FUNCTIONALIZATION OF NOVEL BIO-ENCAPSULATED BEADS IN THE CHELATION OF NOXIOUS ANIONS AND FABRICATION OF FRP DEVICE AT LAUNDRY SITES – A GREENER APPROACH

Thesis submitted to Bharathiar University for the award of the degree of

DOCTOR OF PHILOSOPHY IN CHEMISTRY

Submitted By K. VIVITHABHARATHI

Under the Guidance of Dr. N. MUTHULAKSHMI ANDAL M.Sc., Ph.D.,

> Assistant Professor Department of Chemistry

PSGR Krishnammal College for Women

Dos SINCE Dos Crestation south

DEPARTMENT OF CHEMISTRY

PSGR Krishnammal College for Women UGC – Certified College of Excellence An Autonomous Institution - Affiliated to Bharathiar University Reaccredited with "A" Grade by NAAC- 10th Rank in 10 2020 An ISO 9001:2015 Certified Institution Coimbatore - 641 004, Tamil Nadu, India

AUGUST 2021

Certificate

CERTIFICATE

This is to certify that the thesis entitled, "FUNCTIONALIZATION OF NOVEL BIO-ENCAPSULATED BEADS IN THE CHELATION OF NOXIOUS ANIONS AND FABRICATION OF FRP DEVICE AT LAUNDRY SITES – A GREENER APPROACH", submitted to the Bharathiar University, in partial fulfilment of the requirements for the award of the Degree of DOCTOR OF PHILOSOPHY IN CHEMISTRY is a record of original research work done by K. VIVITHABHARATHI during the period 2016 - 2021 of her research in the Department of Chemistry at PSGR Krishnammal College for Women under my supervision and guidance and the thesis has not formed the basis for the award of any Degree / Diploma / Associateship / Fellowship or other similar title of any candidate of any University.

Place:

Date:

Signature of the Guide

Countersigned

Head of the Department

Principal

Declaration

DECLARATION

I, K. VIVITHABHARATHI, hereby declare that the thesis, entitled "FUNCTIONALIZATION OF NOVEL BIO-ENCAPSULATED BEADS IN THE CHELATION OF NOXIOUS ANIONS AND FABRICATION OF FRP DEVICE AT LAUNDRY SITES – A GREENER APPROACH", submitted to the Bharathiar University, in partial fulfilment of the requirements for the award of the Degree of DOCTOR OF PHILOSOPHY IN CHEMISTRY is a record of original and independent research work done by me during 2016-21 under the Supervision and Guidance of Dr. N. MUTHULAKSHMI ANDAL, M.Sc., Ph.D., Assistant Professor, Department of Chemistry and it has not formed the basis for the award of any Degree/ Diploma/Associateship / Fellowship or other similar title to any candidate in any University.

Place: Coimbatore Date:

Signature of the Candidate (K. VIVITHABHARATHI)

Certificate of Genuineness of the Publication

CERTIFICATE OF GENUINENESS OF THE PUBLICATION

This is to certify that the Ph.D. candidate **K. VIVITHABHARATHI** working under my supervision has published a research article entitled, "**A Comparison of Raw and Treated Plant Debris in the Chelation of Anion from Aqueous Media**" in the Standard refereed journal, **Indian Journal of Environment Protection**, Vol. No. **40**, Issue No **1**, Page Nos **64 - 68**, **2020**. The contents of the publication incorporate a part of the results presented in the thesis.

