Analysis and Interpretation

CHAPTER III ANALYSIS AND INTERPRETATION

This chapter deals with the analysis and interpretation of the data collected. The study focuses on Occupational stress, Job satisfaction, and Organizational commitment among IT employees in Coimbatore. The goal of the research was achieved by using the appropriate statistical tools applicable to the research. Data analysis and interpretation helps in providing meaningful insights in understanding the objectives of the research study. The following statistical tools namely Mean, Standard Deviation, ANOVA, Correlation, and Regression were applied for analysing and interpreting survey data.

Descriptives: Frequencies are calculated and shown in the distribution of the demographic profile of the respondents. The respondents' Age, Gender, Education, Years of Experience, Marital Status, and Monthly Income, were studied. Descriptive and inferential statistics such as mean, standard deviation, ANOVA, regression, and correlation were used to identify relationship or possible association between socio-demographic variables and Job satisfaction, Commitment and Stress.

S.No	Demographic Variables	Group	No. Of Respondents	Percentage
1.	Age (in years)	Below 30	140	26.4
		30-40	161	30.3
		Above 40	230	43.3
2.	Gender	Male	236	44.4
		Female	295	55.6
3.	Education	Under Graduate	325	61.2
		Post Graduate	180	33.9
		Diploma/others	26	4.9
4.	Experience (in years)	Below 5	126	23.7
		5-10	161	30.3
		Above 10	244	46.0
5.	Monthly income	Below 20000	129	24.3
	(in rupees)	20000-30000	157	29.6
		Above 30000	245	46.1
	Total		531	

Table -3.1Demographic Profile of the Respondents

Source: Primary Data

The demographic profile of the respondents in the study showed that out of the total 531 respondents taken for the study, 43.3 percentage of the respondents belong to the age group of above 40 years; 55.6 percentage of the respondents are female; 61.2 percentage of the respondents are under graduates; 46.0 percentage of the respondents belong to belong to above 10 years' experience group; 46.1 percentage of the respondents belong to the income group of above 30000 rupees.

OCCUPATIONAL STRESS

Hypothesis:

H1- Occupational stress will vary significantly with demographic factors like age (H1a), gender (H1b), education (H1c), experience (H1d), and monthly income (H1e) among the employees of IT industry.

Table 3.2

Age (in years)	Mean	Ν	Std. Deviation	F-value
Below 30	37.01	140	3.125	
30-40	42.59	161	2.558	727.556
Above 40	51.07	230	4.306	P=(.000)
Total	44.79	531	6.865	

Occupational Stress among different age groups

Source: Primary Data

The table 3.2 shows that the overall mean score for occupational stress ranges from 37.01 to 51.07. The 40 & above age group had a higher mean score (51.07) for occupational stress than the below 30 age group (37.01). Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in occupational stress among different age groups. The obtained F-value is 727.556 and it is significant at 1% level. Hence, hypothesis H1a was accepted and it was concluded that there is a statistically significant difference in occupational stress among different age groups.

Table 3.3

Gender	Mean	Ν	Std. Deviation	F-value
Male	50.87	236	3.893	
Female	39.93	295	4.405	897.024 P=(.000)
Total	44.79	531	6.865	1 (1000)

Occupational Stress among different gender groups

Source: Primary Data

The table 3.3 shows that the overall mean score for occupational stress ranges from 39.93 to 50.87. The male respondents had a higher mean score (50.87) for occupational stress than the female respondents (39.93). Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in occupational stress among different gender groups. The obtained F-value is 897.024 and it is significant at 1% level. Hence, hypothesis H1b was accepted and it was concluded that there is a statistically significant difference in occupational stress among different gender groups.

Table 3.4

Education	Mean	Ν	Std. Deviation	F-value
Graduate	43.34	325	6.787	
Post Graduate	47.64	180	6.581	25.719
Diploma/others	43.23	26	1.883	P=(.000)
Total	44.79	531	6.865	

Occupational Stress among different education groups

Source: Primary Data

The table 3.4 shows that the overall mean score for occupational stress ranges from 43.23 to 47.64. The post graduate respondents had a higher mean score (47.64) for occupational stress than the other respondents. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in occupational stress among different education groups. The obtained F-value is 25.719 and it is significant at 1% level. Hence, hypothesis H1c was accepted and it was concluded that there is a statistically significant difference in occupational stress among different education groups.

