Diversity, Interaction and Biological properties of Endophytic fungi associated with *Cucumis dipsaceus* Ehrenb. ex Spach. (Cucurbitaceae)

Thesis

submitted to

Bharathiar University

in partial fulfilment for the award of the degree of

Doctor of Philosophy in Botany

By Mrs. S. Rukshana Begum, M.Sc.

Under the guidance of

Dr. K.S. Tamil Selvi M.Sc., M.Phil., Ph.D.

Assistant Professor of Botany

PSGR Krishnammal College for Women

Department of Botany

(DST-FIST Sponsored, DBT-STAR status Department)

PSGR Krishnammal College for Women

College of Excellence Autonomous Institution Affiliated to Bharathiar University Re-accredited with 'A' Grade by NAAC, NIRF 22nd Ranking (2019) ISO 9001-2015 Certified Institution Peelamedu, Coimbatore - 641004

Certificate

CERTIFICATE

This is to certify that the thesis, entitled "Diversity, Interaction and Biological properties of Endophytic fungi associated with *Cucumis dipsaceus* Ehrenb. ex. Spach. (Cucurbitaceae)", submitted to Bharathiar University, in partial fulfilment of the requirement for the award of the degree of Doctor of Philosophy in Botany is a record of original research work done by Mrs. Rukshana Begum. S, during the period 2013-2020 of her study in the Department of Botany at PSGR Krishnammal College for Women, Coimbatore, under my supervision and guidance and the thesis has not formed the basis for the award of any Degree / Diploma / Associateship / Fellowship or other similar title to any candidate of any University.

olde KI

Signature of the Guide

Dr. K. S. TAMIL SELVI, M.Sc., M.Phil., Ph.D. Assistant Professor of Botany P.S.G.R. Krishnammal College for Wom Peelamedu, COIMBATORE - 641 004

Principal

PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WOMEN COMBATORE - 543 004.

Countersigned

e Clets Marei

Head of the Department Dr. C. KRISHNAVENI M.Sc., M.Phil., B.Ed., Ph.D. Head of the Department of Botany S.G.R. Krishnammal College for Women Peelamedu, Coimbatore - 641 004.

Declaration

DECLARATION

I, Rukshana Begum. S, hereby declare that the thesis, entitled "Diversity, Interaction and Biological properties of Endophytic fungi associated with *Cucumis dipsaceus* Ehrenb. ex. Spach. (Cucurbitaceae)", submitted to Bharathiar University, in partial fulfilment of the requirement for the award of the degree of Doctor of Philosophy in Botany is a record of original and independent research work done by me during 2013-2020 under the supervision and guidance of Dr. K.S. Tamil Selvi, M.Sc., M.Phil., Ph.D., Assistant Professor, Department of Botany, PSGR Krishnammal College for Women, Coimbatore, and it has not formed the basis for the award of any Degree / Diploma / Associateship / Fellowship or other similar title to any candidate of any University.

5. P-1B9-1 Signature of the Candidate

Plagiarism & Genuineness of the Publication

பாரதியார் பல்கலைக்கழகம் BHARATHIAR UNIVERSITY COIMBATORE - 641 046, TAMILNADU, INDIA.

State University | Re-accredited with "A" Grade by NAAC | Ranked 14th among Indian Universities by MHRD-NIRF

	CERTIFICATE OF	PLAGIARISM CHECK
1	Name of the Research Scholar	S. RUKSHAINA BEGUM
2	Course of study	M.Phil., / Ph.D.,
3	Title of the Thesis / Dissertation	Diversity, Interaction and biological properties of endophytic fungi ausociated with <u>Cucumis</u> dipsaceus Ebsenb. ex Spach
4	Name of the Supervisor	DY.K.S. PAMIL SELVI
5	Department / Institution/ Research Centre	Department of Botany PSGIR krishnammal callege for Women, Coimbatore.
6	Acceptable Maximum Limit	30 %
7	% of Similarity of content Identified	02%
8	Software Used	URKUND
9	Date of verification	28 1057 2020

Report on plagiarism check, items with % of similarity is attached

of Sc Kin.

Signature of the Supervisor (Seal)

Dr. K. S. TAMIL SELVI, M.Sc., M.Phil., Ph.D. Assistant Professor of Botany P.S.G.R. Krishnammal College for Women Peelamedu, COIMBATORE - 641 004.