Place:

Date:

Signature of the Guide

Countersigned

Head of the Department

Principal

Certificate of Plagiarism Check

பாரதியார் பல்கலைக்கழகம்

BHARATHIAR UNIVERSITY

COIMBATORE - 641 046, TAMILNADU, INDIA

State University | Re-Accredited with "A" Grade by NAAC | Ranked 13th among Indian Universities by MHRD-NIRF

CERTIFICATE OF PLAGIARISM CHECK

1	Name of the Research Scholar	K. VIVITHABHARATHI
2	Course of study	M.Phi l., / Ph.D.,
3	Title of the Thesis / Dissertation	FUNCTIONALIZATION OF NOVEL BID- ENCAPSULATED BEADS IN THE CHELATION OF NOXIOUS ANIONS AND FABRICATION OF FRP DEVICE AT LAUNDRY SITES - A GREENER APPROACE
4	Name of the Supervisor	Dr. N. MUTHULAKSHMI ANDAL
5	Department / Institution/ Research Centre	DEPARTMENT OF CHEMISTRY PSGR KRISHNANMAL COLLEGE FOR WOMEN, COINBATORE-4
6	% of Similarity of content Identified	03 %.
7	Acceptable Maximum Limit	30 %
8	Software Used	URKUND
9	Date of verification	03 108/ 2021

Report on plagiarism check, items with % of similarity is attached

N. M. Andal

Signature of the Supervisor (Seal)

K. Quili Signature of the Researcher

Dr(Mrs) N.Muthulakshmi Andersen, E.J.D Assistant Professor Department of Chemistry PSGR Krishnsmmal College for Women Peelamedu Coimbatore - 641 004

University Librarian (BU)

Universit Angnar Anna Central Library Bharathiar University Coimbatore - 641 046.

Head of the Department (Seal) Jr. D.NALINI M.Sc.,M.Phil, B.Ed., MCA., Ph.D. ASSISTANT PROFESSOR & HEAD Department of Chemistry PSGR Krishnammal College for Women Peelamedu, Coimbatore - 641 004.

Center for Research & Evaluation (Seal)

Urkund Analysis Result

Analysed Document: Submitted: Submitted By: Significance:

URKUND

Vivithabharathi. K.docx (D110954001) 8/3/2021 7:06:00 AM rspani1967@gmail.com 3 %

Sources included in the report:

Saminathan S.docx (D30817015) d0dc63c1-a648-42e7-8443-03baa9177ae8 3af3d0d7-6dac-41b0-bddf-36462f13b3be 760460db-34d4-4b33-83ce-5a5ca0764aac https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804404/ https://www.deswater.com/DWT_articles/vol_203_papers/203_2020_327.pdf https://www.tsijournals.com/articles/rhodamine-b-and-acid-orange-7-adsorption-ontoactivated-carbon-from-deinked-pulp-waste-sludge-adsorption-and-kinetics-studies-13823.html https://www.uok.ac.in/notifications/(18)%20Swarnima%20Agarwal%20-%20Chemistry.pdf https://bioresources.cnr.ncsu.edu/resources/studies-on-the-removal-of-cuii-from-aqueoussolutions-using-modified-acacia-nilotica-leaf/

Instances where selected sources appear:

18

University Librarian Arignar Anna Central Library **Bharathiar University** Coimbatore - 641 046.

Acknowledgement

ACKNOWLEDGEMENT

First and foremost, I wish to thank '**The Almighty God**' who bestowed me with blessings, all the favorable circumstances and enabled me to complete my research work.

I take this opportunity to express my sincere gratitude to the Management and **Dr. N. Yesodha Devi,** Secretary, PSGR Krishnammal College for Women, for granting me permission to take up the research work in the Department of Chemistry.

I wish to express my deepest sense of gratitude to **Dr. S. Nirmala**, Principal, PSGR Krishnammal College for Women, for support and encouragement.

I heartily owe my sincere thanks **Dr. S. Chitra**, Former Head, Department of Chemistry, PSGR Krishnammal College for Women, for her valuable support and encouragement.

I profusely thank **Dr. D. Nalini**, Assistant Professor and Head, Department of Chemistry, PSGR Krishnammal College for Women, for the constant support.

It gives me immense pleasure to place on record my deep sense of gratitude and respect to my supervisor, **Dr. N. Muthulakshmi Andal**, Assistant Professor, Department of Chemistry, PSGR Krishnammal College for Women, for her invaluable guidance in making the concepts clear, insightful suggestions, encouragement and providing the appropriate contents during my research work. Under her supervision, I developed the curiosity to explore new things. Without her constant support, this dissertation would have been a distant dream.

