CHAPTER-6

gn-HOMEOMORPHISM IN TOPOLOGICAL SPACES AND
TOPOLOGICAL ORDERED SPACES

6.1. INDRODUCTION

In 1973, Noiri [78] introduced the concept of generalized closed maps in
topological spaces. In 1991 Maki et al. [65] introduced g-homeomorphisms and
studied their properties. In 2002, Veera Kumar [111] introduced homeomorphism in
topological ordered spaces. Many authors like [27, 30, 57, 67, 72, 76, 82, 92, 106]
contributed much to develop the concept of homeomorphism in topological spaces.

In this chapter, a new class of gn-closed maps, gn-open maps and
gn-homeomorphism in topological spaces and topological ordered spaces are
introduced. Also the association of these maps with other existing maps and their

properties are studied.

6.2. gn-CLOSED MAPS
The notion of gn-closed maps are studied in this section.

Definition 6.2.1: A map a: (X,t) = (Y, o) is said to be a gn-closed map if the image

of every closed set in (X,7) is gn-closed in (Y, o).
Example 6.2.2: Let X =Y ={e,f,g,h}, t={X,0,{g}{e.f}.{e f,g}} and o =
{Y,0.{f}.{g,h}.{f, 9, h}}. Define a: (X,7) — (¥,0) as a(e) = e, a(f) = f,a(g) =

h,a(h) = g.Thena({h}) = {g}, a({g, h}) = {g,h}, a({e, f,h}) = {e, f, g} Therefore
a is gn-closed map. Since the image of every closed set in X is gn-closed in Y.

Theorem 6.2.3: Let (X,7r) and (Y,o) be any two topological spaces. Then for a

mapping a: (X, t) — (Y, 0). The following results are true.

(i) Every closed map is gn-closed map.
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(ii) Every a-closed map is gn-closed map.
(iii) Every r-closed map is gn-closed map.
(iv) Every n-closed map is gn-closed map.
(v) Every g-closed map is gn-closed map.
(vi) Every g*-closed map is gn-closed map.
(vii) Every ag-closed map is gn-closed map.
(viii) Every ga-closed map is gn-closed map.

Proof: (i) Let a: (X,t) = (Y,0) be a closed map and W be a closed set in X, then

a(W) is closed in Y and hence gn-closed in Y. Thus a is gn-closed.
Proof of (ii) to (viii) are similar to (7).

Remark 6.2.4: The following example reveals that the converse of the above theorem

need not be true.

Example 6.2.5: (i) Let X =Y ={e, f,g,h}, = = {X, 0,{e}, {f}.{e.f}.{e.f, g}} and
o ={Y,p,{e},{f, h}{e,f,h}}. Define a:(X,7)—> (Y,0) as a(e)=e, a(f) =
f,a(g) =g, a(h) = h. Then the function is gn-closed but not closed, r-closed,
a-closed, g-closed, g*-closed, ag-closed, ga-closed as the image of closed set {h} in
X is {h} which is gn-closed but not closed, r-closed, a-closed, g-closed, g*-closed,

ag-closed, ga-closed inY.

(@ Let X =Y ={e,f,g.h}, t={X,0{e}{f}{e fllef g}} and o ={¥, 0 {f},

{g,h},{f,g,h}}. Define a:(X,t)—> (Y,0) as a(e)=ce,a(f)=g,a(g) =f,
a(h) = h. Then the function is gn-closed but not n-closed as the image of closed set

{e,g,h}in X is {e, f, h} which is not n-closed in Y.

Remark 6.2.6: rg-closed map, gpr-closed map, gar-closed map and gn-closed map

are not dependent on each other.
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Example 6.2.7: Let X =Y ={e,f, g}, T = {X, 0, {e}, {g}. {e, g}} and o = {¥, ¢, {e},
{f}{e f}}. Define a: (X,t) - (Y,0) as a(e) = f,a(f) =e,a(g) = g. Here a is
gn-closed map. But a is not rg-closed map, gpr-closed map, gar-closed map. Since
for closed set {f}in X, a({f}) = {e} is gn-cloased but not rg-closed, gpr-closed,

gar-closed inY.

