CHAPTER-6

$g\eta$ -HOMEOMORPHISM IN TOPOLOGICAL SPACES AND TOPOLOGICAL ORDERED SPACES

6.1. INDRODUCTION

In 1973, Noiri [78] introduced the concept of generalized closed maps in topological spaces. In 1991 Maki et al. [65] introduced g-homeomorphisms and studied their properties. In 2002, Veera Kumar [111] introduced homeomorphism in topological ordered spaces. Many authors like [27, 30, 57, 67, 72, 76, 82, 92, 106] contributed much to develop the concept of homeomorphism in topological spaces.

In this chapter, a new class of $g\eta$ -closed maps, $g\eta$ -open maps and $g\eta$ -homeomorphism in topological spaces and topological ordered spaces are introduced. Also the association of these maps with other existing maps and their properties are studied.

6.2. $g\eta$ -CLOSED MAPS

The notion of $g\eta$ -closed maps are studied in this section.

Definition 6.2.1: A map $a: (X, \tau) \to (Y, \sigma)$ is said to be a $g\eta$ -closed map if the image of every closed set in (X, τ) is $g\eta$ -closed in (Y, σ) .

Example 6.2.2: Let $X = Y = \{e, f, g, h\}$, $\tau = \{X, \varphi, \{g\}, \{e, f\}, \{e, f, g\}\}$ and $\sigma = \{Y, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$. Define $a: (X, \tau) \rightarrow (Y, \sigma)$ as a(e) = e, a(f) = f, a(g) = h, a(h) = g. Then $a(\{h\}) = \{g\}, a(\{g, h\}) = \{g, h\}, a(\{e, f, h\}) = \{e, f, g\}$. Therefore a is $g\eta$ -closed map. Since the image of every closed set in X is $g\eta$ -closed in Y.

Theorem 6.2.3: Let (X,τ) and (Y,σ) be any two topological spaces. Then for a mapping $\mathfrak{a}: (X,\tau) \to (Y,\sigma)$. The following results are true.

(*i*) Every closed map is $g\eta$ -closed map.

- (*ii*) Every α -closed map is $g\eta$ -closed map.
- (*iii*) Every *r*-closed map is $g\eta$ -closed map.
- (*iv*) Every η -closed map is $g\eta$ -closed map.
- (v) Every g-closed map is $g\eta$ -closed map.
- (*vi*) Every g^* -closed map is $g\eta$ -closed map.
- (*vii*) Every αg -closed map is $g\eta$ -closed map.

(*viii*) Every $g\alpha$ -closed map is $g\eta$ -closed map.

Proof: (*i*) Let $a: (X, \tau) \to (Y, \sigma)$ be a closed map and W be a closed set in X, then a(W) is closed in Y and hence $g\eta$ -closed in Y. Thus a is $g\eta$ -closed.

Proof of (ii) to (viii) are similar to (i).

Remark 6.2.4: The following example reveals that the converse of the above theorem need not be true.

Example 6.2.5: (*i*) Let $X = Y = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = f, a(g) = g, a(h) = h. Then the function is $g\eta$ -closed but not closed, r-closed, α -closed, g-closed, α -closed, α

(*ii*) Let $X = Y = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, f, g\}\}$ and $\sigma = \{Y, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = g, a(g) = f, a(h) = h. Then the function is $g\eta$ -closed but not η -closed as the image of closed set $\{e, g, h\}$ in X is $\{e, f, h\}$ which is not η -closed in Y.

Remark 6.2.6: rg-closed map, gpr-closed map, $g\alpha r$ -closed map and $g\eta$ -closed map are not dependent on each other.

Example 6.2.7: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Define $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ as $\mathfrak{a}(e) = f, \mathfrak{a}(f) = e, \mathfrak{a}(g) = g$. Here \mathfrak{a} is $g\eta$ -closed map. But \mathfrak{a} is not rg-closed map, gpr-closed map, $g\alpha r$ -closed map. Since for closed set $\{f\}$ in $X, \mathfrak{a}(\{f\}) = \{e\}$ is $g\eta$ -cloased but not rg-closed, gpr-closed, $g\alpha r$ -closed in Y.

Example 6.2.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = g, a(f) = e, a(g) = f. Here a is rg-closed map, gpr-closed map, gar-closed map. But a is not $g\eta$ -closed map. Since for closed set $\{e, f\}$ in $X, a(\{e, f\}) = \{e, g\}$ is rg-closed, gpr-closed, gar-closed but not $g\eta$ -closed in Y.

Remark 6.2.9: The composition of two $g\eta$ -closed maps need not be a $g\eta$ -closed map as seen from the following example.

Example 6.2.10: Let $X = Y = Z = \{e, f, g, h\}, \quad \tau = \{X, \varphi, \{g\}, \{e, f\}, \{e, f, g\}\},$ $\sigma = \{Y, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$ and $\mu = \{Z, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, f, g\}\}.$ Define $a: (X, \tau) \rightarrow (Y, \sigma)$ be defined as a(e) = f, a(f) = e, a(g) = h, a(h) = g and $b: (Y, \sigma) \rightarrow (Z, \mu)$ be defined as b(e) = f, b(f) = g, b(g) = e, b(h) = h. Then the function a and b are $g\eta$ -closed map but their composition $b \circ a: (X, \tau) \rightarrow (Z, \mu)$ is not $g\eta$ -closed map, since for the closed set $\{e, f, h\}$ in $(X, \tau), (b \circ a)(\{e, f, h\}) =$ $\{e, f, g\}$ is not $g\eta$ -closed in (Z, μ) .

Theorem 6.2.11: Let $a: (X, \tau) \to (Y, \sigma)$ and $b: (Y, \sigma) \to (Z, \mu)$ be functions. Then the following properties hold:

(*i*) If a is closed map and b is $g\eta$ -closed then b \circ a: $(X, \tau) \rightarrow (Z, \mu)$ is $g\eta$ -closed.

(*ii*) If a is continuous and surjective, b is $g\eta$ -closed then b $\circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -closed map.

(*iii*) If a is $g\eta$ -closed and b is $g\eta$ -irresolute, injective then $b \circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -closed map.

(*iv*) If a is $g\eta$ -closed map and b is $g\eta$ -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is continuous.

(v) If a is η -closed map and b is $g\eta$ -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is η -continuous.

(vi) If a is η -closed map and b is $g\eta$ -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is η -irresolute.

(vii) If a is η -closed map and b is $g\eta$ -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is continuous.

(*viii*) If a is irresolute and η -closed map and b is $g\eta$ -continuous then b \circ a: $(X, \tau) \rightarrow (Z, \mu)$ is $g\eta$ -continuous.

(*ix*) If a is $g\eta$ -closed map and b is contra $g\eta$ -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra continuous.

(*x*) If a is η -closed map and b is contra $g\eta$ -continuous then b \circ a: (*X*, τ) \rightarrow (*Z*, μ) is contra η -continuous.

(*xi*) If a is η -closed map and b is contra $g\eta$ -ccontinuous then b $\circ a: (X, \tau) \to (Z, \mu)$ is contra continuous.

(*xii*) If a is η -closed map and b is contra $g\eta$ -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

Proof: (i) Let R be a closed set in X. Then a(R) is a closed set in Y. Hence $b(a(R)) = (b \circ a)(R)$ is a $g\eta$ -closed set in Z. Therefore $b \circ a$ is a $g\eta$ -closed map.

(*ii*) Let R be a closed set in Y. Since a is continuous, $a^{-1}(Y)$ is closed in X and since $b \circ a$ is $g\eta$ -closed, $b \circ a(R) = b(a(R))$ is $g\eta$ -closed in Z. Therefore, $b \circ a$ is a $g\eta$ -closed map.

 $g\eta$ -Homeomorphism in Topological Spaces and Topological Ordered Spaces

(*iii*) Let R be a $g\eta$ -closed set in Z. Since b is $g\eta$ -irresolute, $b^{-1}(R)$ is $g\eta$ -closed set in Y. Since a is $g\eta$ -closed, $(b \circ a)(R) = b(a(R))$ is $g\eta$ -closed in Z. Hence $(b \circ a)$ is $g\eta$ -closed.

(*iv*)Let R be a closed set in Z, since b is a $g\eta$ -continuous, $\mathbb{b}^{-1}(R)$ is $g\eta$ -closed set in Y. Since a is $g\eta$ -closed map, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is continuous.

(v) Let R be a closed set in Z, since b is a $g\eta$ -continuous, $\mathbb{b}^{-1}(R)$ is η -closed set which is also $g\eta$ -closed set in Y. Since a is η -closed map, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is η -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is η -continuous.

(vi) Let R be a closed set in Z, which is η -closed in Z. since **b** is a $g\eta$ -continuous function, $\mathbb{b}^{-1}(R)$ is η -closed which is also $g\eta$ -closed in Y. Since **a** is η -closed, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is η -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is η -irresolute.

(vii) Let R be a closed set in Z, since b is a $g\eta$ -continuous function, $\mathbb{b}^{-1}(R)$ is η -closed set which is also $g\eta$ -closed in Y. Since a is η -closed map, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is continuous.

(viii) Let R be a closed set in Z, since **b** is a $g\eta$ -continuous function, $b^{-1}(R)$ is η -closed set which is also $g\eta$ -closed in Y. Since **a** is irresolute and η -closed map, $a^{-1}(b^{-1}(R)) = (b \circ a)^{-1}(R)$ is $g\eta$ -closed in X and every closed set is $g\eta$ -closed. Hence $b \circ a$ is $g\eta$ -continuous.

