could process the signals and then signal downstream neurons which 

are connected to it. Neurons may state, and in general which are represented by the real numbers, 

between 0 and 1. Neurons and the synapses might have weight which varies as the learning proceeds, 

also increase or decrease strength of signal and is sends downstream. 

https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Rule-based_programming
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Real_numbers
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Typically, the neurons are organized in layers. Different layers might perform by various kinds 

of transformations on inputs. Signals could travel from first input to last output layer, which are 

possibly after traversing the layers of multiple times. The goal of neural network approach aims to 

solve the issues in same way of human brain retain. Additional capability of neural network is to match 

specific mental capabilities, which entirely differ from biology namely back propagation, or passing of 

information in reverse direction and adjusting network in the sense of reflect the information. 

 Neural Networks shortly NNs have used for various tasks that includes speech recognition, 

computer vision, machine translation, , playing board, video games, medical diagnosis and social 

network filtering. NNs consist of number of neurons which are interconnected with each other. The 

neurons will act as the basic building blocks in brains that are biological neural networks.  

Mathematical Model of the Neuron 

 Biological neural networks are found as very complex. By Contrast, mathematical model of 

network is as higher in simplicity and it is depending on several assumptions:  

• All of neurons are made to synchronize which means the signal could pass from one neuron to the 

other neuron that takes similar time for all of the connections. Signal processing is also be 

synchronized and is same for every neurons.  

• Every neuron has transfer function that determines the neuron’s output signal which depending on 

input signal strength. That function is found as time-independent.  

• While signal passes synapse, it can change by linearly i.e., signal value has multiplied by means of 

some number and that number is known as synaptic weight.  

The very necessary property of synaptic weight is that can changes by time. This feature makes 

that possible for the brain to react vary on similar input in the various moments. The assumptions made 

would simplify the process carry out in biological neural network. For instance the brain signal 

transmission time could naturally depend on distance between the neurons. But despite those 

simplifications, the artificial networks still could preserve most necessary characteristics of the 

biological networks such as adaptability and the ability for learn. The first mathematical approach of 

the neuron has been introduced as higher than half century ago and but did not change in much. Finally 

https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Social_network
https://en.wikipedia.org/wiki/Social_network
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the neuron has seen as straight forward automate that transforms input signals into output signal as 

shown in Fig. 2.11. 

 

Fig. 2.11 Artificial Neuron Model 

The model functions as inputs of neuron’s synapses which receive the N signals [X1, . . . ,Xn]. 

Now every synapse would makes a linear changes of signal which uses its synaptic weight. Then the 

neuron’s body could receive signals [X1w1, . . . ,Xnwn] thus wi denotes the synaptic weight and the 

sums signal : 

 

(2.65) 

Finally it is applied on given function namely F and that could say as activation function which 

sends final signals to output. 

 (2.66) 
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There are various functions which are widely using as activation functions. In network, it is not 

important for using the similar function for all of neurons. Thus, it is common in practice. In many 

cases, the activation functions are non-linear in various scenarios. On the other hand, whole network 

would implement some of linear transformation and that would be equivalent to one artificial neuron - 

perception only. 

Types of Neural Networks  

Types of the Neural Networks are Multi-Layer Perceptron (MLP), Back Propagation Network 

(BPNN), Radial Biases Function (RBF) networks and the Probabilistic Networks. Two commonly 

used NNs such as MLP and BPNN are presented below. 

Multilayer Perceptron 

A Multilayer Perceptron is one of the classes for feedforward artificial neural network. An MLP 

would comprise of at least 3 layers of the nodes. Except for input nodes, every node is neuron which 

uses the nonlinear activation function. MLP could utilize the supervised learning technique and it is 

also said as Back Propagation for the training. Its multiple layers and the non-linear activation would 

distinguish the MLP from specifically a linear perceptron. It can also distinguish the data which is not 

linearly in separable.  

Input neurons - Input neurons are taken as input vector which encodes the some action or the 

information about external environment. Input neuron does not perform any of computation types and 

only pass input vector to the neurons that are subsequent.  

Output neurons - It would receive the signals from preceding neurons and it transforms using 

the equations (2.65-2.66) and values obtained represent the output of whole neural network.  