University Librarian (BU) University Librarian

Arignar Anna Central Library Bharathiar University Coimbatore - 641 046.

R&D Director (BU) / Head of the Department

Dr. C. KRISHNAVENI M.Sc., M.Phil., B.Ed., Ph.D. Head of the Department of Botany P.S.G.R. Krishnammal College for Women Peciamedu, Coimbatore - 641 004.

Research Coordinator (BU)

Urkund Analysis Result

Analysed Document:	Rukshana Begum. S.pdf (D73042012)
Submitted:	5/28/2020 10:49:00 AM
Submitted By:	rspani1967@gmail.com
Significance:	2 %

Sources included in the report:

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/endophyte https://www.mycosphere.org/pdf/MYCOSPHERE_9_4_1-1.pdf

https://www.researchgate.net/

publication/311663719_In_vitro_Potential_of_Endophytic_Fungus_Aspergillus_terrus_JAS-2_Asso ciated_with_Achyranthus_aspera_and_Study_on_its_Culture_Conditions

https://www.researchgate.net/

publication/339743275_Endophytic_fungi_from_medicinal_plants_biodiversity_and_biotechnolo gical_applications

https://worldwidescience.org/topicpages/r/redwood+endophyte+aspergillus.html https://www.frontiersin.org/articles/10.3389/fmicb.2016.00906/full

https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-016-0722-7 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296229/

https://www.sciencedirect.com/topics/immunology-and-microbiology/aspergillus-terreus https://www.researchgate.net/

publication/321053561_Endophytic_Microbes_A_Resource_for_Producing_Extracellular_Enzyme s

91df1266-f5f4-4132-9eba-a3095fddb0b4

https://www.researchgate.net/

publication/321375680_Medium_optimization_of_Eupenicillium_sp_isolated_from_Acacia_nilotic a_fro_its_activity_against_oral_pathogens

https://www.researchgate.net/publication/329484796_IN_VITRO_ANTI-

BACTERIAL_ACTIVITY_OF_THE_SOIL_FUNGAL_METABOLITES

Instances where selected sources appear:

23

University Librarian Arignar Anna Central Library Bharathiar University Coimbatore - 641 046

CERTIFICATE OF GENUINENESS OF THE PUBLICATION

This is to certify that Ph.D. candidate Mrs. S. Rukshana Begum working under my supervision has published a research article in the standard refereed/SCI journal named

- International Journal of Current Microbiology and Applied Sciences, Vol. No. 5 (4): 424-436, 2016. "Endophytes are Plant Helpers: An Overview". Rukshana Begum S and K.S. Tamil Selvi.
- International Journal of Pharmacy and Biological Sciences, Vol. No. 8(3): 1005-1011, 2018. "Diversity of fungal endophytes in *Cucumis dipsaceus* Ehrenb. ex spach". Rukshana Begum S and K.S. Tamil Selvi (UGC approved journal – 46322).
- Plant archives (International Journal of plant research) Vol. No. 19 (1): 1934-1946, 2019. "Biotechnological application of *Talaromyces radicus* associated with *Cucumis dipsaceus* Ehrenb. ex Spach" Rukshana Begum S and K.S. Tamil Selvi. (UGC approved journal – 30969).

The contents of the publication incorporate part of the results presented in her thesis.

Research Supervisor

Dr. K. S. TAMIL SELVI, M.Sc., M.Phil., Ph.D. Assistant Professor of Botany P.S.G.R. Krishnammal College for Won Peelamedu, COIMBATORE - 641 004

Countersigned

Principal (College / University / Institute)

PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WOMEN

Acknowledgement

ACKNOWLEDGEMENT

Ph.D is a truly life changing experience for me and it would not have been possible to do without the support and guidance that I have received from many people.

I express my deep sense of gratitude to our Managing Trustee Sri. G. Rangasamy and Chairperson Smt. R. Nandini, PSGR Krishnammal College for women, Coimbatore, for providing an opportunity to pursue my studies in this esteemed institution.

I owe my sincere thanks to **Dr. N.Yesodha Devi M.Com., Ph.D.** Secretary and **Dr.S. Nirmala MBA, M.Phil., Ph.D.,** Principal, PSGR Krishnammal College for Women, for providing all the facilities to carry out the research work successfully.