Experience	Mean	Ν	Std. Deviation	F-value
Below 5	36.49	126	2.157	
5-10	41.99	161	2.117	646.647 (p=0.000)
Above 10	50.92	244	4.337	
Total	44.79	531	6.865	

Table 3.5Occupational Stress among different experience groups

Source: Primary Data

The table 3.5 shows that the overall mean score for occupational stress ranges from 36.49 to 50.92. The above10 year experience group had a higher mean score (50.92) for occupational stress than the other groups. Analysis of Variance ANOVA was applied to ascertain if there was a significant difference in occupational stress among different education groups. The obtained F-value is 646.647 and it is significant at 1% level. Hence, hypothesis H1d was accepted and it was concluded that there is a statistically significant difference in occupational stress among different experience groups.

Table	3.6
-------	-----

Occupational Stress among different income groups

Income (in rupees)	Mean	N	Std. Deviation	F-value
Below 20000	36.78	129	2.696	
20000-30000	42.23	157	1.552	646.647
Above 30000	50.65	245	4.932	(p=0.000)
Total	44.79	531	6.865	

Source: Primary Data

The table 3.6 shows that the overall mean score for occupational stress ranges from 36.78 to 50.65. The above 20000 income group had a higher mean score (50.65) for occupational stress than the other groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in occupational stress among different income groups. The obtained F-value is 646.647 and it is significant at 1% level. Hence, hypothesis H1e was accepted and it was concluded that there is a statistically significant difference in occupational stress among different income groups.

AFFECTIVE COMMITMENT

Hypothesis:

H2- Affective commitment will vary significantly with demographic factors like age (H2a), gender (H2b), education (H2c), experience (H2d), and monthly income (H2e) among the employees of IT industry.

Theenve Commence among anter one age groups					
Age	Mean	Ν	Std. Deviation	F-value	
Below 30	21.03	140	2.438		
30-40	16.98	161	2.192	153.020 (P=.000)	
Above 40	17.33	230	2.138	(r=.000)	
Total	18.20	531	2.806		

Table 3.7

Affective Commitment among different age groups

Source: Primary Data

The table 3.7 shows that the overall mean score for Affective Commitment ranges from 16.98 to 21.03. The below 30 age group had a higher mean score (21.03) for Affective Commitment than the other age groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Affective Commitment among different age groups. The obtained F-value is 153.020 and it is significant at 1% level. Hence, hypothesis H2a was accepted and it was concluded that there is a statistically significant difference in Affective Commitment among different age groups.

Gender	Mean	Ν	Std. Deviation	F-value
Male	17.44	236	2.077	33.514
Female	18.81	295	3.147	(P=.000)
Total	18.20	531	2.806	

Table 3.8

Affective Commitment among different gender groups

Source: Primary Data

The table 3.8 shows that the overall mean score for Affective Commitment ranges from 17.44 to 18.81. The Female respondents had a higher mean score 18.81 for Affective Commitment than the male respondents (17.44). Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Affective Commitment among different gender groups. The obtained F-value is 33.514 and it is significant at 1% level. Hence, hypothesis H2b was accepted and it was concluded that there is a statistically significant difference in Affective Commitment among different gender groups.

Table 3.9

Education	Mean	Ν	Std. Deviation	F-value
Graduate	18.27	325	2.802	
Post Graduate	18.21	180	2.877	1.669
Diploma/others	17.23	26	2.197	(P=0.189)
Total	18.20	531	2.806	

Affective Commitment among different education groups

Source: Primary Data

The table 3.9 shows that the overall mean score for Affective Commitmentranges from 17.23 to 18.27. The Graduate respondents had a higher mean score (18.27) for Affective Commitment than the other respondents. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Affective Commitment among different education groups. The obtained F-value is 1.669 and it is not significant. Hence, hypothesis H2c was rejected and it was concluded that there no statistically significant difference in Affective Commitment among different education groups.

Table 3.10

Experience	Mean	Ν	Std. Deviation	F-value
Below 5	21.45	126	2.069	
5-10	17.01	161	2.191	191.447 (P=.000)
Above 10	17.31	244	2.143	(1000)
Total	18.20	531	2.806	

Affective Commitment among different experience groups

Source: Primary Data

The table 3.10 shows that the overall mean score for Affective Commitment ranges from 17.31 to 21.45. The below 5 year experience group had a higher mean score (21.45) for Affective Commitment than the other groups. Analysis of Variance ANOVA was applied to ascertain if there was a significant difference in Affective Commitment among different education groups. The obtained F-value is 191.447 and it is significant at 1% level. Hence, hypothesis H2d was accepted and it was concluded that there is a statistically significant difference in Affective Commitment among different experience groups.