Example 6.2.8: Let X =Y ={e, f, g}, T = {X, ¢, {e}, {g}. {e, g}} and 0 = {¥, ¢, {e}}.
Define a: (X,7) = (Y,0) asa(e) = g, a(f) = e, a(g) = f. Here a is rg-closed map,
gpr-closed map, gar-closed map. But a is not gn-closed map. Since for closed set
fe,f}inX, a({e, f}) = {e, g} is rg-closed, gpr-closed, gar-closed but not gn-closed
inY.

Remark 6.2.9: The composition of two gn-closed maps need not be a gn-closed map

as seen from the following example.

Example 6.210: Let X=Y=Z={e, f,g,h}, 1={X,0{g}{ef}{ef g}}
o={V,0.{f {g h}{f 913} and p={Z ¢ {e}{f}{e f}{ef g}}. Define
a:(X,t) = (Y,0) be defined as a(e) =f, a(f) =e, a(g) =h, ath) =g and
b: (Y,0) = (Z, 1) be defined as b(e) = f, b(f) = g, b(g) = e, b(h) = h. Then the
function a and b are gn-closed map but their composition b o a: (X,7) — (Z, u) is not
gn-closed map, since for the closed set {e,f,h} in (X,7), (bea)({e f,h}) =
{e, f, g} is not gn-closed in (Z, u).

Theorem 6.2.11: Let a: (X,t) — (Y,0) and b: (Y,0) — (Z, u) be functions. Then the

following properties hold:
(i) If ais closed map and b is gn-closed then b o a: (X, ) = (Z, u) is gn-closed.

(ii) If a is continuous and surjective, b is gn-closed then b o a: (X, 1) = (Z, u) is gn-

closed map.

(iii) If a is gn-closed and b is gn-irresolute, injective then bo a: (X,7) = (Z,u) is

gn-closed map.
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(iv) If a is gn-closed map and b is gn-continuous then be a: (X,7) = (Z,u) is

continuous.

(v) If a is n-closed map and b is gn-continuous then boa:(X,t) = (Z,u) is

n-continuous.

(vi) If a is n-closed map and b is gn-continuous then bo a: (X,t) = (Z,u) is

n-irresolute.

(vii) If a is n-closed map and b is gn-continuous then bo a: (X,t) = (Z,u) is

continuous.

(viii) If a is irresolute and n-closed map and b is gn-continuous then b o a: (X, 1) —

(Z, u) is gn-continuous.

(ix) If a is gn-closed map and b is contra gn-continuous then b o a: (X, 1) = (Z, 1)

is contra continuous.

(x) If a is n-closed map and b is contra gn-continuous then b o a: (X, 1) = (Z,u) is

contra n-continuous.

(xi) If a is n-closed map and b is contra gn-ccontinuous then b o a: (X, t) = (Z, ) is

contra continuous.

(xii) If a is n-closed map and b is contra gn-continuous then b o a: (X, 1) = (Z, 1)

IS contra gn-ccontinuous.

Proof: (i) Let R be a closed set in X. Then a(R)is a closed set in Y. Hence

b(a(R)) = (boa)(R) is a gn-closed set in Z. Therefore b o a is a gn-closed map.

(ii) Let R be a closed set in Y. Since a is continuous, a~1(Y) is closed in X and since
boa is gn-closed, boa(R) = b(a(R)) is gn-closed in Z. Therefore, boa is a

gn-closed map.
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(iii) Let R be a gn-closed set in Z. Since b is gn-irresolute, b~(R) is gn-closed set
in Y. Since a is gn-closed, (b o a)(R) = b(a(R)) is gn-closed in Z. Hence (b o a) is
gn-closed.

(iv)Let R be aclosed set in Z, since b is a gn-continuous, b~1(R) is gn-closed set in
Y. Since a is gn-closed map, a~t(b~%(R)) = (boa) 1(R) is closed in X. Hence

b o & is continuous.