I am grateful to **Mrs. S. Vasandha M.Sc., M.Phil.** Dean- Student affairs and former Head, Department of Botany, for giving me words of encouragement.

I express my sincere thanks to former Heads of the Department of Botany, Dr.V. Sashi M.Sc., M.Phil., Ph.D, Dr.S. Meerabai M.Sc., M.Phil., B.Ed., Ph.D and Dr.S. N. Padma Devi M.Sc., M.Phil., B.Ed., Ph.D for their constant guidance and suggestions.

I express my gratefulness to **Dr. C. Krishnaveni. M.Sc., M.Phil., B.Ed., Ph.D.,** Head, Department of Botany, PSGR Krishnammal College for Women, Coimbatore for her immense support and valuable suggestions throughout the course of the Research.

I would like to express my sincere gratitude to my supervisor, **Dr. K.S.Tamil Selvi**, **M.Sc., M.Phil., Ph.D.**, Assistant Professor of Botany, PSGR Krishnammal College for Women, Coimbatore for her constant support for my Ph.D study and related research. Her patience, motivation, immense knowledge and constant feedback throughout the course helped in completing the research work successfully.

My special thanks to **Dr. S. Paulsamy**, Dean-Research and Development and Former head of Botany Department, Kongunadu Arts and Science College, Coimbatore and **Dr.T.Muthukumar** Associate Professor of Botany, Bharathiar University, Coimbatore for their insightful comments and encouragement during Doctoral committee visit. Their hard questions had helped me to widen my research from various perspectives. I express my thanks to **Agharkar Research Institute**, Pune and **Botanical Survey of India**, Coimbatore for their help to carry over the morphological identification of Fungi and in identifying the plant respectively.

I thank **Dr. M. Kanchana**, Associate Professor of Botany, PSGR Krishnammal College for Women, for her valuable suggestions on molecular identification and **Dr. E. Uma**, Assistant Professor of Botany, for her support in statistical data analysis.

I would like to thank faculty members of Department of Botany Dr.M. Kamalam, Dr. K. Gajalakshmi, Dr. H. Rehana Banu, Dr. B.S. Chithra Devi, Dr. R. Sumathi, Dr. K. Sunitha Kumari and Dr. Sarah Jaison, who have been very kind enough to extend their help at various phases of this research whenever I approached them.

My special regards to my UG, PG teachers because of whose teaching at different stages of education has made it possible for me to achieve this Ph.D.

My heartfelt thanks to my seniors **Dr. R. Gomathi, Dr. S. Saravanan, Dr. V. Logaprabha, Dr.U.Uma devi, Dr. Anitha, Dr. S. Kalaiarasi, Mrs. Gowthami, Mrs. V. Nithya** and a special mention of thanks to my friends **Dr.S.Saikumar, Mr. M. Kasipandi, Mr.K.Nagaraj, Mrs.P.Kemila** and **Ms.P.Uma Maheshwari** for their help rendered throughout this research programme.

I thank my fellow scholars Mrs. P.R. Sowmiya, S. Brindha, S.Jeevadharshini, K.Malathi, V.Sujithra, K. Dhivya, E. Sharone Gladis, R. Gokilavani, D. Nivedha, S. Sahithya and J. Akilashree, for their continuous support and friendly attitude from the very beginning.

I thank all non teaching staff of Department of Botany who were always ready to give their timely help whenever required.

I gratefully acknowledge the funding received from University Grant Commission, New Delhi, in the form of Maulana Azad National Fellowship for Minority Students (2014-15) for pursuing Ph.D degree. I am also greatful to Popular Font of India, Coimbatore for providing fund to carryout my earlier stage of research. With more love and affection, I wish to express my heartfelt thanks to my beloved Parents **Mr.M.Sahabudeen** and **Mrs.S.Samsath Begum** and my brother **Mr.S.Azarudeen** for their belief in me and encouraging me to follow my dreams.

I owe my deepest gratitude to my better-half **Mr. N. GulamKader Mohideen** for his eternal support and understanding my goals and aspirations. Without his help, I would not have completed much of what I have done and become who I am. I am thankful to my little princess baby **G.Zeenath Hairunnisha** for giving me happiness during the last two and half years of my studies.