I extend my thanks to **Mr. S. Naveen**, Supervisor, Perfect Laundry Unit, Nilgiris, Ootacamund, Tamil Nadu India, permitting myself to collect the effluents from their unit and install the designed device for field operation in their industry.

My sincere thanks to the **Faculty members**, Department of Chemistry, PSGR Krishnammal College for Women, for their encouragement during my research.

I owe my sincere thanks to **Dr. N. Shyamala Devi**, Assistant Professor, Department of Chemistry, PSGR Krishnammal College for Women, for the help and moral supportrendered during the research period. I express my deep sense of gratitude and thanks to **Dr. J. Anuradha**/ **Dr. N.S. Gayathri**, with whom I shared a good environment in the work place. I admire their valuable support, meticulous care and encouragement. I am indebted to **Ms. G. Preethi** / **Ms. P. Indhumathy** and my fellow researchers, Department of Chemistry, PSGR Krishnammal College for Women, for their assistance.

My thanksto non-teaching staff members of Chemistry Department, PSGR Krishnammal College for Women, for their help and laboratory assistance.

I acknowledge the services provided by **IISc Bangalore, CUSAT Cochin, PSG Institute of Advanced Studies Coimbatore, Government College of Technology, Coimbatore, Department of Botany,** PSGR Krishnammal College for Women, in recording the characterization studies.

My profound gratitude goes to my Father **Mr. A. Kumaresan** and Mother **Mrs. A. Geetha**, who opened the door of education to me, nourishing me with their sacred blessings, unconditional love and their constant prayers has always been a source of inspiration in accomplishing this task, I dedicate this work to them.

Words will never equate the endurances and encouragement given by my husband **Mr. R. Desingh Rajan** and my son **D. Nithish**, daughter **D. Jaihasini** for sparing me out of other pursuits of their time to complete my Ph.D work. I express my heartfelt gratitude to my brother, **Mr. K. Vimalesh** and cousin **Mr. D. Bose** for their untiring support, tolerance and fortifying words during my research work. I thank my Grandmother **A. Ruckmani** and in laws for their affection, prayers and good wishes.

(K. VIVITHABHARATHI)

Abstract

ABSTRACT

The unremitting industrial development has led to a subsequent increase in the amounts of wastewater generation. Fertilizer/ Laundry industries generate large volumes of wastewaters enriched with anions exceeding the standard limits, discharged into natural water bodies. Untreated disposal of these wastewaters pose serious threat to agricultural sector, aquatic life, human beings imposing adverse mutagenic/ carcinogenic effects. Removal of anions from these point sources poise as one of the major environmental concerns. Amidst, various methodologies tested for the reclamation of these anions, adsorption has been reported as a convenient method, due to many reasons such as flexible operation, specific toxicants' target and minimal generation of sludge. A number of zero cost and indigenous materials have been identified as promising sorbents to chelate the anions. The present study is focussed on the employment of Camellia sinensis stem (TCSS), Elaeocarpus tectorius seed (TETS), Vicia faba husk (TVFH) and Gallus gallus domesticus beaks (TGGDB), post relevant modifications as notable sequestrants for PO_4^{3-} , NO_3^{-} and SO_4^{2-} ions from aqueous and laundry wastewater samples. These modified materials are subjected to physio-chemical parametric determinations and characterized distinctly by BET/ BJH, SEM, EDAX and FT-IR techniques to assess their precise nature, during pros and cons of the experimental setup. The factors influencing the adsorption capacities of the derived materials are experimentally verified by Batch mode and quantified through column setup for aqueous anionic media at laboratory levels. Initial and residual concentrations of the studied anions are complexometrically analysed using UV - Vis Spectrophotometer. Experimental data pertaining to Batch equilibration studies are statistically verified using SPSS software. A judicious comparison is made to assess the best sorbing ability among the four selected materials and the order of preferential adsorption between the three chosen anions. Desorption and regeneration experiments are performed for anion laden sorbents to enumerate their reusable property. Varied isothermal / kinetic models, dynamic behaviour of the verified systems is validated to understand the adsorption equilibrium and kinetic / thermodynamic behaviour. Calcium alginate, goethite and magnetite functionalized bio-beads are synthesized and characterized using XRD, TG-DTA and VSM methods. Sorption efficacies of these synthesized beads are recorded by