Hidden neurons - These neurons are considered as basis of Neural Networks. Those neurons 

would receive signal from input neurons or preceding hidden neurons, and process is based on 

accordance of equations (2.65-2.66). Then the resultant signal is passed to subsequent which means 

hidden or output neurons.  

In the multi-layer perceptron neurons, they are dividing in to layers. The Input and the output 

neurons of separate layer each input and output layer. Hidden neurons form the one or many hidden 
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layers. Each MLP neuron, with exception of the input neurons has been connected through synapses 

with all the neurons of previous layer. MLP architecture is illustrated below in Fig. 2.12. 

 

Fig. 2.12 Multi-Layer Perceptron Neural Network 

This network would receive the 4-dimensional based input since it possesses 4 input neurons. 

The result has been represented by means of 4-dimensional output vector. Additionally, it comprises of 

3 hidden layers. In beginning of MLP’s learning, the network’s weights are made to initialize in 

randomly by the small random values. Then network could 

• Processes one by one of every item in training set  

• Compares the output with desired output  

• Computes the error value  

 After checking out entire training set, network could modify synaptic weights in the aim of 

minimizing error. Most of MLP training schemes are basis on gradient descent approach which is 
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iteratively changes the network’s synaptic weights and that would gradually reduce the error on 

training set.  

Back Propagation Neural Network Algorithm 

Neural networks are one of the powerful tools helpful to solve the several problems namely 

prediction or classification. Additionally, in the sense of solve the some specific problem, network 

must set up and trained properly.  

The first step is network architecture selection. In this number of the input and the output 

neurons, the hidden neurons and the number of layers are comprised in network. If network is expected 

to producing the boolean values namely 1 or 0 and it found as clear as it should retain one output only. 

In some cases, no obvious way has been available to determine best number of the hidden neurons by 

without training the various networks and could estimates the generalization error for all. Many hidden 

units are lead to the low training error and additionally still they had high generalization error because 

overfitting. Number of hidden units and the layers could discuss in [62].  

The second stage is training by its own. BPNN algorithm belonging to group named supervised 

learning. Since it had performed depend on labeled trained the network must learn pairs input, the 

expected output where all together form training set. By contrast some classes of the networks namely 

Kohonen’s self-organizing maps, which belongs to unsupervised learning group. It also means that 

training set do not contains of expected outputs for given inputs. BPNN is also described as follows: 

 Initialization - The first process is of selecting network architecture and setting of initial 

synaptic weights of it. The most widely using method of synaptic weights initialization has been 

choosing a small random numbers with zero mean value and the uniform distribution. 

Training pair’s presentation - During this phase, the elements of training set are made to pass in 

the manner of one by one to network. For each training sample, two steps are present namely forward 

and backward computation could take place.  

Forward computation - Assume the training set comprises of the N of pairs (xi , di): 

 (2.67) 
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Where, xi is as an input vector and the di as desired output vector. Network passes the inputting vector 

from the layer to layer and that could sequentially compute outputs for all layer’s neurons. The outputs 

form input vector for next layer. For each neuron namely j in layer represented by l the output such as 

 signals are made to computed from previous layer of output signals namely  as following, 

 

(2.68) 

 
(2.69) 

Here ml as amount of synaptic weights for all neurons of layer l. The number is identified by 

means of number of the neurons of those previous layers and it is similar for each and every layer’s 

neuron. By initially the neuron would calculate linear combination of the outputs of neurons of 

previous layer (2.68). The output value has been calculated by means of applying the neuron’s 

activation function to value which are computed in first step (2.69).  

For the input layer namely layer 0, the formula is found as simpler: 

 (2.70) 

Where, xij is jth element of input vector namely xi. After input vector xi would pass all of layers, 

network would produce the output vector  which is helpful for error signal 

computation: 

 (2.71) 

Backward computation - While carry out this step the synaptic weights are made to adjust in the 

intent of producing smaller error value. These adjustments are taken place and derived from error 

signal. For each and every output unit j calculates  : 

 (2.72) 
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Here eij is the jth element of error vector represented as ei and F’as derivative function for 

function namely F. For the hidden neuron j of layer l would calculates the : 

 

(2.73) 

Where summarization is done over k neurons present for following layer, and the wjk is synaptic 

weight which connects the neurons j and k. When all δ are getting calculated, the synaptic weights are 

adjusted by means of (2.74) and (2.75): 

 (2.74) 

 
(2.75) 

Where η is known as learning rate and  is output of neuron j of previous layer and µ is a 

momentum. Learning rate and the momentum are numbered between 0 and 1. Learning rate is 

numbering between 0 and 1 which identifies how speedy the neural network that adjusts by itself to 

patterns in training data. It they do not be constant and could dynamically reduce or enhances the time. 