Rukshana Begum S

List of Tables

LIST OF TABLES

Table No.	Title	Page No.
	Chapter I : Diversity of endophytic fungi from Cucumis dipsaceus	
1	Ethanobotanical status of <i>C.dipsaceus</i>	20
2	Different sterilization protocol	24
3	Different protocols used for standardization of surface sterilization	34
4	List of endophytic fungi from Cucumis dipsaceus	43
5	Colonization and isolation rate of endophytic fungi from <i>Cucumis dipsaceus</i>	44
6	Colonization frequency of endophytic fungi	45
	Chapter II: Interaction between host (C.dipsaceus) and endophytes	
7	Growth response of <i>Cucumis dipsaceus</i> inoculated with endophytic fungi <i>Aspergillus</i> sp.	90
8	Growth response of <i>Cucumis dipsaceus</i> inoculated with endophytic fungi <i>Talaromyces radicus</i>	91
9	Growth response of <i>Cucumis dipsaceus</i> inoculated with endophytic fungi <i>Penicillium javanicum</i>	93
10	Growth response of <i>Cucumis dipsaceus</i> inoculated with endophytic fungi <i>Chaetomium globosum</i>	94
11	Growth response of <i>Cucumis dipsaceus</i> inoculated with endophytic fungi <i>Aspergillus terreus</i>	95
12	Retention time of Cucurbitacin B from standard, extracts of <i>C.dipsaceus</i> and the endophytes	99
13	Sequence Alignments View of Aspergillus sp.	101
14	Sequence Alignments View of Talaromyces radicus	102
15	Sequence Alignments View of Chaetomium globosum	104
16	Sequence Alignments View of Aspergillus terreus	106
17	Sequence Alignments View of Penicillium javanicum	107

Table No.	Title	Page No.
(Chapter III: Biological properties of the true endophytic fungi isolate from <i>C.dipsaceus</i>	ed
18	Natural products of endophytic microorganisms	121
19	Fungal pigments and their sources	127
20	Antibiotics from endophytic fungi	130
21	Antioxidant compounds from endophytic fungi	135
22	Effect of pH on biomass and secondary metabolite production by <i>Aspergillus</i> sp.	150
23	Effect of pH on biomass and secondary metabolite production by <i>Aspergillus terreus</i>	150
24	Effect of pH on biomass and secondary metabolite production by <i>Talaromyces radicus</i>	151
25	Effect of pH on biomass and secondary metabolite production by <i>Chaetomium globosum</i>	151
26	Effect of pH on biomass and secondary metabolite production by <i>Penicillium javanicum</i>	152
27	Effect of temperature on biomass and crude metabolite production by <i>Aspergillus</i> sp.	153
28	Effect of temperature on biomass and crude metabolite production by <i>Aspergillus terreus</i>	155
29	Effect of temperature on biomass and crude metabolite production by <i>Talaromyces radicus</i>	156
30	Effect of temperature on biomass and crude metabolite production by <i>Chaetomium globosum</i>	156
31	Effect of temperature on biomass and crude metabolite production by <i>Penicillium javanicum</i>	157
32	Effect of Carbon source on biomass and crude metabolite production by <i>Aspergillus</i> sp.	158
33	Effect of Carbon source on biomass and crude metabolite production by <i>Aspergillus terreus</i>	159

Table No.	Title	Page No.
34	Effect of Carbon source on biomass and crude metabolite production by <i>Talaromyces radicus</i>	159
35	Effect of Carbon source on biomass and crude metabolite production by <i>Chaetomium globosum</i>	160
36	Effect of Carbon source on biomass and crude metabolite production by <i>P.javanicum</i>	160
37	Effect of nitrogen source on biomass and crude metabolite production by <i>Aspergillus</i> sp.	163
38	Effect of nitrogen source on biomass and crude metabolite production by <i>Aspergillus terreus</i>	163
39	Effect of nitrogen source on biomass and crude metabolite production by <i>Talaromyces radicus</i>	164
40	Effect of nitrogen source on biomass and crude metabolite production by <i>Chaetomium globosum</i>	164
41	Effect of nitrogen source on biomass and crude metabolite production by <i>Penicillium javanicum</i>	165
42	Interpretation of FTIR spectrum of crude filtrate of A.terreus	166
43	Interpretation of FTIR spectrum of crude filtrate of <i>P.javanicum</i>	166
44	Interpretation of FTIR spectrum of crude filtrate of C.globosum	169
45	Interpretation of FTIR spectrum of crude filtrate of <i>T.radicus</i>	171
46	Interpretation of FTIR spectrum of crude filtrate of Aspergillus sp.	173
47	Compounds identified from crude extract of A.terreus by GC-MS	176
48	Compounds identified from crude extract of C.globosum by GC-MS	177
49	Compounds identified from crude extract of <i>T.radicus</i> by GC-MS	178
50	Compounds identified from crude extract of Aspergillus sp.by GC-MS	179
51	Compounds identified from crude extract of <i>P.javanicum</i> by GC-MS	180
52	Phytochemical screening of crude extracts of fungal endophytes (Qualitative)	182