(*ix*) Let *R* be an open set in *Z*, since **b** is a contra $g\eta$ -continuous function, $b^{-1}(R)$ is $g\eta$ -closed in *Y*. Since **a** is $g\eta$ -closed map, $a^{-1}(b^{-1}(R)) = (b \circ a)^{-1}(R)$ is closed in *X*. Hence **b** \circ **a** is contra continuous.

(x) Let R be an open set in Z, since b is a contra $g\eta$ -continuous function, $\mathbb{b}^{-1}(R)$ is η -closed in Y. As every η -closed set is $g\eta$ -closed. Since a is η -closed map, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is closed which is η -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is contra η -continuous.

(xi) Let R be an open set in Z, since b is a contra $g\eta$ -continuous function, $b^{-1}(R)$ is η -closed which is also $g\eta$ -closed in Y. Since a is an η -closed map, $a^{-1}(b^{-1}(R)) = (b \circ a)^{-1}(R)$ is closed in X. Hence $b \circ a$ is contra continuous.

(xii) Let R be an open set in Z, since b is a contra $g\eta$ -continuous function, $b^{-1}(R)$ is η -closed which is also $g\eta$ -closed in Y. Since a is η -closed map, $a^{-1}(b^{-1}(R)) = (b \circ a)^{-1}(R)$ is $g\eta$ -closed in X. As every closed set is $g\eta$ -closed. Hence $b \circ a$ is contra $g\eta$ -continuous.

Theorem 6.2.12: Let (X, τ) , (Y, σ) be any two topological spaces, then if:

(*i*) $\mathbb{a}: (X, \tau) \to (Y, \sigma)$ is $g\eta$ -closed and R is a closed subset of (X, τ) then $\mathbb{a}_R: (R, \tau_R) \to (Y, \sigma)$ is $g\eta$ -closed.

(*ii*) $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ is $g\eta$ -closed and $R = \mathfrak{a}^{-1}(S)$, for some closed set S of (Y, σ) , then $\mathfrak{a}_R: (R, \tau_R) \to (Y, \sigma)$ is $g\eta$ -closed.

Proof: (*i*). Let S be a closed set of (R, τ_R) . Then $S = R \cap F$ for some closed set F of (X, τ) and so S is closed in (X, τ) . Since a is $g\eta$ -closed, then a(S) is $g\eta$ -closed in (Y, σ) . But $a(S) = a_R(S)$. So a_R is $g\eta$ -closed in Y. Therefore a_R is a $g\eta$ -closed map.

(*ii*). Let *F* be a closed set of (R, τ_R) . Then $F = R \cap H$ for some closed set *H* of (X, τ) . Now $a_R(F) = a(F) = a(R \cap H) = a(a^{-1}(S) \cap H) = S \cap a(H)$. Since *a* is $g\eta$ -closed, then a(H) is $g\eta$ -closed in (Y, σ) and so $S \cap a(H)$ is $g\eta$ -closed in (Y, σ) . Therefore a_R is a $g\eta$ -closed map.

Theorem 6.2.13: The map $a: (X, \tau) \to (Y, \sigma)$ is $g\eta$ -closed if and only if for each subset *P* of (Y, σ) and for each open set *Q* in (X, τ) containing $a^{-1}(P)$ there is a $g\eta$ -open set *T* of (Y, σ) contains *P* such that $P \subseteq T$ and $a^{-1}(T) \subseteq Q$.

Proof: Suppose a is $g\eta$ -closed. Let $P \subseteq Y$ and Q be an open set of (X,τ) such that $a^{-1}(P) \subseteq Q$. Now X - Q is a closed set in (X,τ) . Since a is $g\eta$ -closed, a(X - Q) is a $g\eta$ -closed set in (Y,σ) . Then T = Y - a(X - Q) is a $g\eta$ -open set in (Y,σ) . $a^{-1}(P) \subseteq Q$.

Q implies $P \subseteq T$ and $a^{-1}(T) = X - a^{-1}(a(X - Q)) \subseteq X - (X - Q) = Q$, That is $a^{-1}(T) \subseteq Q$.

Conversely, let F be a closed set of (X,τ) . Then $\mathbb{a}^{-1}(\mathbb{a}(X-F)) \subseteq (X-F)$ is an open set in (X,τ) . By hypothesis, there exists a $g\eta$ -open set T in (Y,σ) such that $\mathbb{a}(X-F) \subseteq T$ and $\mathbb{a}^{-1}(T) \subseteq (X-F)$ and so $F \subseteq Y - \mathbb{a}^{-1}(T)$. Hence $(Y-T) \subseteq \mathbb{a}(F) \subseteq$ $\mathbb{a}(\mathbb{a}^{-1}(Y-T)) \subseteq (Y-T)$ which implies $\mathbb{a}(F) \subseteq (X-F)$. Since (Y-T) is $g\eta$ -closed, $\mathbb{a}(F)$ is $g\eta$ -closed. That is $\mathbb{a}(F)$ is $g\eta$ -closed in (Y,σ) . Therefore \mathbb{a} is $g\eta$ -closed map.

6.3. $g\eta$ -OPEN MAPS

The notion of $g\eta$ -open maps are studied in this section.

Definition 6.3.1: A map $a: (X, \tau) \to (Y, \sigma)$ is said to be a $g\eta$ -open map if the image of every open set in (X, τ) is $g\eta$ -open in (Y, σ) .

Example 6.3.2: Let $X = Y = \{e, f, g, h\}$, $\tau = \{X, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{e, f\}, \{e, f, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = g, a(g) = f, a(h) = h. Then $a(\{f\}) = \{g\}, a(\{g, h\}) = \{f, h\}, a(\{f, g, h\}) = \{f, g, h\}$. Therefore a is $g\eta$ -open map. Since the image of every open set in X is $g\eta$ -open in Y. **Theorem 6.3.3:** Let (X, τ) and (Y, σ) be a topological spaces. Then for a mapping $a: (X, \tau) \to (Y, \sigma)$. The following results are true.

- (*i*) Every open map is $g\eta$ -open map.
- (*ii*) Every α -open map is $g\eta$ -open map.
- (*iii*) Every *r*-open map is $g\eta$ -open map.
- (*iv*) Every η -open map is $g\eta$ -open map.
- (v) Every g-open map is $g\eta$ -open map.
- (*vi*) Every g^* -open map is $g\eta$ -open map.

(*vii*) Every αg -open map is $g\eta$ -open map.

(*viii*) Every $g\alpha$ -open map is $g\eta$ -open map.

Proof: (*i*). Let $a: (X, \tau) \to (Y, \sigma)$ be an open map and *G* be an open set in *X*, then a(G) is open in *Y* and hence $g\eta$ -open in *Y*. Thus a is $g\eta$ -open.

Proof of (*ii*) to (*viii*) are similar to (*i*).

Remark 6.3.4: The following example reveals that the converse of the above theorem need not be true.

Example 6.3.5: (*i*) Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = f, a(f) = e, a(g) = g. Then the function is $g\eta$ -open but not η -open as the image of open set $\{e\}$ in X is $\{f\}$ which is $g\eta$ -open but not η -open in Y.

(*ii*) Let $= Y = \{e, f, g, h\}$, $\tau = \{X, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f, g\}\}$. Define $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ as $\mathfrak{a}(e) = e, \mathfrak{a}(f) = g, \mathfrak{a}(g) = f$, $\mathfrak{a}(h) = h$. Then the function is $g\eta$ -open but not open, α -open, r-open, g-open, g^* -open, αg -open. Since the image of open set $\{f, g, h\}$ in X is $\{f, g, h\}$ which is $g\eta$ -open but not open, α -open, r-open, g^* -open, αg -open, αg -open in Y.

Remark 6.3.6: rg-open map, gpr-open map, $g\alpha r$ -open map and $g\eta$ -open map are not dependent on each other.

Example 6.3.7: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{g\}, \{e, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = f, a(g) = g. Here a is $g\eta$ -open map. But a is not rg-open map, gpr-open map, $g\alpha r$ -open map. Since for open set $\{f, g\}$ in X, $a(\{f, g\}) = \{f, g\}$ is $g\eta$ -open but not rg-open, gpr-open, $g\alpha r$ -open in Y.

 $g\eta$ -Homeomorphism in Topological Spaces and Topological Ordered Spaces

Example 6.3.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}\{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = f, a(f) = e, a(g) = g. Here a is rg-open map, gpr-open map, gar-open map. But a is not $g\eta$ -open map. Since for open set $\{e, g\}$ in $X, a(\{e, g\}) = \{f, g\}$ is rg-open, gpr-open, gar-open but not $g\eta$ -open in Y.

Remark 6.3.9: The composition of two $g\eta$ -open maps need not be a $g\eta$ -open map as seen from the following example.

Example 6.3.10: Let $X = Y = Z = \{e, f, g\}, \quad \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}, \quad \sigma = \{Y, \varphi, \{f, g\}\}$ and $\mu = \{Z, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ be defined as $a(e) = f, \quad a(f) = e, \quad a(g) = g$ and $b: (Y, \sigma) \to (Z, \mu)$ be defined as $b(e) = f, \quad b(f) = g, \quad b(g) = e$. Then the function a and b are $g\eta$ -open maps but their composition $b \circ a: (X, \tau) \to (Z, \mu)$ is not a $g\eta$ -open map, since for the open set $\{e\}$ in $(X, \tau), \quad (b \circ a)(\{e\}) = \{g\}$ is not $g\eta$ -open in (Z, μ) .

Theorem 6.3.11: For any bijection $a: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent.

(*i*) a^{-1} : (*Y*, σ) \rightarrow (*X*, τ) is $g\eta$ -continuous.

(*ii*) a is a $g\eta$ -open map.

(*iii*) a is a $g\eta$ -closed map.

Proof: (*i*) \Rightarrow (*ii*) Let *Q* be any open set of (*X*, τ). By assumption, $(a^{-1})^{-1}(Q) = a(Q)$ is $g\eta$ -open in (*Y*, σ) and so a is $g\eta$ -open map.