pilot studies and extended to column verification, followed by kinetic model validation. Exhausted column material is tested for its nutrient value in plant vegetation using phosphate solubilizing bacteria, thereby minimizing its load as a secondary pollutant. Based on the laboratory recordings, a prototype device is designed and installed at a laundry unit to promote the applicability of the novel material as an excellent sorbent at the field level.

List of Tables

TABLE NO.	TITLE	PAGE NO.
1.1	Common Water Pollutants - Adverse Effects	5
1.2	Characteristics of Point / Non-point sources	7
1.3	Permissible limits of Toxic Anions	9
1.4	Environmental Impacts of Anions	15
1.5	Treatment Methods – Merits / Demerits	20
4.1	Mesh sizes / Particle sizes	75
4.2	Physicochemical Characteristics	76
4.3	Material Characteristics vs Literature Report – A Comparison	80
4.4	Impact of Initial Concentration and Agitation Time	85
4.5	Impact of Dosage	87
4.6	Impact of Ions	89
4.7	Impact of Temperature	90
4.8	Statistical Data	92
4.9	Equilibrium Concentrations- Isothermal Study	93
4.10	Isothermal Constants	94
4.11	Equilibrium Parameter (RL)	95
4.12	Pseudo Models – Data	98
4.13	Pseudo First Order / Pseudo Second Order Parametric values	100
4.14	Elovich Constants	102
4.15	Intraparticle Diffusion Constants	103
4.16	Thermodynamic Constants	105

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
5.1	Physio-chemical Characteristics	112
5.2	Material Characteristics vs Literature Report – A Comparison	114
5.3	Impact of Particle size	118
5.4	Impact of pH	121
5.5	Impact of Ions	121
5.6	Desorption and Regeneration Studies	123
5.7	Statistical Data	123
5.8	Equilibrium Concentrations- Isothermal Study	125
5.9	Isothermal Constants	126
5.10	Equilibrium Parameter (RL)	127
5.11	Pseudo Models – Data	130
5.12	Pseudo First Order/ Pseudo Second Order Parametric values	131
5.13	Elovich Constants	132
5.14	Intraparticle Diffusion Constants	133
5.15	Thermodynamic Constants	135
6.1	Physio-chemical Characterization	141
6.2	Impact of Initial Concentration and Agitation Time	146
6.3	Impact of Dosage	147
6.4	Impact of Ions	148
6.5	Impact of Temperature	149
6.6	Statistical Data	150
6.7	Equilibrium Concentrations- Isothermal Study	151
6.8	Isothermal Constants	152

TABLE NO.	TITLE	PAGE NO.
6.9	Pseudo Models – Data	154
6.10	Pseudo First Order/ Pseudo Second Order Parametric values	154
6.11	Elovich Constants	155
6.12	Intraparticle Diffusion Constants	156
6.13	Thermodynamic Constants	157
7.1	Physio-chemical Characteristics	161
7.2	Impact of Particle Size	165
7.3	Impact of Dosage	165
7.4	Impact of Ions	168
7.5	Impact of Temperature	169
7.6	Statistical Data	170
7.7	Equilibrium Concentrations- Isothermal Study	171
7.8	Isothermal Constants	172
7.9	Pseudo Models – Data	174
7.10	Pseudo First Order/ Pseudo Second Order Parametric values	175
7.11	Elovich Constants	176
7.12	Intraparticle Diffusion Constants	176
7.13	Thermodynamic Constants	177
8.1	Impact of TCSS Beads - Aqueous Solutions	183
8.2	Impact of TETS Beads - Aqueous Solutions	184
8.3	Surface Characterization	185
8.4	VSM - Parameters	189