Table No.	Title	Page No.
53	Qualitative analysis of Extracellular enzymes from endophytic fungi	182
54	Quantitative estimation of extracellular enzymes from endophytes	185
55	Quantitative estimation of organic acid production by different endophytes	185
56	Antimicrobial assay of solvent extracts of T. radicus	190
57	Antimicrobial assay of solvent extracts of Aspergillus sp.	192
58	Antimicrobial assay of solvent extracts of A. terreus	194
59	Antimicrobial assay of solvent extracts of C. globosum	197
60	Antimicrobial assay of solvent extracts of P. javanicum	198
61	Quantitative estimation of antioxidant compound	199
62	DPPH radical scavenging activity of ethyl acetate extracts of fungal endophytes	201
63	DPPH radical scavenging activity of methanolic extracts of fungal endophytes	201

List of Figures

LIST OF FIGURES

Figure No.	Title	Page No.
	Chapter I: Diversity of endophytic fungi from Cucumis dipsaceus	
1	Endophytic Fungi- Multiple functional roles	3
2	Schematic representation of isolation procedure	28
	Chapter II: Interaction between host (C.dipsaceus) and endophytes	
3	Balanced antagonism between plant and endophytic fungi	66
4	Symbiotic development of endophytes and pathogens	67
5	HPLC chromatograph depicting the peaks of Cucurbitacin B standard	96
6	HPLC chromatograph depicting the peaks of Cucumis dipsaceus	97
7	HPLC chromatograph depicting the peaks of Aspergillus sp.,	97
8	HPLC chromatograph depicting the peaks of Talaromyces radicus	98
9	HPLC chromatograph depicting the peaks of Penecillium javanicum	98
10	HPLC chromatograph depicting the peaks of Chaetomium globosum	98
11	HPLC chromatograph depicting the peaks of Aspergillus terreus	99
12	Consensus Sequence (851bp) of Aspergillus sp.	100
13	Phylogenetic tree of Aspergillus sp.	100
14	Consensus Sequence (604bp) of Talaromyces radicus	101
15	Phylogenetic tree of Talaromyces radidus	102
16	Consensus Sequence (896bp) of Chaetomium globosum	103
17	Phylogenetic tree of Chaetomium globosum	103
18	Consensus Sequence (869bp) of Aspergillus terreus	105
19	Phylogenetic tree of Aspergillus terreus	105
20	Consensus Sequence (808bp) of Penicillium javanicum	106
21	Phylogenetic tree of Penicillium javanicum	107

Figure No.	Title	Page No.	
Chap	Chapter III : Biological properties of the true endophytic fungi isolated from <i>C.dipsaceus</i>		
22	Influence of different media on growth and metabolite production by <i>Aspergillus</i> sp.	147	
23	Influence of different media on growth and metabolite production of <i>Aspergillus</i> terreus	148	
24	Influence of different media on growth and metabolite production of <i>Penicillium javanicum</i>	148	
25	Influence of different media on growth and metabolite production of <i>Chaetomium globosum</i>	149	
26	Influence of different media on growth and metabolite production of <i>Talaromyces radicus</i>	149	
27	IR spectrum of crude filtrate of <i>A.terreus</i>	167	
28	IR spectrum of crude filtrate of <i>P.javanicum</i>	168	
29	IR spectrum of crude filtrate of <i>C.globosum</i>	170	
30	IR spectrum of crude filtrate of <i>T.radicus</i>	172	
31	IR spectrum of crude filtrate of Aspergillus sp.	174	
32	GC-MS chromatogram of crude filtrate of A.terreus	176	
33	GC-MS chromatogram of crude filtrate of C.globosum	177	
34	GC-MS chromatogram of crude filtrate of <i>T.radicus</i>	178	
35	GC-MS chromatogram of crude filtrate of Aspergillus sp.	179	
36	GC-MS chromatogram of crude filtrate of <i>P.javanicum</i>	180	
37	Yield of solvent extracts from endophytic fungi	181	
38	Total Antioxidant assay of endophytic fungi	200	
39	Quantitative analysis of IAA in culture filtrate of endophytic fungi	202	
40	Quantitative analysis of Gibberellic acid in culture filtrate of endophytic fungi	202	