The parameter must choose carefully by too small that makes learning process as slow and too high 

may leads to divergence. Momentum in term influences the way for how previous weights would 

affects the current one. It also helps algorithm in preventing from being stuck in local minimum. The 

value should choose carefully and experimentally identified. The usage of momentum could be 

removed. It enhances the performances of neural networks greatly and are commonly using.  

2.3.2. Deep Learning Architecture 

Deep learning [63] is a kind of machine learning which achieves the great power and the 

flexibility by means of learning in the sense of representing the world as a nested hierarchy of the 

concepts and with every concept is defined in the relation to concepts in simpler, and finally more 

abstract based representations are computed by less abstract ones. 



64 

 

Deep learning [56] is one of the classes in machine learning algorithms that use a cascading of 

the multiple layers of the nonlinear processing units for particular feature selection and for 

transformation. Every successive layer is using the output from previous layer as an input. 

Learning has been performed either in the supervised or the unsupervised in manner.  Learning 

the multiple levels in representations that corresponding to various levels of the abstraction. The levels 

are forming the hierarchy in terms of concepts.  The learning could perform via the Back Propagation 

shortly BP. The example of DNNs has presented in Fig. 2.13. 

 

Fig. 2.13 Example of DNNs 
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Deep learning could automatically find the features using for classification.  Deep learning 

algorithms are tried in learning high-level features from the data. This is very distinctive side of the 

Deep Learning and major step should ahead of the traditional Machine Learning. Thus, the deep 

learning would also reduce the task for developing the new feature from extractor for all problems. 

Comparing with Artificial Neural Network, the Convolutional Neural Network in the deep learning 

could help to providing promising outputs. 

Deep Neural Networks 

A Deep Neural Network simply DNN is an ANN with the multiple hidden layers in between 

input and the output layers [64]. As same as shallow ANNs, the DNNs could model the complex non-

linear based relationships. Object has expressed as layered composition of the primitives in DNN 

architectures will generate the computational models. The additional layers helps to enable the 

structure of the features from those lower layers, possibly by modeling the multifaceted data with few 

of units than correspondingly performed shallow network.  

Deep architectures may include high variants of few primary approaches. Each of architecture 

has identifies the success in particular domains. Additionally, this could not possible always for 

comparing the performance of those multiple architectures present, and they had evaluated on same 

data sets. DNNs are made to typically feedforward in networks for which the data could flows from 

input layer to output layer by without loop back. 

Convolutional Neural Network 

In machine learning, Convolutional Neural Network is a class of deep architecture with deep, 

feed-forward in Artificial Neural Network which can be applied specifically for visual imagery. CNNs 

use variation of the Multilayer Perceptron that designed for requiring the minimal preprocessing [65]. 

It can also be referred as shift invariant or the Space Invariant Artificial Neural Networks represented 

as SIANN. This is based on shared-weights architecture and the translation invariance characteristics 

[66]. 

Convolutional networks is designed based on biological human brain [67] where connectivity 

pattern between the neurons has inspired by organization of animal visual cortex. Individual cortical 

neurons are responding to stimuli that only in particular restricted region of visual field called as 
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receptive field. These receptive fields of various neurons are partially overlaps in such way that they 

could cover entire visual field. 

Pre-processing is a task performed in CNNs are very less compared to other image classification 

algorithms. This means, the network could learns the filters in traditional algorithms of hand-

engineered. This independence obtains from prior knowledge and the human effort in the field of 

feature design as main advantage. 

A CNN would consist of an input layer and an output layer, and additionally the multiple hidden 

layers. The hidden layers are seems to be convolutional, pooling or may fully connected. In general, 

the architecture of CNN is presented in Fig. 2.14. 