(v) Let R be a closed set in Z, since b is a gn-continuous, b~(R) is n-closed set
which is also gn-closed set in Y. Since a is n-closed map, a~*(b™1(R)) = (bo

a)~1(R) is n-closed in X. Hence b o a is n-continuous.

(vi) Let R be a closed set in Z, which is n-closed in Z. since b is a gn-continuous
function, b~1(R) is n-closed which is also gn-closed in Y. Since a is n-closed,

a }(b~(R)) = (b a) *(R) is n-closed in X. Hence b o a is n-irresolute.

(vii) Let R be a closed set in Z, since b is a gn-continuous function, b~1(R) is
n-closed set which is also gn-closed in Y. Since a is n-closed map, al‘l(ﬂ»‘l(R)) =

(b o a)~1(R) is closed in X. Hence b o a is continuous.

(viii) Let R be a closed set in Z, since b is a gn-continuous function, b=1(R) is

n-closed set which is also gn-closed in Y. Since a is irresolute and n-closed map,
a ' (b '(R)) = (boa)~(R) is gn-closed in X and every closed set is gn-closed.

Hence b o a is gn-continuous.

(ix) Let R be an open set in Z, since b is a contra gn-continuous function, b~1(R) is
gn-closed in Y. Since a is gn-closed map, a=*(b~1(R)) = (boa)~*(R) is closed in

X. Hence b o a is contra continuous.

(x) Let R be an open set in Z, since b is a contra gn-continuous function, b=1(R) is
n-closed in Y. As every n-closed set is gn-closed. Since a is n-closed map,
a (b (R)) = (b e a) *(R) is closed which is n-closed in X. Hence b o a is contra

n-continuous.

gn-Homeomorphism in Topological Spaces and Topological Ordered Spaces 80



(xi) Let R be an open set in Z, since b is a contra gn-continuous function, b=1(R) is
n-closed which is also gn-closed in Y. Since a is an n-closed map, a‘l(lb‘l(R)) =

(b o a)~1(R) is closed in X. Hence b o a is contra continuous.

(xii) Let R be an open set in Z, since b is a contra gn-continuous function, b~*(R) is
n-closed which is also gn-closed in Y. Since a is n-closed map, a=*(b™*(R)) = (b o
a)"1(R) is gn-closed in X. As every closed set is gn-closed. Hence b o a is contra

gm-continuous.
Theorem 6.2.12: Let (X, ), (Y, o) be any two topological spaces, then if:

(i) a:(X,t) > (Y,0) is gn-closed and R is a closed subset of (X,7) then
ag: (R, tg) = (Y, 0) is gn-closed.

(ii) a: (X,7) = (Y, 0) is gn-closed and R = a~1(S), for some closed set S of (Y, o),
then ag: (R, tg) — (Y, 0) is gn-closed.

Proof: (i). Let S be a closed set of (R,7z). Then S = R n F for some closed set F of
(X,7) and so S is closed in (X,t). Since a is gn-closed, then a(S) is gn-closed in

(Y,0). Buta(S) = agz(S). So ay is gn-closed in Y. Therefore ay is a gn-closed map.

(ii). Let F be a closed set of (R, 7z). Then F = R n H for some closed set H of (X, 7).
Now agx(F)=a(F)=aRnH)=a(a(S)NH)=Sna(H). Since a is
gn-closed, then a(H) is gn-closed in (Y,o) and so S na(H) is gn-closed in (Y, o).

Therefore ay is a gn-closed map.

Theorem 6.2.13: The map a: (X,7) = (Y,0) is gn-closed if and only if for each
subset P of (Y, o) and for each open set Q in (X,7) containing a~1(P) there is a gn-
open set T of (Y, o) contains P suchthat P € T and a~*(T) € Q.

Proof: Suppose a is gn-closed. Let P € Y and Q be an open set of (X,7) such that
a~1(P) € Q. Now X — Q is a closed set in (X,7). Since a is gn-closed, a(X — Q) is a
gn-closed setin (Y,0). ThenT =Y —a(X — Q) is a gn-open setin (Y,o0). a~1(P) S
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Q implies PST and a X(T)=X—-a(aX—-Q)) S X—(X—Q)=Q, That is
a~}(T) € Q.