Table 3.11

Income	Mean	Ν	Std. Deviation	F-value
Below 20000	21.40	129	2.067	
20000-30000	17.10	157	2.166	190.297
Above 30000	17.22	245	2.168	(P=.000)
Total	18.20	531	2.806	

Affective Commitment among different income groups

Source: Primary Data

The table 3.11 shows that the overall mean score for Affective Commitment ranges from 17.10 to 21.40. The below 20000 income group had a higher mean score (21.40) for Affective Commitment than the other groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Affective Commitment among different income groups. The obtained F-value is 190.297 and it is significant at 1% level. Hence, hypothesis H2e was accepted and it was concluded that there is a statistically significant difference in Affective Commitment among different income groups.

CONTINUANCE COMMITMENT

Hypothesis:

H3- Continuance Commitment will vary significantly with demographic factors like age (H3a), gender (H3b), education (H3c), experience (H3d), and monthly income (H3e) among the employees of IT industry.

Age	Mean	N	Std. Deviation	F-value
Below 30	14.14	140	2.858	
30-40	15.50	161	1.966	341.487 (P=.000)
Above 40	19.83	230	1.903	
Total	17.02	531	3.343	

Table 3.12

Continuance Commitment among different age groups

Source: Primary Data

The table 3.12 shows that the overall mean score for Continuance Commitment ranges from 14.14 to 19.83. The above 40 age group had a higher mean score (19.83) for Continuance Commitment than the other age groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Continuance Commitment among different age groups. The obtained F-value is 341.487 and it is significant at 1% level. Hence, hypothesis H3a was accepted and it was concluded that there is a statistically significant difference in Continuance Commitment among difference in Continuance Commitment among different age groups.

Table 3.13

Gender	Mean	Ν	Std. Deviation	F-value
Male	19.78	236	1.948	644.225
Female	14.80	295	2.460	(P=.000)
Total	17.02	531	3.343	

Continuance Commitment among different gender groups

Source: Primary Data

The table 3.13 shows that the overall mean score for Continuance Commitment ranges from 14.80 to 19.78. The male respondents had a higher mean score (19.78) for Continuance Commitment than the female respondents (14.80). Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Continuance Commitment among different gender groups. The obtained F-value is 644.225 and it is significant at 1% level. Hence, hypothesis H3b was accepted and it was concluded that there is a statistically significant difference in Continuance Commitment among different gender groups.

Table 3.14

Continuance Commitment among different education groups

Education	Mean	Ν	Std. Deviation	F-value
Graduate	16.32	325	3.256	22.550
Post Graduate	18.35	180	3.283	23.550
Diploma/others	16.54	26	1.726	(P=.000)
Total	17.02	531	3.343	

Source: Primary Data

The table 3.14 shows that the overall mean score for Continuance Commitment ranges from 16.32 to 18.35. The Post Graduate respondents had a higher mean score (18.35) for Continuance Commitment than the other respondents. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Continuance Commitment among different education groups. The obtained F-value is 23.550 and it is significant at 1% level. Hence, hypothesis H3c was accepted and it was concluded that there is a statistically significant difference in Continuance Commitment among different education groups.

Table 3.15

Experience	Mean	Ν	Std. Deviation	F-value
Below 5	13.46	126	2.050	
5-10	15.38	161	1.533	595.072 (P=.000)
Above 10	19.93	244	1.945	(1 –.000)
Total	17.02	531	3.343	

Continuance Commitment among different experience groups

Source: Primary Data

The table 3.15 shows that the overall mean score for Continuance Commitment ranges from 13.46 to 19.93. The above 10 year experience group had a higher mean score (19.93) for Continuance Commitment than the other groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Continuance Commitment among different education groups. The obtained F-value is 595.072 and it is significant at 1% level. Hence, hypothesis H3d was accepted and it was concluded that there is a statistically significant difference in Continuance Commitment among different education groups.