 $(ii) \Rightarrow (iii)$ Let G be a closed set of (X, τ) . Then X - G is open in (X, τ) . By assumption, $\mathfrak{a}(X - G) = X - \mathfrak{a}(G)$ is $g\eta$ -open in (Y, σ) and therefore $\mathfrak{a}(G)$ is $g\eta$ -closed in (Y, σ) . Hence \mathfrak{a} is a $g\eta$ -closed map.

 $(iii) \Rightarrow (i)$ Let G be a closed set of (X, τ) . By assumption, a(G) is $g\eta$ -closed in (Y, σ) . But $a(G) = (a^{-1})^{-1}(G)$ and therefore a^{-1} is $g\eta$ -continuous on (Y, σ) .

Theorem 6.3.12: Let (X, τ) and (Y, σ) be any mapping. If a is a $g\eta$ -open mapping, then for each $x \in X$ and for each neighbourhood A of x in (X, τ) , there exists a $g\eta$ -neighbourhood B of a(x) in (Y, σ) such that $B \subseteq a(A)$.

Proof: Let $x \in X$ and A be an arbitrary neighbourhood of x. Then there exists an open set G in (X, τ) such that $x \in G \subseteq A$. By assumption, $\mathbb{a}(G)$ is a $g\eta$ -open set in (Y, σ) . Further, $\mathbb{a}(x) \in \mathbb{a}(G) \subseteq \mathbb{a}(A)$, clearly $\mathbb{a}(A)$ is a $g\eta$ -neighbourhood of $\mathbb{a}(x)$ in (Y, σ) and so the theorem holds, by taking $B = \mathbb{a}(G)$.

Theorem 6.3.13: Let *X*, *Y* and *Z* be topological spaces.

(*i*) If $a: (X, \tau) \to (Y, \sigma)$ is an open map and $b: (Y, \sigma) \to (Z, \mu)$ is a $g\eta$ -open map, then $b \circ a: (X, \tau) \to (Z, \mu)$ is a $g\eta$ -open map.

(*ii*) If $a: (X, \tau) \to (Y, \sigma)$ and $b: (Y, \sigma) \to (Z, \mu)$ are open maps then $b \circ a: (X, \tau) \to (Z, \mu)$ is a $g\eta$ -open map.

(*iii*) If $a: (X, \tau) \to (Y, \sigma)$ is an open map and $b: (Y, \sigma) \to (Z, \mu)$ is an η -open map, then $b \circ a: (X, \tau) \to (Z, \mu)$ is a $g\eta$ -open map.

Proof: (*i*) Let *Q* be an open set in *X*. Since a is an open map, a(Q) is open in *Y*. Then $b(a(Q)) = (b \circ a)(Q)$ is a $g\eta$ -open set in *Z*. Therefore, $b \circ a$ is a $g\eta$ -open map.

(*ii*) Let Q be an open set in X. Since a is an open map, a(Q) is open in Y. Also, since b is an open map, b(a(Q)) is open in Z. That is, $(b \circ a)(Q)$ is an open set in Z. And every open set is $g\eta$ -open, $(b \circ a)(Q)$ is a $g\eta$ -open set in Z. Therefore, $b \circ a$ is a $g\eta$ -open map.

(*iii*) Let Q be an open set in X. Since a is an open map, a(Q) is open in Y. Then b(a(Q)) is an η -open in Z. That is, $(b \circ a)(Q)$ is an η -open set in Z. As every η -open set is $g\eta$ -open, $(b \circ a)(Q)$ is a $g\eta$ -open set in Z. Hence, $b \circ a$ is a $g\eta$ -open map.

Theorem 6.3.14: The map $a: (X, \tau) \to (Y, \sigma)$ is $g\eta$ -open if and only if for any subset P of (Y, σ) and any closed set F in (X, τ) containing $a^{-1}(P)$, there exists a $g\eta$ -closed set S of (Y, σ) containing P such that $a^{-1}(S) \subseteq F$.

Proof: Suppose a is $g\eta$ -open map. Let $P \subseteq Y$ and F be a closed set of (X, τ) such that $a^{-1}(P) \subseteq F$. Now X - F is an open set in (X, τ) . Since a is $g\eta$ -open, a(X - F) is a $g\eta$ -open set in (Y, σ) . Then S = Y - a(X - F) is a $g\eta$ -closed set in (Y, σ) . $a^{-1}(P) \subseteq F$ implies $P \subseteq S$ and $a^{-1}(S) = X - a(a^{-1}(X - F)) \subseteq X - (X - F) = F$. That is $a^{-1}(S) \subseteq F$.

Conversely, let Q be an open set of (X, τ) . Then $\mathbb{a}^{-1}(X - \mathbb{a}(Q)) \subseteq X - Q$ and X - Q is a closed set in (X, τ) . By hypothesis, there exists a $g\eta$ -closed set S in (Y, σ) such that $X - \mathbb{a}(Q) \subseteq S$ and $\mathbb{a}^{-1}(S) \subseteq X - Q$ and so $Q \subseteq X - \mathbb{a}^{-1}(S)$. Hence $Y - S \subseteq \mathbb{a}(Q) \subseteq \mathbb{a}(Y - \mathbb{a}^{-1}(S))$ which implies $\mathbb{a}(Q) \subseteq Y - S$. Since Y - S is $g\eta$ -open, $\mathbb{a}(Q)$ is $g\eta$ -open in (Y, σ) and therefore \mathbb{a} is $g\eta$ -open map.

6.4. $g\eta$ -HOMEOMORPHISM

Definition 6.4.1: A bijection $a: (X, \tau) \to (Y, \sigma)$ is called an η -homeomorphism if a is both η -continuous map and η -open map. That is, both a and a^{-1} are η -continuous map.

Definition 6.4.2: A bijection $a: (X, \tau) \to (Y, \sigma)$ is called a $g\eta$ -homeomorphism if a is both $g\eta$ -continuous map and $g\eta$ -open map. That is, both a and a^{-1} are $g\eta$ -continuous map.

Example 6.4.3: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{g\}, \{e, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = g, a(f) = f, a(g) = e. Here the sets $\{f\}$ $\{e, f\}, \{f, g\}$ are closed in Y. Then $a^{-1}(\{f\}) = \{f\}, a^{-1}(\{e, f\}) = \{f, g\}$ $a^{-1}(\{f, g\}) = \{e, f\}$ are $g\eta$ -closed in X. Therefore a is $g\eta$ -continuous. And the sets $\{e\}, \{f, g\}$ are open in X. Then $a(e) = g, a(f, g) = \{e, f\}$ are $g\eta$ -open in Y. Therefore a is $g\eta$ -nopen in Y. **Theorem 6.4.4:** Let (X, τ) and (Y, σ) be a topological spaces. Then for a mapping $a: (X, \tau) \to (Y, \sigma)$. The following results are true.

(*i*) Every homeomorphism is $g\eta$ -homeomorphism.

(*ii*) Every α -homeomorphism is $g\eta$ -homeomorphism.

(*iii*) Every *r*-homeomorphism is $g\eta$ -homeomorphism.

(*iv*) Every η -homeomorphism is $g\eta$ -homeomorphism.

(v) Every g-homeomorphism is $g\eta$ -homeomorphism.

(vi) Every g^* -homeomorphism is $g\eta$ -homeomorphism.

(vii) Every αg -homeomorphism is $g\eta$ -homeomorphism.

(*viii*) Every $g\alpha$ -homeomorphism is $g\eta$ -homeomorphism.

Proof: (*i*) Let $a: (X, \tau) \to (Y, \sigma)$ be a homeomorphism. Then a and a^{-1} are continuous and a is bijection. Since every continuous function is $g\eta$ -continuous, a and a^{-1} are $g\eta$ -continuous. Hence a is $g\eta$ -homeomorphism.

Proof of (ii) to (viii) are similar to (i).

Remark 6.4.5: The following example reveals that the converse of the above theorem need not be true.

(i) Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{f, g\}\}$. Define $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ as $\mathfrak{a}(e) = f, \mathfrak{a}(f) = e, \mathfrak{a}(g) = g$. Then the function is $g\eta$ -homeomorphism. But $\mathfrak{a}^{-1}(\{e\}) = \{f\}$ is $g\eta$ -closed but not closed in X. Here the set $\{e\}$ is closed in Y. Therefore \mathfrak{a} is not $g\eta$ -continuous. Hence \mathfrak{a} is $g\eta$ -homeomorphism but not homeomorphism.

(*ii*) Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = f, a(g) = g. Then the function is $g\eta$ -homeomorphism. But $a(\{e, g\}) = \{e, g\}$ is $g\eta$ -open but not r-open in Y. Here the set $\{e, g\}$ is open in X. Therefore a is $g\eta$ -open map but not r-open map. Hence a is not r-homeomorphism.

(*iii*) Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{g\}, \{e, g\}\}$. Define $a : (X, \tau) \rightarrow (Y, \sigma)$ as a(e) = g, a(f) = f, a(g) = e. Then the function is $g\eta$ -homeomorphism. But $a(\{f, g\}) = \{e, f\}$ is $g\eta$ -open but not g-open, g^* -open, α -open, αg -open, $g\alpha$ -open in Y. Here the set $\{f, g\}$ is open in X. Therefore a is $g\eta$ -open map but not g-open, g^* -open, α -open, αg -open, $g\alpha$ -open map. Hence a is notg-homeomorphism, g^* -homeomorphism, α -homeomorphism, αg -homeomorphism.