Conversely, let F be a closed set of (X,7). Then a™!(a(X — F)) € (X — F) is an open
set in (X,7). By hypothesis, there exists a gn-open set T in (Y, o) such that a(X —
F)cTand a X (T)S (X—F)andso FSY —a (T). Hence (Y —T) € a(F) S
a(a (Y —T)) € (Y —T) which implies a(F)<c (X —F). Since (Y—-T) s
gn-closed, a(F) is gn-closed. That is a(F) is gn-closed in (Y, o). Therefore a is

gn-closed map.
6.3. gn-OPEN MAPS

The notion of gn-open maps are studied in this section.

Definition 6.3.1: A map a: (X,7) — (Y, 0) is said to be a gn-open map if the image of

every open set in (X, t) is gn-open in (Y, o).

Example 6.3.2: Let X =Y ={e,f,g,h}, 1 ={X,0,{f},{g, h}{f. g.h}} and o =

v, 0.{e},{f}{e.f}{e,f, g} Define a:(X,7) —> (Y,0) as a(e) =e a(f) =g,
a(g) = f,a(h) = h. Then a({f}) ={g}, al{g, h}) ={f, h}, al{f,g.h}) = {f, g, h}.
Therefore a is gn-open map. Since the image of every open set in X is gn-openinY.
Theorem 6.3.3: Let (X,7) and (Y,o0) be a topological spaces. Then for a mapping

a: (X,t) = (Y, 0). The following results are true.
(i) Every open map is gn-open map.

(ii) Every a-open map is gn-open map.

(iii) Every r-open map is gn-open map.

(iv) Every n-open map is gn-open map.

(v) Every g-open map is gn-open map.

(vi) Every g*-open map is gn-open map.
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(vii) Every ag-open map is gn-open map.
(viii) Every ga-open map is gn-open map.

Proof: (i). Let a: (X,7) — (Y,0) be an open map and G be an open set in X, then

a(G) isopen in Y and hence gn-openin Y. Thus a is gn-open.
Proof of (ii) to (viii) are similar to (7).

Remark 6.3.4: The following example reveals that the converse of the above theorem

need not be true.

Example 6.35: (i) Let X=Y={e,f, g9}, t={X ¢ {e}{f}{ef}} and o=
{Y,p,{e}}. Define a:(X,7v) - (Y,0) as a(e) = f,a(f) = e, a(g) = g. Then the
function is gn-open but not n-open as the image of open set {e} in X is {f} which is

gm-open but not n-openinY.

(i) Let =Y ={ef,g.h} v={X0{f}{gh}{f g h}} ando =Y, {e}{f},
{e.f}{e.f,g}}. Define a:(X,7) > (Y,0) as a(e)=e a(f) =g alg) =/,
a(h) = h. Then the function is gn-open but not open, a-open, r-open, g-open,
g -open, ga-open, ag-open. Since the image of open set {f,g,h} in X is {f, g, h}
which is gn-open but not open, a-open, r-open, g-open, g*-open, ga-open, ag-open
inY.

Remark 6.3.6: rg-open map, gpr-open map, gar-open map and gn-open map are

not dependent on each other.

Example 6.3.7: Let X =Y ={e,f, g}, t={X, 0. {e}{f,g}} and o ={Y, 0 {e},
{g},{e,g}}. Define a: (X,7) = (Y,0) as a(e) =e,a(f) =f,a(g) =g. Here a is
gn-open map. But a is not rg-open map, gpr-open map, gar-open map. Since for

open set {f,g}in X, a({f,g}) = {f,g} is gn-open but not rg-open, gpr-open,
gar-openinY.
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Example 6.3.8: Let X =Y = {e,f, g}, 7 = {X, ¢, {e}, {g}{e, g}} and & = {V, ¢, {e}}.
Define a: (X,7) - (Y,0) as a(e) = f,a(f) = e, a(g) = g. Here a is rg-open map,
gpr-open map, gar-open map. But a is not gn-open map. Since for open set {e, g} in

X, a({e,g}) = {f, g} is rg-open, gpr-open, gar-open but not gn-openinY.