Table 3.16

Continuance Commitment among different income groups

Income	Mean	Ν	Std. Deviation	F-value
Below 20000	13.71	129	2.409	
20000-30000	15.24	157	1.256	529.425 (P=.000)
Above 30000	19.90	245	2.006	(1000)
Total	17.02	531	3.343	

Source: Primary Data

The table 3.16 shows that the overall mean score for Continuance Commitment ranges from 13.71 to 19.90. The above 30000 income group had a higher mean score

(19.90) for ContinuanceCommitment than the other groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Continuance Commitment among different income groups. The obtained F-value is 529.425 and it is significant at 1% level. Hence, hypothesis H3e was accepted and it was concluded that there is a statistically significant difference in Continuance Commitment among different income groups.

NORMATIVE COMMITMENT

Hypothesis:

H4- Normative commitment will vary significantly with demographic factors like age (H4a), gender (H4b), education (H4c), experience (H1d), and monthly income (H4e) among the employees of IT industry.

Age	Mean	Ν	Std. Deviation	F-value
Below 30	12.95	140	3.873	
30-40	14.24	161	4.026	5.669
Above 40	13.03	230	3.832	(P=.004)
Total	13.37	531	3.936	

Table 3.17

Normative Commitment among different age groups

Source: Primary Data

The table 3.17 shows that the overall mean score for Normative Commitment ranges from 12.95 to 14.24. The age group 30 - 40 had a higher mean score (14.24) for Normative Commitment than the other age groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Normative Commitment among different age groups. The obtained F-value is 5.669 and it is significant at 1% level. Hence, hypothesis H4a was accepted and it was concluded that there is a statistically significant difference in Normative Commitment age groups.

Table 3.18

Gender	Mean	Ν	Std. Deviation	F-value
Male	13.52	236	4.195	.569
Female	13.26	295	3.720	(P=.451)
Total	13.37	531	3.936	

Normative Commitment among different gender groups

Source: Primary Data

The table 3.18 shows that the overall mean score for Normative Commitment ranges from 13.26 to 13.52. The male respondents had a higher mean score (13.52) for Normative Commitment than the female respondents (13.26). Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Normative Commitment among different gender groups. The obtained F-value is 0.569 and it is not significant. Hence, hypothesis H4b was rejected and it was concluded that there is no statistically significant difference in Normative Commitment among difference in Normative Commitment among difference groups.

Table 3.19

Normative Commitment among different education groups

Education	Mean	Ν	Std. Deviation	F-value
Graduate	13.24	325	3.791	
Post Graduate	13.58	180	3.982	.503 (P=.605)
Diploma/others	13.65	26	5.299	
Total	13.37	531	3.936	

Source: Primary Data

The table 3.19 shows that the overall mean score for Normative Commitment ranges from 13.24 to 13.65. The Diploma holder respondents had a higher mean score (13.65) for Normative Commitment than the other respondents. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Normative Commitment among different education groups. The obtained F-value is 0.503and it is not significant. Hence, hypothesis H4c was rejected and it was concluded that there is no statistically significant difference in Normative Commitment among different education groups.

Table 3.20

Experience	Mean	Ν	Std. Deviation	F-value
Below 5	12.30	126	3.364	
5-10	14.05	161	3.842	7.305
Above 10	13.48	244	4.165	(P=.001)
Total	13.37	531	3.936	

Normative Commitment among different experience groups

Source: Primary Data

The table 3.20 shows that the overall mean score for Normative Commitment ranges from 12.30 to 14.05. The 5-10 year experience group had a higher mean score (14.05) for Normative Commitment than the other groups. Analysis of Variance ANOVA was applied to ascertain if there was a significant difference in Normative Commitment among different education groups. The obtained F-value is 7.305 and it is significant at 1% level. Hence, hypothesis H4d was accepted and it was concluded that there is a statistically significant difference in Normative Commitment among difference in Normative Commitment among difference groups.

Table 3.21

Normative Commitment among different income groups

Income	Mean	Ν	Std. Deviation	F-value
Below 20000	12.55	129	3.685	
20000-30000	14.01	157	3.838	4.968
Above 30000	13.40	245	4.061	(P=.007)
Total	13.37	531	3.936	

Source: Primary Data

The table 3.21 shows that the overall mean score for Normative Commitment ranges from 12.55 to 14.01. The 20000 to 30000 income groups had a higher mean score (14.01) for Normative Commitment than the other groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Normative Commitment among different income groups. The obtained F-value is 4.968 and it is significant at 1% level. Hence, hypothesis H4e was accepted and it was concluded that there is a statistically significant difference in Normative Commitment among different income groups.