(*iv*) Let $X = Y = \{e, f, g, h\}$, $\tau = \{X, \varphi, \{g\}, \{e, f\}, \{e, f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, f, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = f, a(f) = e, a(g) = g, a(h) = h. Then the function is $g\eta$ -homeomorphism. But $a(\{g\}) = \{g\}$ is $g\eta$ -open but not η -open in Y. Here the set $\{g\}$ is open in X. Therefore a is not η -homeomorphism.

Remark 6.4.6: rg-homeomorphism, gpr-homeomorphism, $g\alpha r$ -homeomorphism and $g\eta$ -homeomorphism are not dependent on each other.

Example 6.4.7: Let $X = Y = \{e, f, g, h\}, \tau = \{X, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$ and $\sigma = \{Y, \varphi, \{g\}, \{e, f\}, \{e, f, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = f, a(g) = g, a(h) = h. Here a is $g\eta$ -continuous. But a is not rg-continuous, gpr-continuous, gar-continuous. Since for the closed set, $\{g, h\}$ in $Y, a^{-1}(\{g, h\}) = \{g, h\}$ is $g\eta$ -closed but not rg-closed, gpr-closed in X. Hence a is $g\eta$ -homeomorphism but not rg-homeomorphism, gpr-homeomorphism.

Example 6.4.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{f, g\}\}$. Define a: $(X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = g, a(g) = f. Here a is *rg*-continuous, *gpr*-continuous, *gar*-continuous. But a is not *gη*-continuous. Since for the closed set, $\{e\}$ in $Y, a^{-1}(\{e\}) = \{e\}$ is *rg*-closed, *gpr*-closed, *gar*-closed but not *gη*-closed in X. Hence a is rg-homeomorphism, gpr-homeomorphism, $g\alpha r$ -homeomorphism but not $g\eta$ -homeomorphism.

Remark 6.4.9: The composition of two $g\eta$ -homeomorphism need not be $g\eta$ -homeomorphism as seen from the following example.

Example 6.4.10: Let $X = Y = Z = \{e, f, g\}, \tau = \{X, \varphi, \{f, g\}\}, \sigma = \{Y, \varphi, \{e\}\}$ and $\mu = \{Z, \varphi, \{e\}, \{f, g\}\}$. Define $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ be defined as $\mathfrak{a}(e) = f, \mathfrak{a}(f) = g, \mathfrak{a}(g) = e$ and $\mathfrak{b}: (Y, \sigma) \to (Z, \mu)$ be defined as $\mathfrak{b}(e) = f, \mathfrak{b}(f) = e, \mathfrak{b}(g) = g$. Then the function \mathfrak{a} and \mathfrak{b} are $g\eta$ -continuous but their composition $\mathfrak{b} \circ \mathfrak{a}: (X, \tau) \to (Z, \mu)$ is not $g\eta$ -continuous, since for the closed set $\{f, g\}$ in (Z, μ) , $(\mathfrak{b} \circ \mathfrak{a})^{-1}(\{f, g\}) = \{f, g\}$ is not $g\eta$ -closed in (X, τ) .

Theorem 6.4.11: Let $a: (X, \tau) \to (Y, \sigma)$ be a bijective and $g\eta$ -continuous map. Then the following statements are equivalent.

- (*i*) a is $g\eta$ -open map.
- (*ii*) a is $g\eta$ -homeomorphism.
- (*iii*) a is $g\eta$ -closed map.

Proof: (*i*) \Rightarrow (*ii*) Let *F* be a closed set in (*X*, τ). Then {*X* - *F*} is open in (*X*, τ). Since a is $g\eta$ -open, then a(X - F) is $g\eta$ -open in (*Y*, σ). This implies *Y* - a(F) is $g\eta$ -open in (*Y*, σ). That is, a(F) is $g\eta$ -closed in (*Y*, σ). Thus a $g\eta$ -closed. Further $(a^{-1})^{-1}(F) = a(F)$ is $g\eta$ -closed in (*Y*, σ). Thus $a^{-1} g\eta$ -continuous. By assumption a is $g\eta$ -continuous and bijective. Hence a is $g\eta$ -homeomorphism.

 $(ii) \Rightarrow (iii)$ Suppose a is a $g\eta$ -homeomorphism. Then a is bijective, a and a^{-1} are $g\eta$ -continuous. Let a be a closed set in (X, τ) . Since a^{-1} is $g\eta$ -continuous. Then $(a^{-1})^{-1}(F) = a(F)$ is $g\eta$ -closed in (Y, σ) . Thus a is $g\eta$ -closed.

 $(iii) \Rightarrow (i)$ Let a be a $g\eta$ -closed map. Let G be an open in X. Then X - G is closed in (X, τ) . Since a is $g\eta$ -closed, a(X - G) is $g\eta$ -closed in (Y, σ) . This implies Y - a(G) is $g\eta$ -closed in (Y, σ) . Therefore a(G) is $g\eta$ -open in (Y, σ) .

6.5 $xg\eta$ -CLOSED MAPS

In this section the concept of $xg\eta$ -closed maps are introduced and their basic properties are obtained.

Definition 6.5.1: A function $a: (X, \tau, \leq) \to (Y, \sigma, \leq)$ is said to be a $x\eta$ -closed map if the image of every closed set in (X, τ, \leq) is a $x\eta$ -closed set in (Y, σ, \leq) .

Definition 6.5.2: A function $a: (X, \tau, \leq) \to (Y, \sigma, \leq)$ is said to be a $xg\eta$ -closed map if the image of every closed set in (X, τ, \leq) is a $xg\eta$ -closed set in (Y, σ, \leq) .

Theorem 6.5.3: Every *i*-closed, $i\alpha$ -closed, $i\eta$ -closed maps are $ig\eta$ -closed map, but not conversely.

Proof: The proof follows from the fact that every *i*-closed, $i\alpha$ -closed, $i\eta$ -closed set is an $ig\eta$ -closed set [3.5.2, 3.5.6]. Then every *i*-closed, $i\alpha$ -closed, $i\eta$ -closed maps are $ig\eta$ -closed map.

Example 6.5.4: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}, \le = \{(e, e), (f, f), (g, g), (e, f), (g, f)\}$. Define a map $\mathfrak{a}: (X, \tau, \le) \to (Y, \sigma, \le)$ by $\mathfrak{a}(e) = e, \mathfrak{a}(f) = g, \mathfrak{a}(g) = f$. This map is $ig\eta$ -closed map, but not *i*-closed, *i* α -closed, *i* η -closed map. Since for the closed set $W = \{e, g\}$ in $(X, \tau, \le), \mathfrak{a}(W) = \{e, f\}$ is $ig\eta$ -closed but not *i*-closed, *i* α -closed, *i* η -closed in (Y, σ, \le) .

Theorem 6.5.5: Every *d*-closed, $d\alpha$ -closed, $d\eta$ -closed maps are $dg\eta$ -closed map, but not conversely.

Proof: The proof follows from the fact that every *d*-closed, $d\alpha$ -closed, $d\eta$ -closed sets are $dg\eta$ -closed set [3.5.8, 3.5.10]. Then every *d*-closed, $d\alpha$ -closed, $d\eta$ -closed maps are $dg\eta$ -closed map.

Example 6.5.6: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \le = \{(e, e), (f, f), (g, g), (e, f), (f, g), (e, g)\}$. Define a map $a: (X, \tau, \le) \to (Y, \sigma, \le)$

by a(e) = g, a(f) = f, a(g) = e. This map is $dg\eta$ -closed map, but not d-closed, $d\alpha$ -closed, $d\eta$ -closed map, since for the closed set $W = \{f, g\}$ in (X, τ, \leq) , $a(W) = \{e, f\}$ is $dg\eta$ -closed but not d-closed, $d\alpha$ -closed, $d\eta$ -closed in (Y, σ, \leq) .

Theorem 6.5.7: Every *b*-closed, $b\alpha$ -closed maps are $bg\eta$ -closed map, but not conversely.

Proof: The proof follows from the fact that every *b*-closed, $b\alpha$ -closed sets are $bg\eta$ -closed set [3.5.14]. Then every *b*-closed, $b\alpha$ -closed maps are $bg\eta$ -closed map.

Example 6.5.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}, \leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $a: (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by a(e) = f, a(f) = e, a(g) = g. This map is $bg\eta$ -closed map, but not *b*-closed, $b\alpha$ -closed map, since for the closed set $W = \{e\}$ in $(X, \tau, \leq), a(W) = \{f\}$ is $bg\eta$ -closed but not *b*-closed, $b\alpha$ -closed in (Y, σ, \leq) .

Theorem 6.5.9: Every $b\eta$ -closed map is $bg\eta$ -closed map, but not conversely.

Proof: The proof follows from the fact that every $b\eta$ -closed set is $bg\eta$ -closed set [3.5.18]. Then every $b\eta$ -closed maps are $bg\eta$ -closed map.

Example 6.5.10: Let $X = Y = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}$, $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathbb{A}(e) = f$, $\mathbb{A}(f) = e, \mathbb{A}(g) = g$. This map is $bg\eta$ -closed map, but not $b\eta$ -closed map, since for the closed set $W = \{f, g\}$ in (X, τ, \leq) , $\mathbb{A}(W) = \{e, g\}$ is $bg\eta$ -closed but not $b\eta$ -closed in (Y, σ, \leq) .

6.6 $xg\eta$ -OPEN MAPS

Definition 6.6.1: A function $a: (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be a $x\eta$ -open map if the image of every open set in (X, τ, \le) is a $x\eta$ -open set in (Y, σ, \le) .

Definition 6.6.2: A map $a: (X, \tau, \leq) \to (Y, \sigma, \leq)$ is said to be a $xg\eta$ -open map if the image of every open set in (X, τ, \leq) is a $xg\eta$ -open set in (Y, σ, \leq) .

