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CHAPTER-6 

  -HOMEOMORPHISM IN TOPOLOGICAL SPACES AND 

TOPOLOGICAL ORDERED SPACES 

6.1. INDRODUCTION 

       In 1973, Noiri [78] introduced the concept of generalized closed maps in 

topological spaces. In 1991 Maki et al. [65] introduced g-homeomorphisms and 

studied their properties. In 2002, Veera Kumar [111] introduced homeomorphism in 

topological ordered spaces. Many authors like [27, 30, 57, 67, 72, 76, 82, 92, 106] 

contributed much to develop the concept of homeomorphism in topological spaces. 

 

       In this chapter, a new class of   -closed maps,   -open maps and                            

  -homeomorphism in topological spaces and topological ordered spaces are 

introduced. Also the association of these maps with other existing maps and their 

properties are studied. 

 

6.2.   -CLOSED MAPS 

      The notion of   -closed maps are studied in this section. 

Definition 6.2.1: A map               is said to be a   -closed map if the image 

of every closed set in ( , ) is   -closed in      . 

Example 6.2.2: Let              ,                           and   

                       . Define               as       ,       ,      

 ,       .Then           ,               ,                   .Therefore 

  is   -closed map. Since the image of every closed set in   is   -closed in  . 

Theorem 6.2.3: Let ( , ) and       be any two topological spaces. Then for a 

mapping              . The following results are true. 

    Every closed map is   -closed map. 
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     Every  -closed map is   -closed map. 

      Every  -closed map is   -closed map. 

     Every  -closed map is   -closed map. 

    Every  -closed map is   -closed map. 

     Every   -closed map is   -closed map. 

      Every   -closed map is   -closed map. 

       Every   -closed map is   -closed map. 

Proof:     Let               be a closed map and   be a closed set in  , then 

     is closed in   and hence   -closed in  . Thus   is   -closed.  

Proof of      to        are similar to    . 

Remark 6.2.4: The following example reveals that the converse of the above theorem 

need not be true. 

Example 6.2.5:     Let              ,   {                         } and 

  {                     }. Define               as       ,      

 ,       ,       . Then the function is   -closed but not closed,  -closed,               

 -closed,  -closed,   -closed,   -closed,   -closed as the image of closed set     in 

  is     which is   -closed but not closed,  -closed,  -closed,   -closed,   -closed,                      

  -closed,   -closed in  . 

     Let              ,   {                         } and            ,     

                Define               as       ,       ,       , 

      . Then the function is   -closed but not  -closed as the image of closed set 

        in   is         which is not  -closed in  . 

Remark 6.2.6:   -closed map,    -closed map,    -closed map and   -closed map 

are not dependent on each other. 
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Example 6.2.7: Let            ,   {                 } and           ,   

          . Define               as       ,       ,       . Here   is 

  -closed map. But   is not   -closed map,    -closed map,    -closed map. Since 

for closed set     in  ,            is   -cloased but not   -closed,    -closed, 

   -closed in  .  

Example 6.2.8: Let            ,   {                 } and            . 

Define               as       ,       ,       . Here   is   -closed map,               

   -closed map,    -closed map. But   is not   -closed map. Since for closed set  

      in  ,                is   -closed,    -closed,    -closed but not   -closed 

in  .  

Remark 6.2.9: The composition of two   -closed maps need not be a   -closed map 

as seen from the following example. 

Example 6.2.10: Let                ,                          , 

                          and                              . Define 

               be defined as       ,       ,       ,         and 

              be defined as       ,       ,       ,       . Then the 

function   and   are   -closed map but their composition                 is not 

  -closed map, since for the closed set          in ( , ),                 

        is not   -closed in      .   

Theorem 6.2.11: Let               and               be functions. Then the 

following properties hold: 

    If   is closed map and   is   -closed then                 is   -closed. 

     If   is continuous and surjective,   is   -closed then                 is   -

closed map. 

      If   is   -closed and   is   -irresolute, injective then                 is                   

  -closed map. 
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     If   is   -closed map and   is   -continuous then                 is 

continuous. 

    If   is  -closed map and   is   -continuous then                 is                     

  -continuous. 

     If   is  -closed map and   is   -continuous then                 is                     

 -irresolute. 

      If   is  -closed map and   is   -continuous then                 is 

continuous. 

       If    is irresolute and  -closed map and   is   -continuous then           

      is   -continuous. 

     If   is   -closed map and   is contra   -continuous then                 

is contra continuous. 

    If   is  -closed map and   is contra   -continuous then                 is 

contra  -continuous. 

     If   is  -closed map and   is contra   -ccontinuous then                 is 

contra continuous. 

      If   is  -closed map  and   is contra   -continuous then                 

is contra   -ccontinuous. 

Proof:     Let    be a closed set in  . Then       is a closed set in  . Hence 

                 is a   -closed set in  . Therefore     is a   -closed map. 

     Let   be a closed set in  . Since   is continuous,        is closed in   and since 

     is   -closed,                is   -closed in  . Therefore,     is a               

  -closed map. 
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      Let   be a   -closed set in    Since   is   -irresolute,        is   -closed set 

in    Since   is   -closed,                  is   -closed in  . Hence       is 

  -closed.  

    Let    be a closed set in  , since   is a   -continuous,        is   -closed set in 

 . Since   is   -closed map,    (      )             is closed in  . Hence 

    is continuous. 