TABLE NO.	TITLE	PAGE NO.
8.5	Impact M@TETSB - Effluent	191
9.1	Sorption Efficiency Comparison- Parametric Evidences	196
10.1	Short term Analysis	200
10.2	Long term Analysis	200
10.3	Desorption / Regeneration Studies	201
10.4	Effluent Analysis - TETS	202
10.5	Parameters in Fixed Bed Column for Anion Adsorption by TETS	204
10.6	Kinetic Parameters	206
10.7	Composition of Pikovskaya's Agar medium	209

List of Figures

FIGURE NO.	TITLE	PAGE NO.
1.1	Point Source	7
1.2	Non- Point Source	7
1.3	Phosphorus Cycle	10
1.4	Nitrogen Cycle	12
1.5	Sulphur Cycle	13
1.6	Impact of Excess Nutrients on Ecosystems	15
1.7	Adsorption Mechanism	22
3.1	Camellia sinensis shrub	43
3.2	Elaeocarpus tectorius fruit	44
3.3a	Vicia faba Bean	45
3.3b	Vicia faba Husk	45
3.4	Moisture Determination Apparatus	50
3.5	UV- Visible Spectrophotometer	56
4.1a	Raw CSS (0.18 mm)	75
4.1b	Treated CSS (0.18 mm)	75
4.2	BET Plot	78
4.3	BJH Plot	78
4.4	Adsorption/ Desorption Isothermal Plot	79
4.5	Raw CSS	81
4.6	Unloaded TCSS	81
4.7	PO ₄ ³⁻ loaded TCSS	81
4.8	NO ₃ ⁻ - loaded TCSS	81
4.9	SO4 ²⁻ - loaded TCSS	81

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
4.10	Unloaded TCSS	82
4.11	PO4 ³⁻ loaded TCSS	82
4.12	NO ₃ ⁻ - loaded TCSS	82
4.13	SO4 ²⁻ - loaded TCSS	82
4.14	FT-IR Spectra	83
4.15	Impact of Particle Size	84
4.16	Impact of Initial Concentration and Agitation Time - PO ₄ ³⁻	86
4.17	Impact of Initial Concentration and Agitation Time - NO ₃ -	86
4.18	Impact of Initial Concentration and Agitation Time - SO4 ²⁻	87
4.19	Impact of pH	88
4.20	Desorption Plot	91
4.21	Regeneration Plot	91
4.22	Langmuir Plot	94
4.23	Freundlich Plot	95
4.24	Temkin Plot	96
4.25	DKR Plot	97
4.26	Pseudo First Order Model	99
4.27	Pseudo Second Order Model	99
4.28	Elovich Plot	101
4.29	Intraparticle Diffusion Plot	103
4.30	Van't Hoff's Plot	104
5.1a	Raw ETS	111
5.1b	Treated ETS	111
5.2	BET Plot	113
5.3	BJH Plot	113

FIGURE NO.	TITLE	PAGE NO.
5.4	Adsorption/Desorption Isothermal Plot	114
5.5	Raw ETS	115
5.6	Modified ETS	115
5.7	PO4 ³⁻ loaded TETS	115
5.8	NO ₃ ⁻ - loaded TETS	115
5.9	SO4 ²⁻ - loaded TETS	116
5.10	Unloaded TETS	116
5.11	Loaded TETS	116
5.12	NO ₃ ⁻ loaded TETS	116
5.13	SO4 ²⁻ loaded TETS	116
5.14	FT-IR Spectra	117
5.15	Impact of Initial Concentration and Agitation Time: PO4 ³⁻	118
5.16	Impact of Initial Concentration and Agitation Time: NO ₃ -	119
5.17	Impact of Initial Concentration and Agitation Time: SO4 ²⁻	119
5.18	Impact of Dosage	120
5.19	Impact of Temperature	122
5.20	Langmuir Plot	126
5.21	Freundlich Plot	127
5.22	Temkin Plot	128
5.23	DKR Plot	129
5.24	Pseudo First Order Kinetic	130
5.25	Pseudo Second Order Kinetics	130
5.26	Elovich Plot	132
5.27	Intraparticle Diffusion Plot	133
5.28	Van't Hoff's Plot	134