List of Plates

LIST OF PLATES

Plate No.	Title
1	Cucumis dipsaceus Ehrenb. ex Spach
2	Optimization of sterilization
3	T.S of <i>C.dipsaceus</i> stem showing endophyte colonies
4	Localization of endophytes using leaf clearing technique
5	Emergence of endophytic fungi on PDA media (Leaf and Stem)
6	Emergence of endophytic fungi on CDA media (Leaf and Stem)
7	Emergence of endophytic fungi on MEA media (Leaf and Stem)
8	Emergence of endophytic fungi on SDA media (Leaf and Stem)
9	Morphological characters of endophytic fungi
10	Dry fruit of <i>C.dipsaceus</i> showing seeds
11	Influence of endophytic fungi on the growth of C.dipsaceus
12	Effect of pH on Biomass and metabolite production by different endophytic fungi
13	Effect of carbon source on Biomass and metabolite production by different endophytic fungi
14	Effect of Sodium nitrate on crude metabolite production in <i>T.radicus</i>
15	Preliminary screening of extracellular enzymes
16	Qualitative estimation of organic acid production by different endophytes
17	PDA plates showing coloured colonies of true endophytic fungi
18	Pigment production under submerged state fermentation
19	Antimicrobial assay of solvent extracts of <i>T.radicus</i> against bacterial pathogens
20	Antimicrobial assay of solvent extracts of <i>T.radicus</i> against fungal pathogens
21	Antimicrobial assay of solvent extracts of Aspergillus sp. against bacterial pathogens
22	Antimicrobial assay of solvent extracts of Aspergillus sp. against fungal pathogens

Plate No.	Title
23	Antimicrobial assay of solvent extracts of <i>Aspergillus terreus</i> against bacterial pathogens
24	Antimicrobial assay of solvent extracts A.terreus against fungal pathogens
25	Antimicrobial assay of solvent extracts of <i>Chaetomium globosum</i> against bacterial pathogens
26	Antimicrobial assay of solvent extracts of <i>C.globosum</i> against fungal pathogens
27	Antimicrobial assay of solvent extracts of <i>Penicillium javanicum</i> against bacterial pathogens
28	Antimicrobial assay of solvent extracts of <i>P. javanicum</i> against fungal pathogens

List of Abbreviations

LIST OF ABBREVIATIONS

°C	Desires estations
°C	Degree celsius
μl	microliter
μm	micrometer
AA	Ascorbic Acid
ANOVA	Analysis of variance
AU	Acid Unitage
cm	centimeter
СТАВ	Cetyl trimethyl ammonium bromide
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DNS	Dinitrosalicyclic acid
DPPH	2,2-diphenyl-1-picrylhydrazyl
EDTA	Ethylenediaminetetraaceticacid
FRAP	Ferric reducing antioxidant power
FTC	Ferric thiocyanate
g	Gram
g/l	Gram per liter
GAE	Gibberellic acid
GCMS	Gas Chromatography and Mass spectrometry
HPLC	High Performance Liquid Chromatography
IAA	Indole-3-acetic acid
ITS	Internal transcribed spacer
Μ	Molarity
mg	microgram
ml	milliliter
mm	millimeter
mM	milliMolar
Ν	Normality
NaCl	Sodium chloride
nm	Nanometer
NMR	Nuclear magnetic resonance
PCR	Polymerase chain reaction
RNA	Ribonucleic acid
rpm	Rotation per minute
S.E	Standard error
SPSS	Statistical Package for the Social Sciences
TBA	Tetrabutyl alcohol
UPLC	Ultra performance liquid chromatography