    Let    be a closed set in  , since   is a   -continuous,        is  -closed set 

which is also   -closed set in  . Since   is  -closed map,    (      )     

        is  -closed in  . Hence     is  -continuous. 

     Let    be a closed set in  , which is  -closed in  . since   is a   -continuous 

function,        is  -closed which is also   -closed in  .  Since   is  -closed, 

   (      )             is  -closed in  . Hence     is  -irresolute. 

      Let    be a closed set in  , since   is a   -continuous function,        is                  

 -closed set which is also   -closed in  . Since   is  -closed map,    (      )  

           is closed in  . Hence     is continuous. 

       Let    be a closed set in  , since   is a   -continuous function,        is                 

 -closed set which is also   -closed in  . Since   is irresolute and  -closed map,  

   (      )             is   -closed in   and every closed set is   -closed. 

Hence     is   -continuous. 

     Let    be an open set in  , since   is a contra   -continuous function,        is 

  -closed in  . Since   is   -closed map,    (      )             is closed in 

 . Hence     is contra continuous. 

    Let    be an open set in  , since   is a contra   -continuous function,        is                

 -closed in  . As every  -closed set is   -closed. Since   is  -closed map, 

   (      )             is closed which is  -closed in  . Hence     is contra 

 -continuous. 
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     Let    be an open set in  , since   is a contra   -continuous function,        is       

 -closed which is also   -closed in  . Since   is an  -closed map,    (      )  

           is closed in  . Hence     is contra continuous. 

      Let    be an open set in  , since   is a contra   -continuous function,        is 

 -closed which is also   -closed in  . Since   is  -closed map,    (      )     

        is   -closed in  . As every closed set is   -closed. Hence     is contra 

  -continuous. 

Theorem 6.2.12: Let      ,       be any two topological spaces, then if: 

                  is   -closed and   is a closed subset of       then   

                is   -closed. 

                   is   -closed and         , for some closed set   of      , 

then                 is   -closed. 

Proof:    . Let   be a closed set of       . Then       for some closed set   of 

( , ) and so   is closed in ( , ). Since   is   -closed, then      is   -closed in 

     . But           . So    is   -closed in  . Therefore    is a   -closed map. 

    . Let   be a closed set of       . Then       for some closed set   of      . 

Now                                     . Since   is              

  -closed, then      is   -closed in       and so        is   -closed in      . 

Therefore    is a   -closed map. 

Theorem 6.2.13: The map               is   -closed if and only if for each 

subset   of       and for each open set   in ( , ) containing        there is a   -

open set   of       contains    such that     and         . 

Proof: Suppose   is   -closed. Let     and   be an open set of ( , )  such that 

        . Now     is a closed set in ( , ). Since   is   -closed,        is a 

  -closed set in      . Then            is a   -open set in      .        
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  implies     and             (      )           , That is 

        . 

Conversely, let   be a closed set of ( , ). Then                   is an open 

set in ( , ). By hypothesis, there exists a   -open set   in       such that     

     and              and so           . Hence             

                  which implies           . Since        is                    

  -closed,      is   -closed. That is      is   -closed in      . Therefore   is            

  -closed map. 

6.3.   -OPEN MAPS 

      The notion of   -open maps are studied in this section. 

Definition 6.3.1: A map               is said to be a   -open map if the image of 

every open set in       is   -open in      . 

Example 6.3.2: Let              ,   {                     } and   

{                         }. Define               as       ,       ,    

      ,       . Then            ,               ,                   . 

Therefore     is   -open map. Since the image of every open set in   is   -open in  . 

Theorem 6.3.3: Let       and       be a topological spaces. Then for a mapping 

             . The following results are true. 

    Every open map is   -open map. 

      Every  -open map is   -open map. 

      Every  -open map is   -open map. 

     Every  -open map is   -open map. 

    Every  -open map is   -open map. 

     Every   -open map is   -open map. 
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       Every   -open map is   -open map. 

       Every   -open map is   -open map. 

Proof:    . Let               be an open map and   be an open set in  , then 

     is open in   and hence   -open in  . Thus   is   -open.  

Proof of      to        are similar to    . 

Remark 6.3.4: The following example reveals that the converse of the above theorem 

need not be true. 

Example 6.3.5:     Let            ,   {                 } and   

{       }. Define               as       ,       ,       . Then the 

function is   -open but not  -open as the image of open set     in   is     which is 

  -open but not  -open in  . 

     Let              ,  {                     } and               , 

                Define               as       ,       ,       , 

      . Then the function is   -open but not open,  -open,  -open,  -open,               

  -open,   -open,   -open. Since the image of open set         in   is         

which is   -open but not open,  -open,  -open,  -open,   -open,   -open,   -open 

in  . 

Remark 6.3.6:   -open map,    -open map,    -open map and   -open map are 

not dependent on each other. 

Example 6.3.7: Let            ,   {             } and                  

          . Define               as       ,       ,       . Here   is 

  -open map. But   is not   -open map,    -open map,    -open map. Since for 

open set        in  ,                is   -open but not   -open,    -open,          

   -open in  .  



  -Homeomorphism in Topological Spaces and Topological Ordered Spaces  84 

 

Example 6.3.8: Let            ,   {                } and            . 