FIGURE NO.	TITLE	PAGE NO.
6.1a	Raw VFH	140
6.1b	Treated VFH	140
6.2	Adsorption / Desorption Isothermal Plot	143
6.3	Raw VFH	143
6.4	Unloaded TVFH	143
6.5	PO4 ³⁻ loaded TVFH	143
6.6	NO ₃ ⁻ - loaded TVFH	143
6.7	SO4 ²⁻ - loaded TVFH	143
6.8	Unloaded TVFH	144
6.9	PO ₄ ³⁻ loaded TVFH	144
6.10	NO ₃ ⁻ loaded TVFH	144
6.11	SO4 ²⁻ loaded TVFH	144
6.12	FT-IR Spectra	145
6.13	Impact of Particle size	145
6.14	Impact of pH	147
6.15	Langmuir Plot	152
6.16	Van't Hoff Plot	157
7.1a	Raw GGDB	160
7.1b	Treated TGGD	160
7.2	Raw GGDB	162
7.3	Unloaded TGGDB	162
7.4	PO ₄ ³⁻ loaded TGGDB	162
7.5	NO ₃ ⁻ - loaded TGGDB	162
7.6	SO4 ²⁻ - loaded TGGDB	163
7.7	Unloaded TGGDB	163

FIGURE NO.	TITLE	PAGE NO.
7.8	PO ₄ ³⁻ loaded TGGDB	163
7.9	NO ₃ ⁻ loaded TGGDB	163
7.10	SO4 ²⁻ loaded TGGDB	163
7.11	FT-IR Spectra	164
7.12	Impact of Initial Concentration and Agitation Time: PO4 ³⁻ - TGGDB	165
7.13	Impact of Initial Concentration and Agitation Time: NO ₃ -TGGDB	166
7.14	Impact of Initial Concentration and Agitation Time: SO4 ²⁻ - TGGDB	166
7.15	Impact of pH	167
7.16	Langmuir Plot	172
7.17	Pseudo-Second Order Kinetics	174
9.1	TETSCAB	182
9.2	G@TETSB	182
9.3	M@TETSB	182
9.4	Magnetic Beads	184
9.5	FT-IR Spectra – M@TETSB	186
9.6	SEM - M@TETSB	187
9.7	SEM - PO4 ³⁻ - M@TETSB	187
9.8	EDAX - PO4 ³⁻ - M@TETSB	187
9.9	TG/DTA – M@TETSB	188
9.10	VSM – Magnetite	189
9.11	VSM – M@TETSB	189
9.12	XRD – Magnetite/M@TETSB	190
10.1	Short term Analysis	199

FIGURE NO.	TITLE	PAGE NO.
10.2	Long Term Analysis	199
10.3	Effluent Analysis – Column setup	202
10.4	Impact of flow rate /bed depth (100 mL/5min, 5 cm)	203
10.5	Impact of flow rate /bed depth (50 mL/5min, 10 cm)	204
10.6	Thomas Plot	205
10.7	Adams–Bohart Plot	205
10.8	Yoon-Nelson Plot	206
10.9	FRP installation	207
10.10	Pikovaskaya's Agar medium	210
10.11	Pseudomonas culture	210
10.12	Bacillus culture	210
10.13	Pseudomonas Morphology	211
10.14	Mentha Growth	212
10.15	Raphanus raphanistrum Growth	212
10.16	Plant Yield (control)	213
10.17	Plant Yield (with nutrient)	213