Remark 6.3.9: The composition of two gn-open maps need not be a gn-open map as

seen from the following example.

Example 6.3.10: Let X=Y=Z={e,f,g9}, t={X,0{e}{gl{eg}}, o=
{Y,p,{f,g9}} and u ={Z, 9, {e},{f},{e, f}}. Define a: (X,7) - (Y,0) be defined as
ae)=f, a(f) =e, a(g)=g and b:(Y,0) - (Z,u) be defined as b(e) =
f,b(f) =g,b(g) =e. Then the function a and b are gn-open maps but their
composition b o a: (X,7) — (Z, u) is not a gn-open map, since for the open set {e} in
X, 1), (bea)({e}) = {g}is not gn-openin (Z, u).

Theorem 6.3.11: For any bijection a: (X,t) — (Y, o), the following statements are

equivalent.

(D) a~1:(Y,0) - (X, 1) is gn-continuous.
(ii) a is a gn-open map.

(iii) a is a gn-closed map.

Proof: (i) = (ii) Let Q be any open set of (X,7). By assumption, (a~1)"1(Q) =
a(Q) is gn-openin (Y, o) and so a is gn-open map.

(ii) = (iii) Let G be a closed set of (X,7). Then X — G is open in (X,7). By
assumption, a(X —G) =X —a(G) is gn-open in (Y,o) and therefore a(G) is

gn-closed in (Y, 0). Hence a is a gn-closed map.

(iii) = (i) Let G be a closed set of (X,t). By assumption, a(G) is gn-closed in
(Y,0). Buta(G) = (@1)71(G) and therefore a~* is gn-continuous on (Y, o).
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Theorem 6.3.12: Let (X, 7) and (Y, o) be any mapping. If a is a gn-open mapping,
then for each x e X and for each neighbourhood A of x in (X, 1), there exists a
gn-neighbourhood B of a(x) in (Y,a) such that B € a(4).

Proof: Let x € X and A be an arbitrary neighbourhood of x. Then there exists an open
set G in (X,7) such that x e G € A. By assumption, a(G) is a gn-open set in (Y, o).
Further, a(x) € a(G) < a(A), clearly a(A) is a gn-neighbourhood of a(x) in (Y, o)
and so the theorem holds, by taking B = a(G).

Theorem 6.3.13: Let X, Y and Z be topological spaces.

() Ifa: (X,7) = (Y,0) is an open map and b: (Y, o) = (Z, u) is a gn-open map, then
bea: (X,7) = (Z, ) isa gn-open map.

(i) If a:(X,7) = (Y,0)and b: (Y,0) = (Z,1) are open maps then b e a: (X,7) —»
(Z, u) is a gn-open map.

(iii) If a: (X,7) = (Y,0) is an open map and b: (Y,o) = (Z, 1) is an n-open map,
thenb o a: (X, 7) = (Z, 1) is a gn-open map.

Proof: (i) Let Q be an open set in X. Since a is an open map, a(Q) is open inY. Then

b(a(Q)) = (b o a)(Q) is a gn-open set in Z. Therefore, b o a is a gn-open map.

(ii) Let Q be an open set in X. Since a is an open map, a(Q) is open in Y. Also, since
b is an open map, b(a(Q)) is open in Z. That is, (b o @)(Q) is an open set in Z. And

every open set is gn-open, (b o a)(Q) is a gn-open set in Z. Therefore, boa is a

gn-open map.

(iii) Let Q be an open set in X. Since a is an open map, a(Q) is open in Y. Then
b(a(Q)) is an n-open in Z. That is, (beo a)(Q) is an n-open set in Z. As every
n-open set is gn-open, (b o a)(Q) is a gn-open set in Z. Hence, b o a is a gn-open

map.
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Theorem 6.3.14: The map a: (X,t) = (Y, 0) is gn-open if and only if for any subset
P of (Y,0) and any closed set F in (X, 7) containing a~*(P), there exists a gn-closed

set S of (Y, ¢) containing P such that a=1(S) C F.