Define               as       ,       ,       . Here   is   -open map,              

   -open map,    -open map. But   is not   -open map. Since for open set       in 

 ,                is   -open,    -open,    -open but not   -open in  .  

Remark 6.3.9: The composition of two   -open maps need not be a   -open map as 

seen from the following example. 

Example 6.3.10: Let              ,                      ,   

            and                      . Define                be defined as 

      ,       ,         and               be defined as      

 ,       ,       . Then the function   and   are   -open maps but their 

composition                 is not a   -open map, since for the open set      in 

     ,                 is not   -open in      .   

Theorem 6.3.11: For any bijection              , the following statements are 

equivalent. 

                    is   -continuous. 

       is a   -open map. 

        is a   -closed map. 

Proof:            Let   be any open set of      . By assumption,            

     is   -open in       and so   is   -open map.   

             Let   be a closed set of      . Then     is open in      . By 

assumption,                 is   -open in       and therefore      is                

  -closed in      . Hence   is a   -closed map.   

            Let   be a closed set of       . By assumption,      is   -closed in 

     . But                 and therefore     is   -continuous on      .   
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Theorem 6.3.12: Let       and       be any mapping.  If   is a   -open mapping, 

then for each       and for each neighbourhood   of   in      , there exists a                        

  -neighbourhood   of      in        such that       . 

Proof: Let       and   be an arbitrary neighbourhood of  . Then there exists an open 

set   in       such that        . By assumption,      is a   -open set in      . 

Further,                 , clearly      is a   -neighbourhood of      in       

and so the theorem holds, by taking       .  

Theorem 6.3.13: Let  ,   and   be topological spaces. 

    If               is an open map and               is a   -open map, then 

                is a   -open map. 

     If              and               are open maps then           

      is a   -open map. 

      If               is an open map and               is an  -open map, 

then                 is a   -open map. 

Proof:     Let   be an open set in  . Since   is an open map,      is open in  . Then 

 (    )           is a   -open set in  . Therefore,     is a   -open map. 

     Let   be an open set in  . Since   is an open map,      is open in  . Also, since 

  is an open map,         is open in  . That is,          is an open set in  . And 

every open set is   -open,          is a   -open set in  . Therefore,     is a      

  -open map. 

      Let   be an open set in  . Since   is an open map,      is open in  . Then 

        is an  -open in  . That is,          is an  -open set in  . As every                

 -open set is   -open,          is a   -open set in  . Hence,     is a   -open 

map. 
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Theorem 6.3.14: The map               is   -open if and only if for any subset 

  of       and any closed set   in       containing       , there exists a   -closed 

set   of       containing   such that         . 

Proof: Suppose   is   -open map. Let     and   be a closed set of       such that 

        . Now     is an open set in      . Since   is   -open,        is a 

  -open set in      . Then            is a   -closed set in      .        

  implies     and                               . That is 

        . 

Conversely, let   be an open set of      . Then                 and     

is a closed set in      . By hypothesis, there exists a   -closed set   in       such 

that          and            and so           . Hence     

                 which implies         . Since     is   -open,      

is   -open in       and therefore   is   -open map. 

6.4.   -HOMEOMORPHISM 

Definition 6.4.1: A bijection               is called an  -homeomorphism if    is 

both  -continuous map and  -open map. That is, both   and     are  -continuous 

map. 

Definition 6.4.2: A bijection               is called a   -homeomorphism if    is 

both   -continuous map and   -open map. That is, both   and     are   -continuous 

map. 

Example 6.4.3: Let            ,   {             } and                

          . Define               as       ,       ,       . Here the sets 

         ,       are closed in  . Then             ,                  

                 are   -closed in  . Therefore   is   -continuous. And the sets 

   ,       are open in  . Then       ,              are   -open in  . 

Therefore   is open map. Hence   is   -homeomorphism. 
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Theorem 6.4.4: Let       and       be a topological spaces. Then for a mapping 

             . The following results are true. 

    Every homeomorphism is   -homeomorphism. 

     Every  -homeomorphism is   -homeomorphism. 

      Every  -homeomorphism is   -homeomorphism. 

     Every  -homeomorphism is   -homeomorphism. 

    Every  -homeomorphism is   -homeomorphism. 

     Every   -homeomorphism is   -homeomorphism. 

      Every   -homeomorphism is   -homeomorphism. 

       Every   -homeomorphism is   -homeomorphism. 

Proof:     Let               be a homeomorphism. Then   and     are 

continuous and   is bijection. Since every continuous function is   -continuous,   

and     are   -continuous. Hence   is   -homeomorphism.  

Proof of      to        are similar to    . 

Remark 6.4.5: The following example reveals that the converse of the above theorem 

need not be true. 

    Let            ,   {       } and   {         }. Define         

      as       ,       ,       . Then the function is   -homeomorphism. 

But              is   -closed but not closed in  . Here the set     is closed in  . 

Therefore   is not   -continuous. Hence   is   -homeomorphism but not 

homeomorphism. 

     Let            ,   {                 } and                      . 

Define               as       ,       ,       . Then the function is                            

  -homeomorphism. But                is   -open but not  -open in  . Here the 
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set       is open in  . Therefore   is   -open map but not  -open map. Hence   is 

not  -homeomorphism. 