JOB SATISFACTION

Hypothesis:

H5- Job Satisfaction will vary significantly with demographic factors like age (H5a), gender (H5b), education (H5c), experience (H5d), and monthly income (H1d) among the employees of IT industry.

Age	Mean	Ν	Std. Deviation	F-value
Below 30	72.74	140	7.548	111 (70
30-40	64.04	161	5.795	(000)
Above 40	60.95	230	8.313	(.000)
Total	65.00	531	8.842	

Table 3.22

Job Satisfaction among different age groups

Source: Primary Data

The table 3.22 shows that the overall mean score for Job Satisfaction ranges from 60.95 to 72.74. The age group below 30 years had a higher mean score (72.74) for Job Satisfaction than the other age groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Job Satisfaction among different age groups. The obtained F-value is 111.679 and it is significant at 1% level. Hence, hypothesis H5a was accepted and it was concluded that there is a statistically significant difference in Job Satisfaction among different age groups.

Gender	Mean	Ν	Std. Deviation	F-value
Male	60.78	236	8.644	
Female	68.37	295	7.451	117.923 (.000)
Total	65.00	531	8.842	()

Table 3.23

Job Satisfaction among different gender groups

Source: Primary Data

The table 3.23 shows that the overall mean score for Job Satisfaction ranges from 60.78 to 68.37. The Female respondents had a higher mean score (68.37) for Job Satisfaction than the male respondents (60.78). Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Job Satisfaction among different gender groups. The obtained F-value is 117.923 and it is significant at 1% level. Hence, hypothesis H5b was accepted and it was concluded that there is a statistically significant difference in Job Satisfaction among different gender groups.

Table 3.24

Education	Mean	Ν	Std. Deviation	F-value
Graduate	64.74	325	8.910	
Post Graduate	65.39	180	8.973	.356
Diploma/others	65.46	26	7.061	(.701)
Total	65.00	531	8.842	

Job Satisfaction among different education groups

Source: Primary Data

The table 3.24 shows that the overall mean score for Job Satisfaction ranges from 64.74 to 65.46. The Diploma holder respondents had a higher mean score (65.46) for Job Satisfaction than the other respondents. Analysis of Variance (ANOVA) was applied to

ascertain if there was a significant difference in Job Satisfaction among different education groups. The obtained F-value is 0.356and it is not significant. Hence, hypothesis H5c was rejected and it was concluded that there is no statistically significant difference in Job Satisfaction among different education groups.

Table 3.25

Experience	Mean	Ν	Std. Deviation	F-value
Below 5	74.32	126	4.637	
5-10	63.90	161	5.909	111.621 (.000)
Above 10	60.91	244	8.592	(.000)
Total	65.00	531	8.842	

	1.66	•
Job Satisfaction	among differen	t experience groups
000 00000000000		en per tente groups

The table 3.25 shows that the overall mean score for Job Satisfaction ranges from 60.91 to 74.32. Below 5 years experience group had a higher mean score (74.32) than the other experience groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Job Satisfaction among different experience groups. The obtained F-value is 111.621 and it is significant at 1% level. Hence, hypothesis H5d was accepted and it was concluded that there is a statistically significant difference in Job Satisfaction among difference in Job Satisfacting difference in Job Satisfacti

Table 3.26

Job Satisfaction among different income groups

Income	Mean	Ν	Std. Deviation	F-value
Below 20000	73.34	129	7.369	
20000-30000	64.03	157	5.893	115.654 (.000)
Above 30000	61.22	245	8.209	(.000)
Total	65.00	531	8.842	

Source: Primary Data

The table 3.26 shows that the overall mean score for Job Satisfaction ranges from 61.22 to 73.34. The below20000 income groups had a higher mean score (73.34) for Job Satisfaction than the other groups. Analysis of Variance (ANOVA) was applied to ascertain if there was a significant difference in Job Satisfaction among different income groups. The obtained F-value is 115.654 and it is significant at 1% level. Hence, hypothesis H5e was accepted and it was concluded that there is a statistically significant difference in Job Satisfaction among different income groups.

JOB SATISFACTION, ORGANISATIONAL COMMITMENT, AND OCCUPATIONAL STRESS

CORRELATION ANALYSIS

Hypotheses:

H6- There will be a significant correlation between job satisfaction and normative commitment (H6a); job satisfaction and Continuance commitment (H6b); job satisfaction and affective commitment (H6c).