Theorem 6.6.3: Every *i*-open, $i\alpha$ -open, $i\eta$ -open maps are $ig\eta$ -open map, but not conversely.

Proof: The proof follows from the fact that every *i*-open, $i\alpha$ -open, $i\eta$ -open sets are $ig\eta$ -open set [3.5.2, 3.5.6]. Then every *i*-open, $i\alpha$ -open, $i\eta$ -open maps are $ig\eta$ -open map.

Example 6.6.4: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \le = \{(e, e), (f, f), (g, g), (e, f), (f, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \le) \to (Y, \sigma, \le)$ by $\mathbb{A}(e) = g$, $\mathbb{A}(f) = f$, $\mathbb{A}(g) = e$. This map is $ig\eta$ -open map, but not *i*-open, $i\alpha$ -open, $i\eta$ -open map, since for the open set $W = \{f, g\}$ in $(X, \tau, \le), \mathbb{A}(W) = \{e, f\}$ is $ig\eta$ -open but not *i*-open, $i\alpha$ -open, $i\eta$ -open in (Y, σ, \le) .

Theorem 6.6.5: Every *d*-open, $d\alpha$ -open maps are $dg\eta$ -open map, but not conversely.

Proof: The proof follows from the fact that every *d*-open, $d\alpha$ -open sets are $dg\eta$ -open set [3.5.8]. Then every *d*-open, $d\alpha$ -open maps are $dg\eta$ -open map.

Example 6.6.6: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}, \leq = \{(e, e), (f, f), (g, g), (e, f), (g, f)\}$. Define a map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$) by $\mathbb{A}(e) = g$, $\mathbb{A}(f) = f$, $\mathbb{A}(g) = e$. This map is $dg\eta$ -open map, but not d-open, $d\alpha$ -open map, since for the open set $W = \{e, f\}$ in $(X, \tau, \leq), \mathbb{A}(W) = \{f, g\}$ is $dg\eta$ -open but not d-open, $d\alpha$ -open in (Y, σ, \leq) .

Theorem 6.6.7: Every $d\eta$ -open map is $dg\eta$ -open map, but not conversely.

Proof: The proof follows from the fact that every $d\eta$ -open set is $dg\eta$ -open set [3.5.10]. Then every $d\eta$ -open map is $dg\eta$ -open map.

Example 6.6.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{g\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}, \leq = \{(e, e), (f, f), (g, g), (e, f), (g, f)\}$. Define a map $a: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by a(e) = g, a(f) = e, a(g) = f. This map is $dg\eta$ -open map, but not $d\eta$ -open map, since for the open set $W = \{g\}$ in $(X, \tau, \leq), a(W) = \{f\}$ is $dg\eta$ -open but not $d\eta$ -open in (Y, σ, \leq) .

Theorem 6.6.9: Every *b*-open, $b\alpha$ -open maps are $bg\eta$ -open map, but not conversely.

Proof: The proof follows from the fact that every *b*-open, $b\alpha$ -open sets are $bg\eta$ -open set [3.5.14]. Then every *b*-open, $b\alpha$ -open maps are $bg\eta$ -open map.

Example 6.6.10: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}, \leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathbb{A}(e) = f, \mathbb{A}(f) = e, \mathbb{A}(g) = g$. This map is $bg\eta$ -open map, but not *b*-open, $b\alpha$ -open map, since for the open set $W = \{f, g\}$ in $(X, \tau, \leq), \mathbb{A}(W) = \{e, g\}$ is $bg\eta$ -open but not *b*-open, $b\alpha$ -open in (Y, σ, \leq) .

Theorem 6.6.11: Every $b\eta$ -open map is $bg\eta$ -open map, but not conversely.

Proof: The proof follows from the fact that every $b\eta$ -open set is $bg\eta$ -open set [3.5.18]. Then every $b\eta$ -open map is $bg\eta$ -open map.

Example 6.6.12: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}, \le = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \le) \to (Y, \sigma, \le)$ by $\mathbb{A}(e) = f$, $\mathbb{A}(f) = e, \mathbb{A}(g) = g$. This map is $bg\eta$ -open map, but not $b\eta$ -open map, since for the open set $W = \{e\}$ in $(X, \tau, \le), \mathbb{A}(W) = \{f\}$ is $bg\eta$ -open but not $b\eta$ -open in (Y, σ, \le) .

6.7 $xg\eta$ -HOMEOMORPHISM

Definition 6.7.1: A bijection map $a: (X, \tau, \le) \to (Y, \sigma, \le)$ is called $x\eta$ -homeomorphism if a is both $x\eta$ -continuous map and $x\eta$ -open map.

Definition 6.7.2: A bijection map $a: (X, \tau, \le) \to (Y, \sigma, \le)$ is called $xg\eta$ -homeomorphism if a is both $xg\eta$ -continuous map and $xg\eta$ -open map.

Theorem 6.7.3: Every *i*-homeomorphism, $i\alpha$ -homeomorphism, maps are $ig\eta$ -homeomorphism map, but not conversely.

Proof: The proof follows from the fact that every *i*-continuous, $i\alpha$ -continuous, maps are $ig\eta$ -continuous map [4.4.3, 4.4.5]. Also every *i*-open map, $i\alpha$ -open maps are $ig\eta$ -open map [6.6.3].

Example 6.7.4: Let $X = Y = \{e, f, g\}, \quad \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathfrak{a}: (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by $\mathfrak{a}(e) = f, \mathfrak{a}(f) = e, \mathfrak{a}(g) = g$. This map is $ig\eta$ -continuous, but not an *i*-continuous, *i* α -continuous, since for the closed set $W = \{e\}$ in $(Y, \sigma, \leq), \mathfrak{a}^{-1}(W) = \{f\}$ is $ig\eta$ -closed but not an *i*-closed, *i* α -closed in (X, τ, \leq) .

Theorem 6.7.5: Every $i\eta$ -homeomorphism map is $ig\eta$ - homeomorphism map, but not conversely.

Proof: The proof follows from the fact that every $i\eta$ -continuous map is $ig\eta$ -continuous map [4.4.5]. Also every $i\eta$ -open map is $ig\eta$ -open map [6.6.3].

Example 6.7.6: Let $X = Y = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}$, $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathbb{A}(e) = f$, $\mathbb{A}(f) = e, \mathbb{A}(g) = g$. This map is $ig\eta$ -continuous, but not an $i\eta$ -continuous, since for the closed set $W = \{f, g\}$ in $(Y, \sigma, \leq), \mathbb{A}^{-1}(W) = \{e, g\}$ is not $i\eta$ -closed in (X, τ, \leq) .

Theorem 6.7.7: Every *d*-homeomorphism, $d\alpha$ -homeomorphism maps are $dg\eta$ -homeomorphism map, but not conversely.

Proof: The proof follows from the fact that every *d*-continuous, $d\alpha$ -continuous maps are $dg\eta$ -continuous map [4.4.9]. Also every *d*-open map, $d\alpha$ -open maps are $dg\eta$ -open map [6.6.5].

Example 6.7.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathfrak{a}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathfrak{a}(e) = f, \mathfrak{a}(f) = e, \mathfrak{a}(g) = g$. This map is $dg\eta$ -continuous, but not d-continuous, $d\alpha$ -continuous, since for the closed set $W = \{e\}$ in $(Y, \sigma, \leq), \mathfrak{a}^{-1}(W) = \{f\}$ is $dg\eta$ -closed but not d-closed, $d\alpha$ -closed in (X, τ, \leq) .

Theorem 6.7.9: Every $d\eta$ -homeomorphism map is $dg\eta$ -homeomorphism map, but not conversely.

 $g\eta$ -Homeomorphism in Topological Spaces and Topological Ordered Spaces

Proof: The proof follows from the fact that every $d\eta$ -continuous maps are $dg\eta$ -continuous map [4.4.9]. Also every $d\eta$ -open map is are $dg\eta$ -open map [6.6.7].

Example 6.7.10: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathbb{A}(e) = f$, $\mathbb{A}(f) = e, \mathbb{A}(g) = g$. This map is $dg\eta$ -continuous, but not $d\eta$ -continuous, since for the closed set $W = \{f, g\}$ in $(Y, \sigma, \leq), \mathbb{A}^{-1}(W) = \{e, g\}$ is $dg\eta$ -closed but not $d\eta$ -closed in (X, τ, \leq) .

Theorem 6.7.11: Every $b\alpha$ -homeomorphism, $b\eta$ -homeomorphism, maps are $bg\eta$ -homeomorphism map, but not conversely.

Proof: The proof follows from the fact that every $b\alpha$ -continuous, $b\eta$ -continuous maps are $bg\eta$ -continuous map [4.4.11]. Also every $b\alpha$ -open map, $b\eta$ -open maps are $bg\eta$ -open map [6.6.9, 6.6.11].

Example 6.7.12: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \le = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \le) \to (Y, \sigma, \le)$ by $\mathbb{A}(e) = f$, $\mathbb{A}(f) = e$, $\mathbb{A}(g) = g$. This map is $bg\eta$ -continuous, but not $b\alpha$ -continuous, $b\eta$ -continuous, since for the closed set $W = \{f, g\}$ in $(Y, \sigma, \le), \mathbb{A}^{-1}(W) = \{e, g\}$ is $bg\eta$ -closed but not bsemi-closed, $b\alpha$ -closed, $b\eta$ -closed in (X, τ, \le) .

Theorem 6.7.13: Every *b*-homeomorphism map is $bg\eta$ -homeomorphism map, but not conversely.

Proof: The proof follows from the fact that every *b*-continuous map is $bg\eta$ -continuous map [4.4.11]. Also every *b*-open map is $bg\eta$ -open map [6.6.9].