       Let            ,   {         } and                      . Define 

              as       ,       ,       . Then the function is                                                

  -homeomorphism. But                is   -open but not  -open,   -open,         

  -open,   -open,   -open in  . Here the set       is open in  . Therefore   is            

  -open map but  not   -open,   -open,   -open,   -open,   -open map. Hence   is 

not -homeomorphism,   -homeomorphism,  -homeomorphism,  -homeomorphism, 

  -homeomorphism. 

     Let               ,   {                     } and                     

                    Define               as       ,       ,       , 

      . Then the function is   -homeomorphism. But            is   -open but 

not  -open in  . Here the set     is open in  . Therefore   is not  -homeomorphism. 

Remark 6.4.6:   -homeomorphism,    -homeomorphism,    -homeomorphism 

and   -homeomorphism are not dependent on each other. 

Example 6.4.7: Let              ,                           and   

                       . Define               as       ,       ,      

 ,       . Here   is   -continuous. But   is not   -continuous,    -continuous,                       

   -continuous. Since for the closed set,        in  ,                   is                 

  -closed but not   -closed,    -closed,    -closed in  . Hence   is                             

  -homeomorphism but not   -homeomorphism,     -homeomorphism,                    

   -homeomorphism. 

Example 6.4.8: Let            ,   {       } and              . Define 

              as       ,       ,       . Here   is   -continuous,                         

   -continuous,    -continuous. But   is not   -continuous. Since for the closed set, 

     in  ,              is   -closed,     -closed,    -closed  but not   -closed in 
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 . Hence   is   -homeomorphism,     -homeomorphism,      -homeomorphism but 

not   -homeomorphism. 

Remark 6.4.9: The composition of two   -homeomorphism need not be                           

  -homeomorphism as seen from the following example. 

Example 6.4.10: Let              ,   {         },             and 

                 . Define               be defined as       ,      

 ,        and               be defined as       ,       ,       . 

Then the function   and   are   -continuous but their composition           

      is not   -continuous, since for the closed set        in      ,                              

                     is not   -closed in      .   

Theorem 6.4.11: Let               be a bijective and   -continuous map.Then 

the following statements are equivalent. 

      is   -open map. 

       is   -homeomorphism. 

        is   -closed map. 

Proof:            Let   be a closed set in      . Then       is open in      . 

Since   is   -open, then        is   -open in      . This implies        is            

  -open in      . That is,      is   -closed in      . Thus     -closed. Further 

                is   -closed in      . Thus       -continuous. By assumption 

  is   -continuous and bijective. Hence   is   -homeomorphism.   

             Suppose   is a   -homeomorphism. Then   is bijective,   and     are 

  -continuous. Let   be a closed set in      . Since     is   -continuous. Then 

                is   -closed in      . Thus   is   -closed.  

            Let   be a   -closed map. Let   be an open in  . Then     is  closed 

in      . Since   is   -closed,        is   -closed in      . This implies 

       is   -closed in      . Therefore      is   -open in      .   



  -Homeomorphism in Topological Spaces and Topological Ordered Spaces  90 

 

 

6.5    -CLOSED MAPS 

    In this section the concept of    -closed maps are introduced and their basic 

properties are obtained. 

Definition 6.5.1: A function                    is said to be a   -closed map if 

the image of every closed set in (X, τ,   ) is a   -closed set in (Y, σ,  ). 

Definition 6.5.2: A function                    is said to be a    -closed map if 

the image of every closed set in         is a    -closed set in        . 

Theorem 6.5.3: Every  -closed,   -closed,   -closed maps are    -closed map, but 

not conversely. 

Proof: The proof follows from the fact that every  -closed,   -closed,   -closed set is 

an    -closed set [3.5.2, 3.5.6]. Then every  -closed,   -closed,   -closed maps are                             

   -closed map. 

Example 6.5.4: Let            ,                       and   {       }  

                                 . Define a map                    by 

      ,       ,       . This map is    -closed map, but not  -closed,         

  -closed,   -closed map. Since for the closed set         in        ,      

      is    -closed but not  -closed,   -closed,   -closed in        . 

Theorem 6.5.5: Every  -closed,   -closed,   -closed maps are    -closed map, but 

not conversely. 

Proof: The proof follows from the fact that every  -closed,   -closed,   -closed sets 

are    -closed set [3.5.8, 3.5.10]. Then every  -closed,   -closed,   -closed maps 

are    -closed map. 

Example 6.5.6: Let            ,   {       } and   {             }  

                                       . Define a map                    



  -Homeomorphism in Topological Spaces and Topological Ordered Spaces  91 

 

by       ,       ,       . This map is    -closed map, but not  -closed,          

  -closed,   -closed map, since for the closed set         in        ,      

      is    -closed but not  -closed,   -closed,   -closed in        . 

Theorem 6.5.7: Every  -closed,   -closed maps are    -closed map, but not 

conversely. 

Proof: The proof follows from the fact that every  -closed,   -closed sets are                

   -closed set [3.5.14]. Then every  -closed,   -closed maps are    -closed map. 

Example 6.5.8: Let            ,                   and                 ,    

      ,                            . Define a map                    by 

      ,       ,       . This map is    -closed map, but not  -closed,                

  -closed map, since for the closed set       in        ,          is                   

   -closed but not  -closed,   -closed in        . 

Theorem 6.5.9: Every   -closed map is    -closed map, but not conversely. 

Proof: The proof follows from the fact that every   -closed set is    -closed set 

[3.5.18]. Then every   -closed maps are    -closed map. 