Proof: Suppose a is gn-open map. Let P € Y and F be a closed set of (X, t) such that
a~1(P) € F. Now X — F is an open set in (X, 7). Since a is gn-open, a(X — F) is a
gn-opensetin (Y,0). Then S =Y —a(X — F) is a gn-closed set in (Y,0). a 1(P) C
F implies PSS and a () =X—a(@(X—F))SX—(X—F)=F. That is
a~1(S) cF.

Conversely, let Q be an open set of (X,7). Thena (X —a(Q)) S X—Qand X — Q
is a closed set in (X, t). By hypothesis, there exists a gn-closed set S in (Y, o) such
that X —a(Q)c S and a 1(S)cX—Q and so Q € X —a~1(S). Hence Y —S C
a(Q) < a(Y —a1(S)) which implies a(Q) €Y — S. Since Y — S is gn-open, a(Q)

is gn-open in (Y, o) and therefore a is gn-open map.
6.4. gn-HOMEOMORPHISM

Definition 6.4.1: A bijection a: (X, 1) = (Y, o) is called an n-homeomorphism if a is
both n-continuous map and n-open map. That is, both a and a~! are n-continuous

map.

Definition 6.4.2: A bijection a: (X, 1) — (Y, o) is called a gn-homeomorphism if a is
both gn-continuous map and gn-open map. That is, both a and a~! are gn-continuous

map.

Example 6.4.3: Let X =Y ={e,f, g9}, 7= {X, @, {e}, {f,g}} and o ={Y, ¢, {e},
{g},{e, g}} Define a: (X,7) - (Y,0) as a(e) = g, a(f) = f, a(g) = e. Here the sets
{f} {e.f}, {f, g} are closed in Y. Then a'({f}) ={f}, a~*({e,f) ={f. 9}
a 1({f,g}) = {e f} are gn-closed in X. Therefore a is gn-continuous. And the sets

{e}, {f,g} are open in X. Then a(e) =g, a(f,g) ={e, f} are gn-open in Y.
Therefore a is open map. Hence a is gn-homeomorphism.
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Theorem 6.4.4: Let (X,t) and (Y,0) be a topological spaces. Then for a mapping

a: (X,7) = (Y, g). The following results are true.

(i) Every homeomorphism is gn-homeomorphism.

(ii) Every a-homeomorphism is gn-homeomorphism.
(iii) Every r-homeomorphism is gn-homeomorphism.
(iv) Every n-homeomorphism is gn-homeomorphism.
(v) Every g-homeomorphism is gn-homeomorphism.
(vi) Every g*-homeomorphism is gn-homeomorphism.
(vii) Every ag-homeomorphism is gn-homeomorphism.
(viii) Every ga-homeomorphism is gn-homeomorphism.

Proof: (i) Let a:(X,t) —» (Y,0) be a homeomorphism. Then a and a~! are
continuous and a is bijection. Since every continuous function is gn-continuous, a

and a~! are gn-continuous. Hence a is gn-homeomorphism.
Proof of (ii) to (viii) are similar to (7).

Remark 6.4.5: The following example reveals that the converse of the above theorem
need not be true.

(D) Let X=Y={e, f,g} = {X, <p,{e}} and o = {Y, ®, {f,g}}. Define a: (X, 1) -
(Y,0) as a(e) = f,a(f) =e,a(g) = g. Then the function is gn-homeomorphism.
But a~1({e}) = {f} is gn-closed but not closed in X. Here the set {e} is closed in Y.
Therefore a is not gn-continuous. Hence a is gn-homeomorphism but not

homeomorphism.

(i) Let X =Y ={e,f, g}, v ={X, 0. {e}, {g}.{e, g}} and o = {Y, ¢, {e}, {f}, {e, f}}.
Define a: (X,7) = (Y,0) as a(e) =e,a(f) = f,a(g) = g. Then the function is
gn-homeomorphism. But a({e, g}) = {e, g} is gn-open but not r-open in Y. Here the
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set {e, g} is open in X. Therefore a is gn-open map but not r-open map. Hence a is

not r-homeomorphism.