 

Fig. 2.14 Typical CNN Architecture 

Convolutional Layer  

The convolutional layer has the building block [68] as human brain, would connect the neurons 

to activate to receptive field. The parameter of layer's would consist of set of the learnable filters, 

having little receptive field, but also extends the full depth of input volume. In the forward pass, every 

filter is convolved across width and the height of input volume that computes the dot product of entries 

in the filter and the input will produces two-dimensional activation map of those filters. Finally, the 

https://en.wikipedia.org/w/index.php?title=Hidden_layer_(neural_network)&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Hidden_layer_(neural_network)&action=edit&redlink=1
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network may help to learn the filters which activates when it detects the specific type of the feature at 

some of spatial position in input. 

Stacking activation maps for all of filters along with depth dimension would form full outputting 

volume of convolution layer. Each and every entry in output volume could be interpreted as an output 

of the neuron which looks at little region in input and that shares the parameters with the neurons in 

similar activation map. 

The convolutional layer is the basic building block of Convolutional Network which does mostly 

all computational heavy lifting. 

Pooling Layer 

Another necessary concept of the CNNs is called pooling, which is in form of non-linear down-

sampling. There are various non-linear functions that implement the pooling among which the max 

pooling is most common [69] [70]. It partitions an input image in to set of non-overlapping rectangles 

and additionally for sub-region, which outputs the maximum. The instinct is exact location of specific 

feature is found as less enough than the rough location of it which are relative to various other features. 

 The pooling layer has its originality to act in every depth slice of the input and it will resize the 

data. Pooling layer has the filters with size of 2x2 applied with a stride of down samples at ever depth 

slice in the input by 2 along both width and height which will discard 75% of the activations. It is a 

common practice by periodically inserting pooling layer between the successive convolutional layers 

as in the CNN architecture. The pooling operation may provide another form of the translation 

invariance. 

The pooling layer may operate independently on every of depth slice of input and would resize it 

spatially in manner. The most vital using form is pooling layer with the filters of size such as 2x2 

applied with stride of the 2 down samples at each depth slice in input by means of 2 along with width 

and height that discarding 75% of activations. In such case, the each max operation has been over for 4 

numbers. Then the depth dimension is remains unchanged. 

The pooling layer may consist of following steps: 

• Accepts volume of the size W1×H1×D1W1×H1×D1 
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• Requires 2 hyper parameters: 

o their spatial extent the FF, 

o the stride namely SS, 

• Produces volume of the size W2W2×H2×D2 thus: 

 W2= (W1−F)/S+1 

  H2= (H1−F)/S+1 

 D2= D1 

• Introduces the zero parameters and it computes a fixed function of input 

• Note it is not usual for using zero-padding for the Pooling layers 

In addition to the max pooling, pooling units could use the other functions namely average 

pooling or the L2-norm pooling. In historic information pooling layer plays a major role but had 

recently fallen out of the favor that compares for max pooling that works better by practice. 

ReLU layer 

ReLU stands for Rectified Linear Units. This layer may applies non-saturating activation 

function represented as f(x) = max (0, x). This will helps to improve the nonlinear properties of the 

decision function with overall network without affecting the fields corresponding to convolutional 

layer. 

Other functions are used for increasing nonlinearity, for instance, saturating hyperbolic tangent 

f(x) = tanh (x), f(x) = |tanh(x)|, and sigmoid function  ReLU is to prefer for 

other functions, because they trains neural network in several times speedy without significant penalty 

to the generalization accuracy. 

Fully connected layer 

After various convolutional and the max pooling layers, high-level reasoning in neural network 

has done through fully connected layers [71]. Fully connected layer contains neurons which have 
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connections to all previous layers like traditional neurons. Their activations are been computed with 

the matrix multiplication that are followed by bias offset. 

Loss layer 

The loss layer might specify that how the training could penalizes the deviation between 

predicted and the true labels and has normally final layer. Various loss functions are appropriate for 

the various tasks which may uses. Softmax loss is useful for predicting the single class of the K 

mutually exclusive classes. Sigmoid cross-entropy loss helps in predicting K independent probability 

values in the [0, 1]. Euclidean loss is for regressing to real-valued labels.  

2.4. SUMMARY 

This chapter presents the description of supervised learning and deep learning algorithms which 

are used for implementing writer identification models. This chapter also presents the detailed 

description of mathematical modeling of Support Vector Machine with linear and non -linear kernels. 

The working principal of Convolutional Neural Network has been presented in this chapter. The new 

form of linear kernels with parameters estimated through parameter estimation methods are explained 

in subsequent chapters.  