Example 6.5.10: Let            ,                   and   {       }, 

                           . Define a map                    by       , 

      ,       . This map is    -closed map, but not   -closed map, since for 

the closed set         in        ,            is    -closed but not   -closed 

in        . 

6.6    -OPEN MAPS 

Definition 6.6.1:A function                     is said to be a   -open map if 

the image of  every open set  in         is a   -open set in        . 

Definition 6.6.2: A map                    is said to be a    -open map if the 

image of every open set in         is a    -open set in        . 
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Theorem 6.6.3: Every  -open,   -open,   -open maps are    -open map, but not 

conversely. 

Proof: The proof follows from the fact that every  -open,   -open,   -open sets are 

   -open set [3.5.2, 3.5.6]. Then every  -open,   -open,   -open maps are    -open 

map. 

Example 6.6.4: Let            ,   {         } and                  , 

                                       . Define a map                    

by       ,       ,       . This map is    -open map, but not  -open,                 

  -open,   -open map, since for the open set         in        ,            

is    -open but not  -open,   -open,   -open in        . 

Theorem 6.6.5: Every  -open,   -open maps are    -open map, but not conversely. 

Proof: The proof follows from the fact that every  -open,   -open sets are    -open 

set [3.5.8]. Then every  -open,   -open maps are    -open map. 

Example 6.6.6: Let            ,   {         } and                            

                                          Define a map                  

  by       ,       ,       . This map is    -open map, but not  -open,           

  -open map, since for the open set         in        ,            is          

   -open but not  -open,   -open in        . 

Theorem 6.6.7: Every   -open map is    -open map, but not conversely. 

Proof: The proof follows from the fact that every   -open set is    -open set 

[3.5.10]. Then every   -open map is    -open map. 

Example 6.6.8: Let            ,   {       } and   {       },   

                               . Define a map                    by 

      ,       ,       . This map is    -open map, but not   -open map, 

since for the open set       in        ,          is    -open but not   -open 

in        . 
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Theorem 6.6.9: Every  -open,   -open maps are    -open map, but not conversely. 

Proof: The proof follows from the fact that every  -open,   -open sets are    -open 

set [3.5.14]. Then every  -open,   -open maps are    -open map. 

Example 6.6.10: Let            ,   {             } and                 

                                     . Define a map                    by 

      ,       ,       . This map is    -open map, but not  -open,   -open 

map, since for the open set         in        ,            is    -open but 

not  -open,   -open in        . 

Theorem 6.6.11: Every   -open map is    -open map, but not conversely. 

Proof: The proof follows from the fact that every   -open set is    -open set 

[3.5.18]. Then every   -open map is    -open map. 

Example 6.6.12: Let            ,   {             } and   {       }, 

                          . Define a map                    by       , 

      ,       . This map is    -open map, but not   -open map, since for the 

open set       in        ,          is    -open but not   -open in        . 

6.7    -HOMEOMORPHISM  

Definition 6.7.1: A bijection map                    is called                                    

  -homeomorphism if   is both   -continuous map and   -open map. 

Definition 6.7.2: A bijection map                    is called                                    

   -homeomorphism if   is both    -continuous map and    -open map. 

Theorem 6.7.3: Every  -homeomorphism,   -homeomorphism, maps are              

    -homeomorphism map, but not conversely. 

Proof: The proof follows from the fact that every  -continuous,   -continuous,             

maps are     -continuous map [4.4.3, 4.4.5]. Also every  -open map,   -open maps 

are     -open map [6.6.3].  
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Example 6.7.4: Let            ,                       and   

{             }                            . Define a map            

        by       ,       ,       . This map is    -continuous, but not an      

 -continuous,   -continuous, since for the closed set       in        ,        

    is    -closed but not an  -closed,   -closed in        . 

Theorem 6.7.5: Every   -homeomorphism map is    - homeomorphism map, but not 

conversely. 

Proof: The proof follows from the fact that every   -continuous map is                                

    -continuous map [4.4.5]. Also every   -open map is    -open map [6.6.3].  

Example 6.7.6: Let            ,   {       } and   {             }, 

                           . Define a map                    by       , 

      ,       . This map is    -continuous, but not an   -continuous, since for 

the closed set         in        ,              is not   -closed in        . 

Theorem 6.7.7: Every  -homeomorphism,   -homeomorphism maps are                    

    -homeomorphism map, but not conversely. 

Proof: The proof follows from the fact that every  -continuous,   -continuous maps 

are    -continuous map [4.4.9]. Also every  -open map,   -open maps are                

    -open map [6.6.5].  

Example 6.7.8: Let            ,                       and                                                                           

                                  . Define a map                    by 

      ,       ,       . This map is    -continuous, but not  -continuous, 

  -continuous, since for the closed set       in        ,            is               

    -closed but not  -closed,   -closed in        . 

 

Theorem 6.7.9: Every   -homeomorphism map is    -homeomorphism map, but 

not conversely. 
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Proof: The proof follows from the fact that every   -continuous maps are                   

   -continuous map [4.4.9]. Also every   -open map is are    -open map [6.6.7].  

Example 6.7.10: Let            ,              and   {             }  

                           . Define a map                    by       , 

      ,       . This map is    -continuous, but not   -continuous, since for 

the closed set         in        ,              is    -closed but not                

  -closed in        . 