List of Abbreviations and Notations

LIST OF ABBREVIATIONS AND NOTATIONS

CSS	Camellia sinensis Stem
ETS	Eleocarpus tectorius Seed
VFH	Vicia faba Husk
GGDB	Gallus gallus domesticus Beaks
СРСВ	Central Pollution Control Board
TCSS	Treated Camellia sinensis Stem
TETS	Treated Eleocarpus tectorius Seed
TVFH	Treated Vicia faba Husk
TGGDB	Treated Gallus gallus domesticus Beaks
SEM	Scanning Electron Microscope
BET	Bruner Emmett Teller
BJH	Barrett Joyner Hammett
FT-IR	Fourier Transform Infrared Spectrophotometer
EDAX	Energy Dispersive X-ray Spectrometer
UV - Vis	Ultra Violet Visible Spectrophotometer
VSM	Vibrating Sample Magnetometer
Ms	Saturation Magnetization
XRD	X-Ray Diffraction
TGA	Thermo Gravimetric Analysis
DTA	Differential Thermal Analysis
ZPA	Zeta- Potential Analyzer
PSA	Particle Size Analyzer
Conc.	Concentration

pHzpc	pH at which the surface charge of the adsorbent is zero
qe	Amount of anions adsorbed per gram of the adsorbent (mg/g)
Ci	Initial anion concentration (mg/L)
Ce	Equilibrium anion concentration in solution (mg/L)
\mathbb{R}^2	Correlation Coefficient
qe	Amount of anions adsorbed per gram of adsorbent at equilibrium (mg/g)
qt	Amount of anions adsorbed per gram of adsorbent at time 't' (mg/g)
q _m	Maximum monolayer adsorption capacity (mg/g)
В	Langmuir Adsorption Constant
K _F	Freundlich Adsorption Capacity (mg/ g)
Ν	Freundlich Isotherm Constant
A _T	Temkin Equilibrium Binding Constant
bT	Temkin Heat of Adsorption
R	Gas Constant (8.314 J/mol K)
βdr	Mean free energy of sorption per mole of adsorbate (mol^2/J^2)
E	Polanyi Potential
8	Mean Free Energy (kJ/mol)
k 1	Pseudo First Order Adsorption Rate Constant (min ⁻¹)
k ₂	Pseudo Second Order Adsorption Rate Constant (g/mg min)
SSE	Sum of Error Squares
α	Elovich Initial Adsorption Rate (mg/g min)
β	Elovich Adsorption Constant (g/mg)
Ki	Intraparticle Rate Constant (g/mg min ^{1/2})
ΔG°	Gibb's free energy change of adsorption (kJ/mol)

ΔH°	Enthalpy change of adsorption (kJ/mol)
ΔS°	Entropy change of adsorption (J/mol K)
Кт	Thomas Constant (L/mg min)
qт	Adsorption capacity (mg/g)
Q	Volumetric flow rate (mL/min)
М	Mass of the adsorbent (g)
C ₀	Initial Concentration (mg/L)
С	Effluent Concentration (mg/L)
Кав	Kinetic Constant (L / mg min)
F	Flow rate (mL / min)
Z	Bed depth (m)
N ₀	Saturation constant (mg/L)
t	time
C ₀	Influent concentration (mg/L)
Ci	Effluent concentration (mg/L)
Kyn	Velocity constant (L / min)
Т	Time required for 50 % of adsorbate breakthrough
t	Sampling time

List of Instruments / Equipments used for Various Studies

LIST OF INSTRUMENTS / EQUIPMENTS USED FOR VARIOUS STUDIES

- 1. UV Visible Spectrophotometer
- 2. BET Surface Analyzer
- 3. CHNS Analyzer
- 4. Scanning Electron Microscope
- 5. Energy Dispersive X- ray Spectrometer
- 6. Fourier Transform Infrared Spectrophotometer
- 7. Ocular Micrometer
- 8. X-ray Diffractometer
- 9. Vibrating Sample Magnetometer
- 10. Thermo Gravimetric Differential Thermal Analyzer
- 11. Thermostat Controlled Mechanical Shaker
- 12. Digital pH Meter