Example 6.7.14: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathbb{A}(e) = f$, $\mathbb{A}(f) = e$, $\mathbb{A}(g) = g$. This map is $bg\eta$ -continuous, but not *b*-continuous, since for the closed set $W = \{e\}$ in $(Y, \sigma, \leq), \mathbb{A}^{-1}(W) = \{f\}$ is $bg\eta$ -closed but not *b*-closed in (X, τ, \leq) .

CHAPTER-7

$g\eta$ -SEPARATION AXIOMS IN TOPOLOGICAL SPACES

7.1. INDRODUCTION

In 1943, Shamin [97] introduced the separation axioms in topological spaces. Ekici, Jafari, Kar and Bhattacharyya [37, 46, 50] introduced some weak separation axioms in topological spaces. Many authors [1, 3, 9, 17, 18, 53, 73] contributed much to develop the separation axioms to the topological spaces.

In this chapter, a new class of separation axioms in topological spaces using $g\eta$ -closed sets are framed. Also the concept of $g\eta$ - T_k spaces for $k = 0, 1, 2 g\eta$ - D_k spaces for k = 0, 1, 2 and $g\eta$ - R_k spaces for k = 0, 1 and some of their properties are also investigated.

7.2. $g\eta$ -SEPARATION AXIOMS

Definition 7.2.1: A topological space (X,τ) is said to be

(*i*) $g\eta T_0$ if for each pair of distinct points k, l in X, there exists a $g\eta$ -open set G such that either $k \in G$ and $l \notin G$ or $k \notin G$ and $l \in G$.

(*ii*) $g\eta T_1$ if for each pair of distinct points k, l in X, there exists two $g\eta$ -open sets G and H such that $k \in G$ but $l \notin G$ and $l \in H$ but $k \notin H$.

(*iii*) $g\eta T_2$ if for each pair of distinct points k, l in X, there exists two disjoint $g\eta$ -open sets G and H containing k and l respectively.

Example 7.2.2: (*i*). Let $X = \{e, f, g\}$, $\tau = \{X, \varphi, \{f, g\}\}$. Here $g\eta$ -open sets are $\{X, \varphi, \{f\}, \{g\}, \{f, g\}\}$. Since for the distinct points f and g, there exists a $g\eta$ -open set $G = \{f\}$ such that $f \in G$ and $g \notin G$ or $G = \{g\}$ such that $f \notin G$ and $g \in G$. Therefore X is $g\eta T_0$ space.

(*ii*) Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$. Here $g\eta$ -open sets are $\{X, \varphi, \{e\}, \{f\}, \{g\}, \{e, f\}, \{e, g\}\}$. Since for the distinct points e and g, there exists two $g\eta$ -open sets

 $G = \{e\}$ and $H = \{g\}$ such that $e \in G$ but $g \notin G$ and $e \notin H$ but $g \in H$. In a similar manner other pairs of distinct points may also be discussed. Therefore X is $g\eta T_1$ space.

(*iii*) Let $X = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}\}$. Here $g\eta$ -open sets are $\{X, \varphi, \{e\}, \{f\}, \{g\}, \{e, f\}, \{e, g\}\}$. Since for the distinct points e and g, there exists two disjoint $g\eta$ -open set $G = \{e\}$ and $H = \{g\}$ containing $\{e\}$ and $\{g\}$ satisfying $g\eta T_2$ conditions. And this is true for other pair of distinct points. Therefore X is $g\eta T_2$ space.

Remark 7.2.3: Let (X,τ) be a topological space, then the following are true:

- (*i*) Every $g\eta T_2$ space is $g\eta T_1$.
- (*ii*) Every $g\eta T_1$ space is $g\eta T_0$.

Theorem 7.2.4: A topological space (X,τ) is $g\eta T_0$ if and only if for any two distinct points k, l of X, $g\eta cl(\{k\}) \neq g\eta(\{l\})$.

Proof: Necessity: Let (X,τ) be a $g\eta T_0$ space and k, l be any two distinct points of X. There exists a $g\eta$ -open set G containing k or l, say k but not l. Then X - G is a $g\eta$ -closed set which does not contain k but contains l. Since $g\eta cl(\{l\})$ is the smallest $g\eta$ -closed set containing l, $g\eta cl(\{l\}) \subseteq X - G$ and therefore $k \notin g\eta cl(\{l\})$. Consequently $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$.

Sufficiency: Suppose that $k, l \in X, k \neq l$ and $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$. Let *m* be a point of *X* such that $m \in g\eta cl(\{k\})$ but $m \notin g\eta cl(\{l\})$. We claim that $k \notin g\eta cl(\{l\})$. For if $k \in g\eta cl(\{l\})$ then $g\eta cl(\{k\}) \subseteq g\eta cl(\{l\})$. This contradicts the fact that $m \notin g\eta cl(\{l\})$. Consequently *k* belongs to the $g\eta$ -open set $X - g\eta cl(\{l\})$ to which *l* does not belong to. Hence (X, τ) is a $g\eta T_0$ space.

Theorem 7.2.5: In a topological space (X,τ) , if the singletons are $g\eta$ -closed then X is $g\eta T_1$ space and the converse is true if $G\eta O(X,\tau)$ is closed under arbitrary union.

$g\eta$ -Separation Axioms in Topological Spaces

Proof: Let $\{m\}$ is $g\eta$ -closed for every $m \in X$. Let $k, l \in X$ with $k \neq l$. Now $k \neq l$ implies $l \in X - \{k\}$. Hence $X - \{k\}$ is a $g\eta$ -open set that contains l but not k. Similarly $X - \{l\}$ is a $g\eta$ -open set containing k but not l. Therefore X is a $g\eta T_1$ space.

Conversely, let (X,τ) be $g\eta T_1$ and k be any point of X. Choose $l \in X - \{k\}$ then $k \neq l$ and so there exists a $g\eta$ -open set G such that $l \in G$ but $k \notin G$. Consequently $l \in G \subseteq X - \{k\}$, that is $X - \{k\} = U\{U_l : l \in X - \{k\}\}$ which is $g\eta$ -open. Hence $\{k\}$ is $g\eta$ -closed. Hence the result is true for any singleton set.

Theorem 7.2.6: For a topological space (X,τ) . The following results are equivalent to each other.

(*i*) X is $g\eta T_2$.

(*ii*) Let $k \in X$. For each $l \neq k$, there exists a $g\eta$ -open set G containing k such that $l \notin g\eta cl(\{G\})$.

(*iii*) For each $k \in X$, $\cap \{g\eta cl(\{G\}): G \in G\eta O(X, \tau) \text{ and } k \in G\} = \{k\}.$

Proof: (*i*) \Rightarrow (*ii*) Let $k \in X$, and for any $l \in X$ such that $k \neq l$, there exists disjoint $g\eta$ -open sets G and H containing k and l respectively, since X is $g\eta T_2$. So $G \subseteq X - H$. Therefore, $g\eta cl(\{G\}) \subseteq X - H$. So $l \notin g\eta cl(\{G\})$.

 $(ii) \Rightarrow (iii)$ If possible for some $l \neq k$, $l \in \cap \{g\eta cl(\{G\}): G \in G \eta O(X, \tau) \text{ and } k \in G\}$. This implies $l \in g\eta cl(\{G\})$ for every $g\eta$ -open set G containing k, which contradicts (*ii*) Hence $\cap \{g\eta cl(\{G\}): G \in G \eta O(X, \tau) \text{ and } k \in G\} = \{k\}.$

 $(iii) \Rightarrow (i)$ Let $k, l \in X$ and $k \neq l$. Then there exists at least one $g\eta$ -open set G containing k such that $l \notin g\eta cl(\{G\})$. Let $H = X - g\eta cl(\{G\})$, then $l \in H$ and $k \in G$ and also $G \cap H = \varphi$. Therefore X is $g\eta T_2$.

Definition 7.2.7: A subset *R* of a topological space *X* is called a $g\eta$ -difference set (briefly $g\eta D$ set) if there exists $G, H \in G \eta O(X, \tau)$ such that $G \neq X$ and R = G - H.

Theorem 7.2.8: Every proper $g\eta$ -open set is a $g\eta D$ set.

Proof: Let G be a $g\eta$ -open set different from X. Take $H = \varphi$. Then G = G - H is a $g\eta D$ set. But, the converse is not true as seen in the following example.

Example 7.2.9: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$. Here $g\eta$ -open sets are $\{X, \varphi, \{e\}, \{g\}, \{e, f\}, \{e, g\}, \{f, g\}\}$ then $G = \{e, f\} \neq X$ and $H = \{e, g\}$ are $g\eta$ -open sets in X. Let $R = G - H = \{e, f\} - \{e, g\} = \{f\}$. Then $R = \{f\}$ is a $g\eta$ D set but it is not $g\eta$ -open.

Definition 7.2.10: A topological space (X,τ) is said to be

(*i*) $g\eta D_0$ if for any pair of distinct points k and l of X there exists a $g\eta D$ set of X containing k but not l or a $g\eta D$ set of X containing l but not k.

(*ii*) $g\eta D_1$ if for any pair of distinct points k and l of X there exists a $g\eta D$ set of X containing k but not l and a $g\eta D$ set of X containing l but not k.

(*iii*) $g\eta D_2$ if for any pair of distinct points k and l of X there exists two disjoint $g\eta D$ sets of X containing k and l respectively.

Remark 7.2.11: For a topological space (X,τ) , the following properties are hold:

(*i*) If (X,τ) is $g\eta T_i$, then it is $g\eta D_i$, for i = 0,1,2.

(*ii*) If (X,τ) is $g\eta D_i$, then it is $g\eta D_{i-1}$, for i = 1,2.

Theorem 7.2.12: A topological space (X,τ) is $g\eta D_0$ if and only if it is $g\eta T_0$.