Theorem 6.7.11: Every   -homeomorphism,   -homeomorphism, maps are              

   -homeomorphism map, but not conversely. 

Proof: The proof follows from the fact that every   -continuous,   -continuous maps 

are    -continuous map [4.4.11]. Also every   -open map,   -open maps are             

   -open map [6.6.9, 6.6.11]. 

Example 6.7.12: Let            ,   {       } and   {             }, 

                           . Define a map                    by       , 

      ,       . This map is    -continuous, but not   -continuous,                     

   -continuous, since for the closed set         in        ,              is 

   -closed but not  semi-closed,   -closed,   -closed  in        . 

Theorem 6.7.13: Every  -homeomorphism map is    -homeomorphism map, but not 

conversely. 

Proof: The proof follows from the fact that every  -continuous map is                               

   -continuous map [4.4.11]. Also every  -open map is    -open map [6.6.9].  

Example 6.7.14: Let            ,                       and            

                                      . Define a map                    

by       ,       ,       . This map is    -continuous, but not                            

 -continuous, since for the closed set       in        ,            is                   

   -closed but not  -closed in        . 
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CHAPTER-7 

  -SEPARATION AXIOMS IN TOPOLOGICAL SPACES  

7.1. INDRODUCTION 

       In 1943, Shamin [97] introduced the separation axioms in topological spaces. 

Ekici, Jafari, Kar and Bhattacharyya [37, 46, 50] introduced some weak separation 

axioms in topological spaces. Many authors [1, 3, 9, 17, 18, 53, 73] contributed much 

to develop the separation axioms to the topological spaces. 

       In this chapter, a new class of separation axioms in topological spaces using                     

  -closed sets are framed. Also the concept of   -   spaces for   = 0, 1, 2   -   

spaces for   = 0, 1, 2 and   -    spaces for   = 0, 1 and some of their properties are 

also investigated.  

7.2.   -SEPARATION AXIOMS 

Definition 7.2.1: A topological space ( , ) is said to be  

         if for each pair of distinct points  ,   in  , there exists a   -open set   such 

that either     and     or     and      . 

          if for each pair of distinct points  ,   in  , there exists two   -open sets   

and   such that       but     and       but    . 

           if for each pair of distinct points  ,   in  , there exists two disjoint   -open 

sets   and   containing   and   respectively. 

Example 7.2.2:    . Let   {     },   {    {   }}. Here   -open sets are 

{    { } { } {   }}. Since for the distinct points   and  , there exists a   -open set 

  { } such that     and     or   { } such that     and    . Therefore   is 

     space. 

      Let   {     },   {    { }}. Here   -open sets are {    { } { } { }       

{   } {   }}  Since for the distinct points   and  , there exists two   -open sets 
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  { } and   { } such that       but     and     but      . In a similar 

manner other pairs of distinct points may also be discussed. Therefore   is      

space. 

      Let   {     },   {    { }}. Here   -open sets are {    { } { } { },    

{   } {   }}. Since for the distinct points   and  , there exists two disjoint                    

  -open set   { } and   { } containing { } and { } satisfying      conditions. 

And this is true for other pair of distinct points. Therefore   is      space. 

Remark 7.2.3: Let ( , ) be a topological space, then the following are true: 

    Every      space is     . 

     Every      space is     . 

Theorem 7.2.4: A topological space ( , ) is      if and only if for any two distinct 

points  ,   of  ,      { }     { } . 

Proof: Necessity: Let ( , ) be a      space and  ,   be any two distinct points of  . 

There exists a   -open set   containing   or  , say   but not  . Then     is a                   

  -closed set which does not contain   but contains  . Since      { }  is the smallest 

  -closed set containing  ,      { }      and therefore        { } . 

Consequently      { }       { } . 

Sufficiency: Suppose that      ,     and      { }       { } . Let   be a point 

of   such that        { }  but        { } . We claim that        { } . For if 

       { }  then      { }       { } . This contradicts the fact that        { } . 

Consequently   belongs to the   -open set        { }  to which   does not belong 

to. Hence ( , ) is a      space. 

Theorem 7.2.5: In a topological space ( , ), if the singletons are   -closed then   is 

     space and the converse is true if          is closed under arbitrary union. 
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Proof: Let { } is   -closed for every    . Let       with    . Now     implies 

    { }. Hence   { } is a   -open set that contains   but not  . Similarly   { } 

is a   -open set containing   but not  . Therefore   is a      space. 

Conversely, let ( , ) be      and   be any point of  . Choose     { } then     

and so there exists a   -open set   such that     but    . Consequently       

{ }, that is   { }   {       { }} which is   -open. Hence { } is   -closed. 

Hence the result is true for any singleton set.  

Theorem 7.2.6: For a topological space ( , ). The following results are equivalent to 

each other. 

      is     . 

     Let    . For each    , there exists a   -open set   containing   such that 

       { } . 

      For each    ,  {     { }             and    }  { }.  

Proof:            Let    , and for any     such that    , there exists disjoint             

  -open sets   and   containing   and   respectively, since   is     . So     

 . Therefore,      { }     . So        { } . 

             If possible for some    ,    {     { }             and    }. This 

implies        { }  for every   -open set   containing  , which contradicts      

Hence  {     { }                    }  { }.  

            Let       and    . Then there exists at least one   -open set   

containing   such that        { } . Let          { } , then     and     and 

also      . Therefore   is     . 