H7 – There will be a significant correlation between occupational stress and normative commitment (H7a); occupational stress and Continuance commitment (H7b); occupational stress and affective commitment (H7c).

H8 – There will be a significant correlation between occupational stress and job satisfaction.

Table 3.27

Pearson Correlation Sig. (2-tailed) N Pearson Correlation	1 531	.060 .165 531	.569** .000	.782** .000	593**
N Pearson	531		.000	.000	000
Pearson	531	531			.000
			531	531	531
		1	.061	.158**	.014
Sig. (2-tailed)			.162	.000	.753
N		531	531	531	531
Pearson Correlation			1	.481**	.826**
Sig. (2-tailed)				.000	.000
N			531	531	531
Pearson Correlation				1	484**
Sig. (2-tailed)					.000
N				531	531
Pearson Correlation					1
Sig. (2-tailed)					
N					531
	N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N	N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N N N N N N N N N N N N N N N N N N N	N 531 Pearson 531 Correlation 531 Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed)	N 531 531 Pearson 1 Correlation 1 Sig. (2-tailed) 531 Pearson 531 Correlation 531 Sig. (2-tailed) 1 N 531 Pearson 1 Correlation 1 Sig. (2-tailed) 1 N 1 Pearson 1 Correlation 1 Sig. (2-tailed) 1 N 1	N531531531Pearson Correlation1.481**Sig. (2-tailed).000N531531Pearson Correlation1Sig. (2-tailed).N531Sig. (2-tailed).N531Sig. (2-tailed).N.Sig. (2-tailed).N.Sig. (2-tailed).N.Sig. (2-tailed).N.N.N.Sig. (2-tailed).N.N.N.Sig. (2-tailed).N.Sig. (2-tailed).N.Sig. (2-tailed).N.

Correlation among Job satisfaction, Commitment and Occupational stress

Correlation test revealed that there is no significant correlation (r=0.060& p>.05) between job satisfaction and Normative commitment. Hence hypothesis H6a is rejected.

There is a significant correlation (r=0.569& p>.01) between job satisfaction and Continuance commitment. Hence hypothesis H6b is accepted.

There is a significant correlation (r=0.782& p>.01) between job satisfaction and Affective commitment. Hence hypothesis H6c is accepted.

There is no significant correlation (r=0.014& p>.05) between occupational stressand Normative commitment. Hence hypothesis H7a is rejected.

There is a significant correlation (r=0.826& p>.01) between occupational stressand Continuance commitment. Hence hypothesis H7b is accepted.

There is a significant correlation (r=0.484& p>.01) between occupational stress and affective commitment. Hence hypothesis H7c is accepted.

There is a significant correlation (r=.000 & p<.01) between occupational stress and job satisfaction. Hence hypothesis H8 is accepted.

REGRESSION ANALYSIS

Hypothesis:

H9 - Job satisfaction will affect normative commitment (H9a), continuance commitment (H9b), and affective commitment (H9c) among the employees of IT industry.

H10 - Occupational stress will affect normative commitment (H10a), continuance commitment

(H10b), and affective commitment (H10c) among the employees of IT industry.

H11 - Occupational stress will affect job satisfaction among the employees of IT industry.

Table 3.28

Regression analysis with job satisfaction as predictor variable and normative commitment as the dependent variable.

Model	R	R Square		Std. Error of the Estimate
1	.060	.004	.002	3.933

AN	OV	'A ^b
----	----	-----------------

	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	29.911	1	29.911	1.934	.165
	Residual	8182.258	529	15.467		
	Total	8212.169	530			

Model			ndardized fficients	Standardized Coefficients	t	Sig.	
		В	Std. Error	Beta			
1	(Constant)	15.119	1.267		11.930	.000	
	Job satisfaction	.027	.019	.060	1.391	.165	

Regression analysis was conducted to investigate the relationship between job satisfaction and normative commitment. F-Test was not statistically significant. The R-Squared is 0.004 and the adjusted R-Square was 0.002 which means that job satisfaction does not explain the variance innormative commitment. Hence hypothesis H9a was rejected.

Table 3.29

Regression analysis with job satisfaction as predictor variable and continuance commitment as the dependent variable.