Proof: Suppose that X is $g\eta D_0$. Then for each distinct pair $k, l \in X$, at least one of k, l say k belongs to a $g\eta D$ set Q but $l \notin Q$. As Q is $g\eta D$ set. Let $Q = G_1 - G_2$ where $G_1 \neq X$ and $G_1, G_2 \in G\eta O(X, \tau)$. Then $k \in G_1$, and for $l \notin Q$ we have two cases: (i) $l \notin G_1$, (ii) $l \in G_1$ and $l \in G_2$. In case (i), $k \in G_1$ but $l \notin G_1$. In case (ii), $l \in G_2$ but $k \notin G_2$. Thus in the both the cases, we obtain that X is $g\eta T_0$.

Conversely, if *X* is $g\eta T_0$, by Remark 7.2.11(i) *X* is $g\eta D_0$.

Theorem 7.2.13: Suppose $G\eta O(X, \tau)$ is closed under arbitrary union, then X is $g\eta D_1$ if and only if it is $g\eta D_2$.

Proof: Necessity: Let $k, l \in X$ and $k \neq l$. Then there exist two $g\eta D$ sets Q_1, Q_2 in X such that $k \in Q_1, l \notin Q_1$ and $l \in Q_2, k \notin Q_2$. Let $Q_1 = G_1 - G_2$ and $Q_2 = G_3 - G_4$, where G_1, G_2, G_3 and G_4 are $g\eta$ -open sets in X. From $k \notin Q_2$, the following two cases arise: Case (*i*): $k \notin G_3$. Case (*ii*): $k \in G_3$ and $k \in G_4$.

Case (i) $k \notin G_3$. By $l \notin Q_1$ we have two sub cases:

(a) $l \notin G_1$. Since $k \in G_1 - G_2$, it follows that $k \in G_1 - (G_2 \cup G_3)$, and since $l \in G_3 - G_4$ we have $l \in G_3 - (G_1 \cup G_4)$, and $(G_1 - (G_2 \cup G_3)) \cap (G_3 - (G_1 \cup G_4)) = \varphi$.

(b) $l \in G_1$ and $l \in G_2$. We have $k \in G_1 - G_2$ and $l \in G_2$, and $(G_1 - G_2) \cap G_2 = \varphi$.

Case (*ii*) $k \in G_3$ and $k \in G_4$. We have $l \in G_3 - G_4$ and $k \in G_4$. Hence $(G_3 - G_4) \cap G_4 = \varphi$. Thus both case (*i*) and in case (*ii*), X is $g\eta D_2$.

Sufficiency: Follows from Remark 7.2.11(ii).

Corollary 7.2.14: If a topological space (X,τ) is $g\eta D_1$, then it is $g\eta T_0$.

Proof: Follows from 7.2.11(ii) and theorem 7.2.12.

Definition 7.2.15: A point $k \in X$ which has only X as the $g\eta$ -neighbourhood is called a $g\eta$ -neat point.

Proposition 7.2.16: For a $g\eta T_0$ topological space (X,τ) which has atleast two elements, the following results are equivalent:

(*i*) (*X*, τ) is $g\eta D_1$ space.

(*ii*) (X,τ) has no $g\eta$ -neat point.

Proof: (*i*) \Rightarrow (*ii*) Since (*X*, τ) is a $g\eta D_1$ space then each point *k* of *X* is contained in a $g\eta D$ set R = G - H and thus in *G*. By definition $G \neq X$. This implies that *k* is not a $g\eta$ -neat point. Therefore (*X*, τ) has no $g\eta$ -neat point.

 $(ii) \Rightarrow (i)$ Let X be a $g\eta T_0$ space, then for each distinct pair of points $k, l \in X$, atleast one of them, k (say) has a $g\eta$ -neighbourhood G containing k and not l. Thus G which

is different from X is a $g\eta D$ set. If X has no $g\eta$ -neat point, then l is not $g\eta$ -neat point. This means that there exists a $g\eta$ -neighbourhood H of l such that $H \neq X$. Thus $l\epsilon H - G$ but not k and H - G is a $g\eta D$ set. Hence X is $g\eta D_1$.

Definition 7.2.17: A topological space (X,τ) is said to be $g\eta$ -symmetric if for any pair of distinct points k and l in X, $k \in g\eta cl(\{l\})$ implies $l \in g\eta cl(\{k\})$.

Theorem 7.2.18: If (X,τ) is a topological space, then the following are equivalent:

(*i*) (*X*, τ) is a $g\eta$ -symmetric space.

(*ii*) {*k*} is $g\eta$ -closed, for each $k \in X$.

Proof: (*i*) \Rightarrow (*ii*) Let (*X*, τ) be a $g\eta$ -symmetric space. Assume that $\{k\} \subseteq G \in G \eta O(X, \tau)$, but $g\eta cl(\{k\}) \notin G$. Then $g\eta cl(\{k\}) \cap (X - G) \neq \varphi$. Now, we take $l \in g\eta cl(\{k\}) \cap (X - G)$, then by hypothesis $k \in g\eta cl(\{l\}) \subseteq X - G$ that is, $k \notin G$, which is contradiction. Therefore $\{k\}$ is $g\eta$ -closed, for each $k \in X$.

 $(ii) \Rightarrow (i)$ Assume that $k \in gncl(\{l\})$, but $l \notin gncl(\{k\})$. Then $\{l\} \subseteq X - gncl(\{k\})$ and hence $gncl(\{l\}) \subseteq X - gncl(\{k\})$. Therefore $k \in X - gncl(\{k\})$, which is contradiction and hence $l \in gncl(\{k\})$.

Corollary 7.2.19: Let $G\eta O(X, \tau)$ be closed under arbitrary union. If the topological space (X, τ) is a $g\eta T_1$ space, then it is $g\eta$ -symmetric.

Proof: In a $g\eta T_1$ space, every singleton set is $g\eta$ -closed by theorem 7.2.5 therefore, by theorem 7.2.18, (X,τ) is $g\eta$ -symmetric.

Corollary 7.2.20: If a topological space (X,τ) is $g\eta$ -symmetric and $g\eta T_0$, then (X,τ) is a $g\eta T_1$ space.

Proof: Let $k \neq l$ and as (X,τ) is $g\eta T_0$, we may assume that $k \in G \subseteq X - \{l\}$ for some $G \in G \eta O(X,\tau)$. Then $k \notin g \eta cl(\{l\})$ and hence $l \notin g \eta cl(\{k\})$. There exists a $g\eta$ -open set H such that $l \in H \subseteq X - \{k\}$ and thus (X,τ) is a $g\eta T_1$ space.

Corollary 7.2.21: For a $g\eta$ -symmetric space (X, τ), the following are equivalent:

(*i*) (*X*, τ) is $g\eta T_0$ space.

(*ii*) (X,τ) is $g\eta D_1$ space.

(*iii*) (X,τ) is $g\eta T_1$ space.

Proof: (*i*) \Rightarrow (*iii*) Follows from corollary 7.2.20.

 $(iii) \Rightarrow (ii) \Rightarrow (i)$ Follows from Remark 7.2.11 and Corollary 7.2.14.

Definition 7.2.22: A topological space (X,τ) is said to be $g\eta R_0$ if *G* is a $g\eta$ -open set and $k \in G$ then $g\eta cl(\{k\}) \subseteq G$.

Theorem: 7.2.23 For a topological space (X,τ) the following properties are equivalent to each other.

(*i*) (X,τ) is a $g\eta R_0$ space.

(*ii*) For any subset $Q \in G \eta C(X, \tau)$, $k \notin Q$ implies $Q \subseteq G$ and $k \notin G$ for some $G \in G \eta O(X, \tau)$.

(*iii*) For any subset $Q \in G\eta C(X, \tau)$, $k \notin Q$ implies $Q \cap g\eta cl(\{k\}) = \varphi$.

(*iv*) For any two distinct points k and l of X, either $g\eta cl(\{k\}) = g\eta cl(\{l\})$ or $g\eta cl(\{k\}) \cap g\eta cl(\{l\}) = \varphi$.

Proof: (*i*) \Rightarrow (*ii*) Let $Q \in G \eta C(X, \tau)$ and $k \notin Q$. Then by (*i*) $g \eta cl(\{k\}) \subseteq X - Q$. Set $G = X - g \eta cl(\{k\})$, then G is a $g \eta$ -open set such that $Q \subseteq G$ and $k \notin G$.

(*ii*) ⇒ (*iii*) Let $Q \in G \eta C(X, \tau)$ and $k \notin Q$. There exists $G \in G \eta O(X, \tau)$ such that $Q \subseteq G$ and $k \notin G$. Since $G \in g \eta O(X, \tau)$, $G \cap g \eta cl(\{k\}) = \varphi$ and $Q \cap g \eta cl(\{k\}) = \varphi$.

 $(iii) \Rightarrow (iv)$ Suppose that $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$ for two distinct points $k, l \in X$. There exists $m \in g\eta cl(\{k\})$ such that $m \notin g\eta cl(\{l\})$ [or $m \in g\eta cl(\{l\})$ such that $m \notin g\eta cl(\{k\})$]. There exists $H \in G\eta O(X, \tau)$ such that $l \notin H$ and $m \in H$, hence $k \in H$. Therefore, we have $k \notin g\eta cl(\{l\})$. By (iii), we obtain $g\eta cl(\{k\}) \cap g\eta cl(\{l\}) = \varphi$. $(iv) \Rightarrow (i)$ Let $H \in G \eta O(X, \tau)$ and $k \in H$. For each $l \notin H$, $k \neq l$ and $k \notin g \eta cl(\{l\})$. This shows that $g \eta cl(\{k\}) \neq g \eta cl(\{l\})$. By $(iv) g \eta cl(\{k\}) \cap g \eta cl(\{l\}) = \varphi$ for each $l \in X - H$ and hence $g \eta cl(\{k\}) \cap [\cup g \eta cl(\{l\}): l \in X - H] = \varphi$. On the other hand, since $H \in G \eta O(X, \tau)$ and $l \in X - H$, we have $g \eta cl(\{l\}) \subseteq X - H$ and hence $X - H = \bigcup$ $\{g \eta cl(\{l\}): l \in X - H\}$. Therefore, we obtain $(X - H) \cap g \eta cl(\{k\}) = \varphi$ and $g \eta cl(\{k\}) \subseteq H$. This shows that (X, τ) is a $g \eta R_0$ space.