Definition 7.2.7: A subset   of a topological space   is called a   -difference set 

(briefly     set) if there exists              such that     and      .  

Theorem 7.2.8: Every proper   -open set is a     set. 
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Proof: Let    be a   -open set different from  . Take    . Then       is a 

    set. But, the converse is not true as seen in the following example. 

Example 7.2.9: Let   {     },   {    { } { } {   }}. Here   -open sets are 

{    { } { } {   } {   } {   }} then   {   }    and   {   } are               

  -open sets in  . Let       {   }  {   }  { }. Then    { } is a     

set but it is not   -open. 

Definition 7.2.10: A topological space ( , ) is said to be  

         if for any pair of distinct points   and   of   there exists a     set of    

containing   but not   or a     set of   containing   but not  . 

          if for any pair of distinct points   and   of   there exists a     set of   

containing   but not   and a     set of    containing   but not  . 

            if for any pair of distinct points   and   of   there exists two disjoint     

sets of   containing   and   respectively. 

Remark 7.2.11: For a topological space ( , ), the following properties are hold: 

    If ( , ) is     , then it is     , for        . 

     If ( , ) is     , then it is       , for      . 

Theorem 7.2.12: A topological space ( , ) is      if and only if it is     . 

Proof: Suppose that   is     . Then for each distinct pair      , at least one of     

say   belongs to a     set   but    . As   is     set.  Let         where 

     and               . Then     , and for     we have two cases:     

    ,           and     . In case    ,      but     . In case     ,      but     . 

Thus in the both the cases, we obtain that    is     . 

Conversely, if   is     , by Remark 7.2.11(i)   is     . 

Theorem 7.2.13: Suppose          is closed under arbitrary union, then   is      

if and only if it is     . 
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Proof: Necessity: Let       and    . Then there exist two     sets       in   

such that     ,      and     ,     . Let          and         , where 

  ,   ,    and    are   -open sets in  . From     , the following two cases arise: 

Case    :     . Case     :      and     . 

Case         . By        we have two sub cases: 

          . Since        , it follows that             , and since         

we have             , and                            . 

         and     . We have          and     , and             . 

Case           and     . We have         and     . Hence             . 

Thus both case     and in case     ,   is     . 

Sufficiency: Follows from Remark 7.2.11(ii). 

Corollary 7.2.14: If a topological space ( , ) is     , then it is     . 

Proof: Follows from 7.2.11(ii) and theorem 7.2.12. 

Definition 7.2.15: A point     which has only   as the   -neighbourhood is called a 

  -neat point.  

Proposition 7.2.16: For a      topological space ( , ) which has atleast two 

elements, the following results are equivalent: 

    ( , ) is      space. 

     ( , ) has no   -neat point. 

Proof:            Since ( , ) is a      space then each point   of   is contained in a 

    set       and thus in  . By definition    . This implies that   is not a 

  -neat point. Therefore ( , ) has no   -neat point. 

           Let   be a      space, then for each distinct pair of points  ,      , atleast 

one of them,   (say) has a   -neighbourhood   containing   and not  . Thus   which 
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is different from   is a     set. If   has no   -neat point, then   is not   -neat point. 

This means that there exists a   -neighbourhood   of   such that    . Thus 

      but not   and     is a     set. Hence   is     . 

Definition 7.2.17: A topological space ( , ) is said to be   -symmetric if for any pair 

of distinct points   and   in  ,        { }  implies        { } . 

Theorem 7.2.18: If ( , ) is a topological space, then the following are equivalent: 

    ( , ) is a   -symmetric space. 

     { } is   -closed, for each    . 

Proof:            Let ( , ) be a   -symmetric space. Assume that { }  

          , but      { }   . Then      { }         . Now, we take 

       { }       , then by hypothesis        { }      that is,    , 

which is contradiction. Therefore { } is   -closed, for each    . 

           Assume that        { } , but        { } . Then { }         { }  

and hence      { }         { } . Therefore          { } , which is 

contradiction and hence        { } . 

Corollary 7.2.19: Let          be closed under arbitrary union. If the topological 

space ( , ) is a      space, then it is   -symmetric. 

Proof: In a      space, every singleton set is   -closed by theorem 7.2.5 therefore, 

by theorem 7.2.18, ( , ) is   -symmetric. 

Corollary 7.2.20: If a topological space ( , ) is   -symmetric and     , then ( , ) is 

a      space. 

Proof: Let     and as ( , ) is     , we may assume that       { } for some 

          . Then        { }  and hence        { } . There exists a   -open 

set   such that       { } and thus ( , ) is a      space. 

Corollary 7.2.21: For a   -symmetric space ( , ), the following are equivalent: 
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          is      space. 

     ( , ) is      space. 

      ( , ) is      space. 

Proof:             Follows from corollary 7.2.20. 

                    Follows from Remark 7.2.11 and Corollary 7.2.14. 

Definition 7.2.22: A topological space ( , ) is said to be      if   is a   -open set 

and     then      { }   . 

Theorem: 7.2.23 For a topological space ( , ) the following properties are equivalent 

to each other. 

    ( , ) is a      space. 

     For any subset           ,     implies     and     for some 

          . 

      For any subset           ,     implies        { }   . 

     For any two distinct points   and   of  , either      { }       { }  or 

     { }       { }   . 