Model	R	R Square		Std. Error of the Estimate
1	.569	.324	.323	2.752

ANOV	∕A ^b	
------	-----------------	--

	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1917.720	1	1917.720	253.294	.000
	Residual	4005.128	529	7.571		
	Total	5922.847	530			

	Model	Unstand Coeffi		Standardized Coefficients	t Sia	Sia
	Woder	В	Std. Error	Beta	t	Sig.
1	(Constant)	31.000	.887		34.962	.000
	Job satisfaction	.215	.014	.569	15.915	.000

Regression analysis was conducted to investigate the relationship between job satisfaction and continuance commitment. F-Test was statistically significant, which means that the model was statistically significant. The R-Squared is 0.324 which means that approximately 32% of the variance of continuance commitment was explained by the predictor variable, that is, job satisfaction. Hence hypothesis H9b was accepted.

Table 3.30

Regression analysis with Job satisfaction as predictor variable and Affective commitment as the dependent variable.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.782	.612	.611	1.750

AN	OV	A ^b
----	----	----------------

]	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2554.199	1	2554.199	834.448	.000 ^a
	Residual	1619.240	529	3.061		
	Total	4173.439	530			

	Model		andardized efficients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	2.064	.564		3.661	.000
	Job satisfaction	.248	.009	.782	28.887	.000

Regression analysis was conducted to investigate the relationship between job satisfaction and affective commitment. F-Test was statistically significant, which means that the model was statistically significant. The R-Squared is 0.612 which means that approximately 61% of the variance of affective commitment was explained by the predictor variable, that is, job satisfaction. Hence hypothesis H9c was accepted.

Table 3.31

Regression analysis with occupational stress as predictor variable and normative commitment as the dependent variable.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.014	.000	.002	3.940

a. Predictors: (Constant), stress

AN	0	V	A	b
----	---	---	---	---

	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.544	1	1.544	.099	.753
	Residual	8210.625	529	15.521		
	Total	8212.169	530			

	Model		lardized icients	Standardized Coefficients	t Sig.		
		B Std. Erro		Beta			
1	(Constant)	13.021	1.130		11.528	.000	
	Stress	.008	.025	.014	.315	.753	

Regression analysis was conducted to investigate the relationship between occupational stress and normative commitment. F-Test was not statistically significant. The R-Squared is 0.000 which means that occupational stress does not explain the variance innormative commitment. Hence hypothesis H10a was rejected.

Table 3.32

Regression analysis with occupational stress as predictor variable and Continuance commitment as the dependent variable.

	R	R Square	Adjusted R R Square Square	
1	.826ª	.682	.681	1.888

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4037.642	1	4037.642	1.133E3	.000
	Residual	1885.206	529	3.564		
	Total	5922.847	530			

Model			Unstandardized Coefficients		t	Sig.
		В	Std. Error	Beta		
1	(Constant)	.991	.541		-1.831	.068
	stress	.402	.012	.826	33.660	.000

Regression analysis was conducted to investigate the relationship between Occupational stress and continuance commitment. F-Test was statistically significant, which means that the model was statistically significant. The R-Squared is 0.682 which means that approximately 68% of the variance of continuance commitment was explained by the predictor variable, that is, stress. Hence hypothesis H10b was accepted.

Table 3.33

Regression analysis with occupational stress as predictor variable and affective commitment as the dependent variable.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.484ª	.234	.233	2.458

AN	OV	Ά ^b
----	----	----------------

	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	977.579	1	977.579	161.815	.000
	Residual	3195.859	529	6.041		
	Total	4173.439	530			

Model		Unstand Coeffi		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	27.062	.705		38.403	.000
	Stress	198	.016	484	-12.721	.000

Regression analysis was conducted to investigate the relationship between Occupational stress and Affective commitment. F-Test was statistically significant, which means that the model was statistically significant. The R-Squared is 0.234 which means that approximately 23% of the variance of affective commitment was explained by the predictor variable, that is, stress. Hence hypothesis H10c was accepted.

Table 3.34

Regression analysis with occupational stress as predictor variable and job satisfaction as the dependent variable.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.593ª	.351	.350	7.129

ANOVA^b

	Model	Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	14548.313	1	14548.313	286.251	.000
	Residual	26885.679	529	50.824		
	Total	41433.992	530			

Model			lardized icients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	99.179	2.044		48.524	.000
	Stress	763	.045	593	-16.919	.000

Regression analysis was conducted to investigate the relationship between Occupational stress and job satisfaction. F-Test was statistically significant, which means that the model was statistically significant. The R-Squared is 0.351 which means that approximately 35% of the variance of job satisfaction was explained by the predictor variable, that is, occupational stress. Hence hypothesis H11 was accepted.