Theorem 7.2.24: Let (X,τ) be a topological space. If it is $g\eta T_0$ space and $g\eta R_0$ space then it becomes a $g\eta T_1$ space.

Proof: Let k and l be any two distinct points of X. Since X is $g\eta T_0$, there exists a $g\eta$ -open set G such that $k \in G$ and $l \notin G$. As $k \in G$, implies that $g\eta cl(\{k\}) \subseteq G$. Since $l \notin G$, so $l \notin g\eta cl(\{k\})$. Hence $l \in H = X - g\eta cl(\{k\})$ and it is clear that $k \notin H$. Hence it follows that there exists a $g\eta$ -open sets G and H containing k and l respectively, such that $l \notin G$ and $k \notin H$. This implies that X is $g\eta T_1$ space.

Theorem 7.2.25: For a topological space (X,τ) the following properties are equivalent:

(*i*) (*X*, τ) is $g\eta R_0$ space.

(*ii*) $k \in g\eta cl(\{l\})$ if and only if $l \in g\eta cl(\{k\})$, for any two points k and l in X.

Proof: (*i*) \Rightarrow (*ii*) Assume that *X* is $g\eta R_0$. Let $k \in g\eta cl(\{l\})$ and *H* be any $g\eta$ -open set such that $l \in H$. Now by hypothesis, $k \in H$. Therefore, every $g\eta$ -open set which contain *l* contains *k*. Hence $l \in g\eta cl(\{k\})$.

(*ii*) ⇒ (*i*) Let G be a $g\eta$ -open set and $k \in G$. If $l \notin G$, then $k \notin g\eta cl(\{l\})$ and hence $l \notin g\eta cl(\{k\})$. This implies that $g\eta cl(\{k\}) \subseteq G$. Hence (X, τ) is $g\eta R_0$ space.

Remark 7.2.26: From Definition 7.2.17 and theorem 7.2.25 the notion of $g\eta$ -symmetric and $g\eta R_0$ are equivalent.

Theorem 7.2.27: A topological space (X,τ) is $g\eta R_0$ space if and only if for any two points k and l in X, $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$ implies $g\eta cl(\{k\}) \cap g\eta cl(\{l\}) = \varphi$.

Proof: Necessity: Suppose that (X, τ) is $g\eta R_0$ and k and $l \in X$ such that $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$. Then, there exists $m \in g\eta cl(\{k\})$ such that $m \notin g\eta cl(\{l\})$ [or $m \in g\eta cl(\{l\})$] such that $m \notin g\eta cl(\{k\})$]. There exists $H \in G\eta O(X, \tau)$ such that $l \notin H$ and $m \in H$, hence $k \in H$. Therefore, we have $k \notin g\eta cl(\{l\})$. Thus $k \in [X - g\eta cl(\{l\})] \in G\eta O(X, \tau)$, which implies $g\eta cl(\{k\}) \subseteq [X - g\eta cl(\{l\})]$ and $g\eta cl(\{k\}) \cap g\eta cl(\{l\}) = \varphi$.

Sufficiency: Let $H \in G \eta O(X, \tau)$ and let $k \in H$. To show that $g \eta cl(\{k\}) \subseteq H$. Let $l \notin H$, that is $l \in X - H$. Then $k \neq l$ and $k \notin g \eta cl(\{l\})$. This shows that $g \eta cl(\{k\}) \neq g \eta cl(\{l\})$. By assumption, $g \eta cl(\{k\}) \cap g \eta cl(\{l\}) = \varphi$. Hence $l \notin g \eta cl(\{k\})$ and therefore $g \eta cl(\{k\}) \subseteq H$. Hence (X, τ) is $g \eta R_0$ space.

Definition 7.2.28: A topological space (X,τ) is said to be $g\eta R_1$ if for k, l in X with $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$, there exists disjoint $g\eta$ -open sets G and H such that $g\eta cl(\{k\}) \subseteq G$ and $g\eta cl(\{l\}) \subseteq H$.

Theorem 7.2.29: For a topological space (X,τ) . Every $g\eta T_2$ space is $g\eta R_1$ space.

Proof: Let *k* and *l* be any two points *X* such that $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$. By Remark 7.2.3(*i*), every $g\eta T_2$ space is a $g\eta T_1$ space. Therefore, by theorem 7.2.5, $g\eta cl(\{k\}) = \{k\}$, $g\eta cl(\{l\}) = \{l\}$ and hence $\{k\} \neq \{l\}$. Since (X,τ) is $g\eta T_2$, there exists disjoint $g\eta$ -open sets *G* and *H* such that $g\eta cl(\{k\}) = \{k\} \subseteq G$ and $g\eta cl(\{l\}) = \{l\} \subseteq H$. Therefore (X,τ) is $g\eta R_1$ space.

Theorem 7.2.30: If a topological space (X,τ) is $g\eta$ -symmetric, then the following are equivalent:

(*i*) (X,τ) is $g\eta T_2$ space.

(*ii*) (*X*, τ) is $g\eta R_1$ space and $g\eta T_1$ space.

(*iii*) (*X*, τ) is $g\eta R_1$ space and $g\eta T_0$ space.

Proof: (*i*). \Rightarrow (*ii*) and (*ii*) \Rightarrow (*iii*) obvious.

(iii). \Rightarrow (i) Let k and l be two disjoint points of X. Since (X, τ) is a $g\eta T_0$ space, by theorem 7.2.4, $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$. Since X is $g\eta R_1$, there exists a disjoint $g\eta$ open sets G and H such that $g\eta cl(\{k\}) \subseteq G$ and $g\eta cl(\{l\}) \subseteq H$. Therefore, there exists disjoint $g\eta$ -open sets G and H such that $k \in G$ and $l \in H$. Hence (X, τ) is a $g\eta T_2$ space.

Remark 7.2.31: For a topological space (X,τ) the following statements are equivalent:

(*i*) (*X*, τ) is $g\eta R_1$ space.

(*ii*) If $k, l \in X$ such that $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$, then there exists $g\eta$ -closed sets Q_1 and Q_2 such that $k \in Q_1, l \notin Q_1, l \in Q_2, k \notin Q_2, X = Q_1 \cup Q_2$.

Theorem 7.2.32: If a topological space (X,τ) is $g\eta R_1$ space, then (X,τ) is $g\eta R_0$ space.

Proof: Let *G* be a $g\eta$ -open set such that $k \in G$. If $l \notin G$, then $k \notin g\eta cl(\{l\})$, therefore $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$. So there exists a $g\eta$ -open set *H* such that $g\eta cl(\{l\}) \subseteq H$ and $k \notin H$, which implies $l \notin g\eta cl(\{k\})$. Hence $g\eta cl(\{k\}) \subseteq G$. Therefore, (X, τ) is $g\eta R_0$ space.

Theorem 7.2.33: A topological space (X,τ) is $g\eta R_1$ space if and only if $k \in X - g\eta cl(\{l\})$ implies that k and l have disjoint $g\eta$ -open neighbourhoods.

Proof: Necessity: Let (X,τ) be a $g\eta R_1$ space. Let $k \in X - g\eta cl(\{l\})$. Then $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$, so k and l have disjoint $g\eta$ -open neighbourhoods.

Sufficiency: First to show that (X,τ) is $g\eta R_0$ space. Let G be a $g\eta$ -open set and $k \in G$. Suppose that $l \notin G$. Then, $g\eta cl(\{l\}) \cap G = \varphi$ and $k \notin g\eta cl(\{l\})$. There exists two $g\eta$ -open sets G_x and G_y such that $k \notin G_k$, $l \notin G_l$ and $G_k \cap G_l = \varphi$. Hence, $g\eta cl(\{k\}) \subseteq g\eta cl(\{G_k\})$ and $g\eta cl(\{k\}) \cap G_l \subseteq g\eta cl(\{G_k\}) \cap G_l = \varphi$. [For since G_l is a $g\eta$ -open set, $(X - G_l)$ is a $g\eta$ -closed set. So $g\eta cl(\{(X - G_l\})) = (X - G_l)$. Also since $G_k \cap G_l = \varphi$ and $G_k \subseteq (X - G_l)$. So $g\eta cl(\{G_k\}) \subseteq g\eta cl(\{K\}) \subseteq G$ and (X,τ) is a $g\eta R_0$ space. Next to show that (X,τ) is a $g\eta R_1$ space. Suppose that $g\eta cl(\{k\}) \neq g\eta cl(\{l\})$. Then, assume that there exists $m \epsilon g\eta cl(\{k\})$ such that $m \notin g\eta cl(\{l\})$. There exists two $g\eta$ -open sets H_m and H_l such that $m \epsilon H_m$, $l \epsilon H_l$ and $H_m \cap H_l = \varphi$. Since $m \epsilon g\eta cl(\{k\})$, $k \epsilon H_m$. Since (K, β) is $g\eta R_0$ space, we obtain $g\eta cl(\{k\}) \subseteq H_m$, $g\eta cl(\{l\}) \subseteq H_l$ and $H_m \cap H_l = \varphi$. Therefore (X, τ) is $g\eta R_1$ space.