Proof:            Let            and    . Then by          { }     . Set 

         { } , then   is a   -open set such that     and    . 

             Let            and    . There exists            such that     

and    . Since           ,        { }    and        { }   . 

             Suppose that      { }       { }  for two distinct points  ,      . 

There exists        { }  such that        { }  [or        { }  such that 

       { } ]. There exists            such that     and    , hence    . 

Therefore, we have        { } . By ( ii), we obtain      { }       { }   . 
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           Let            and    . For each    ,     and        { } . This 

shows that      { }       { } . By           { }       { }    for each 

      and hence      { }   [      { }       ]   . On the other hand, 

since            and      , we have      { }      and hence      

{     { }       }. Therefore, we obtain            { }    and 

     { }   . This shows that ( , ) is a      space. 

Theorem 7.2.24: Let ( , ) be a topological space. If it is      space and      space 

then it becomes a      space. 

Proof: Let   and   be any two distinct points of  . Since   is     , there exists a           

  -open set   such that     and    . As    , implies that      { }   . Since 

   , so        { } . Hence            { }  and it is clear that    . 

Hence it follows that there exists a   -open sets   and   containing   and   

respectively, such that     and    . This implies that   is      space. 

Theorem 7.2.25: For a topological space ( , ) the following properties are 

equivalent: 

    ( , ) is      space. 

            { }  if and only if        { } , for any two points   and   in  . 

Proof:            Assume that   is     . Let        { }  and   be any   -open set 

such that    . Now by hypothesis,    . Therefore, every   -open set which contain   

contains  . Hence        { } . 

           Let   be a   -open set and    . If    , then        { }  and hence 

       { } . This implies that      { }   . Hence ( , ) is      space. 

Remark 7.2.26: From Definition 7.2.17 and theorem 7.2.25 the notion of                        

  -symmetric and      are equivalent. 

Theorem 7.2.27: A topological space ( , ) is      space if and only if for any two 

points   and   in  ,      { }       { }  implies      { }       { }   . 
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Proof: Necessity: Suppose that       is      and   and     such that       { }  

     { } . Then, there exists        { }  such that        { }  [or          { }  

such that        { } ]. There exists            such that     and    , hence 

   . Therefore, we have        { } . Thus   [       { } ]         , which 

implies      { }  [       { } ] and      { }       { }   . 

Sufficiency: Let            and let    . To show that      { }   . Let    , 

that is      . Then     and        { } . This shows that      { }  

     { } . By assumption,      { }       { }   . Hence        { }  and 

therefore      { }   . Hence ( , ) is      space. 

Definition 7.2.28: A topological space ( , ) is said to be      if for  ,   in   with 

     { }       { } , there exists disjoint   -open sets   and   such that 

     { }    and      { }   . 

Theorem 7.2.29: For a topological space ( , ). Every      space is      space. 

Proof: Let   and   be any two points   such that      { }       { } . By Remark 

7.2.3   , every      space is a      space. Therefore, by theorem 7.2.5,      { }  

{ },      { }  { } and hence { }  { }. Since ( , ) is     , there exists disjoint 

  -open sets   and   such that      { }  { }    and      { }  { }   . 

Therefore ( , ) is      space. 

Theorem 7.2.30: If a topological space ( , ) is   -symmetric, then the following are 

equivalent: 

    ( , ) is      space. 

     ( , ) is      space and      space. 

      ( , ) is      space and      space. 

Proof:    .        and              obvious. 
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     .       Let   and   be two disjoint points of  . Since       is a      space, by 

theorem 7.2.4,      { }       { } . Since   is     , there exists a disjoint   -

open sets   and   such that      { }    and      { }   . Therefore, there 

exists disjoint   -open sets   and   such that     and    . Hence ( , ) is a      

space. 

Remark 7.2.31: For a topological space ( , ) the following statements are equivalent: 

    ( , ) is      space. 

     If  ,      such that      { }        { } , then there exists   -closed sets    

and    such that     ,     ,      ,     ,        . 

Theorem 7.2.32: If a topological space ( , ) is      space, then ( , ) is      space. 

Proof: Let   be a   -open set such that    . If    , then        { } , therefore 

     { }       { } . So there exists a   -open set   such that      { }    and 

   , which implies        { } . Hence      { }   . Therefore,       is      

space. 

Theorem 7.2.33: A topological space ( , ) is      space if and only if     

     { }  implies that   and   have disjoint   -open neighbourhoods. 

Proof: Necessity: Let ( , ) be a      space. Let          { } . Then  

     { }       { } , so   and   have disjoint   -open neighbourhoods. 

Sufficiency: First to show that ( , ) is      space. Let   be a   -open set and    . 

Suppose that    . Then,      { }      and        { } . There exists two        

  -open sets    and    such that     ,      and        . Hence,      { }  

     {  }  and      { }          {  }      . [For since    is a   -open 

set,        is a   -closed set. So      {      }        . Also since 

        and          . So      {  }       {     } . Thus 

     {  }        ]. Therefore,        { } . Consequently,      { }    and 

( , ) is a      space. Next to show that ( , ) is a      space. Suppose that 
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     { }       { } . Then, assume that there exists        { }  such that 

       { } . There exists two   -open sets    and    such that     ,      and 

       . Since        { } ,     . Since       is      space, we obtain 

     { }    ,      { }     and        . Therefore ( , ) is      space.  

 