(iii) Let X =Y ={e, f, g}, T = {X, o, {f,g}} and o = {Y, ¢, {e}, {g},{e, g}}. Define
a:X,t)- Y,0) as a(e)=g,a(f)=f,a(g) =e. Then the function is
gn-homeomorphism. But a({f,g}) ={e,f} is gn-open but not g-open, g*-open,
a-open, ag-open, ga-open in Y. Here the set {f, g} is open in X. Therefore a is
gn-open map but not g-open, g*-open, a-open, ag-open, ga-open map. Hence a is
notg-homeomorphism, g*-homeomorphism, a-homeomorphism,ag-homeomorphism,

ga-homeomorphism.

(iv) Let X=Y={ef,gh}, t={X0{g{eflief g}} and o={, ¢/e}
{f}{e.fl.{e.f,9}}. Define a:(X,7) - (Y,0) as a(e) =f a(f) =e alg) =g,
a(h) = h. Then the function is gn-homeomorphism. But a({g}) = {g} is gn-open but

not n-open in Y. Here the set {g} is open in X. Therefore a is not n-homeomorphism.

Remark 6.4.6: rg-homeomorphism, gpr-homeomorphism, gar-homeomorphism

and gn-homeomorphism are not dependent on each other.

Example 6.4.7: Let X =Y ={e,f,g,h}, t={X,0,{f},{g h},{f, g, h}} and o =
{¥,0.{g}.{e.f}.{e. f, g}}. Define a: (X,7) - (Y,0) as a(e) =e,a(f) = f,a(g) =
g, a(h) = h. Here a is gn-continuous. But a is not rg-continuous, gpr-continuous,
gar-continuous. Since for the closed set, {g,h} in Y, a1({g,h}) ={g,h} is
gn-closed but not rg-closed, gpr-closed, gar-closed in X. Hence a is
gn-homeomorphism  but not  rg-homeomorphism,  gpr-homeomorphism,

gar-homeomorphism.

Example 6.4.8: Let X =Y ={e, f, g}, T = {X, ¢, {e}} and o = {Y, ¢, {f, g}}. Define
a:(X,t) » (Y,0) as a(e) =e,a(f)=g,a(g)=f. Here a is rg-continuous,
gpr-continuous, gar-continuous. But a is not gn-continuous. Since for the closed set,

{e} inY,a 1({e}) = {e} is rg-closed, gpr-closed, gar-closed but not gn-closed in

gn-Homeomorphism in Topological Spaces and Topological Ordered Spaces 88



X. Hence a is rg-homeomorphism, gpr-homeomorphism, gar-homeomorphism but

not gn-homeomorphism.

Remark 6.4.9: The composition of two gn-homeomorphism need not be

gn-homeomorphism as seen from the following example.

Example 6.4.10: Let X =Y =Z ={e,f, g}, t={X, 0,{f.g}}, 0 ={Y,9,{e}} and
u=1{Z ¢o,{e}{f g1} Define a:(X,7) » (Y,0) be defined as a(e) =f,a(f) =
g,a(g) =e and b:(Y,0) » (Z,1) be defined as b(e) = f,b(f) =e,b(g) = g.
Then the function a and b are gn-continuous but their composition b o a: (X, 1) -

(Z,uw) is not gn-continuous, since for the closed set {f,g} in (Z ),
(boa)~*({f,g}) = {f, g} is not gn-closed in (X, 7).

Theorem 6.4.11: Let a: (X,7) — (Y,0) be a bijective and gn-continuous map.Then

the following statements are equivalent.
(i) a is gn-open map.

(ii) a is gn-homeomorphism.

(iii) a is gn-closed map.

Proof: (i) = (ii) Let F be a closed set in (X,t). Then {X — F} is open in (X, 7).
Since a is gn-open, then a(X — F) is gn-open in (Y,o0). This implies Y — a(F) is
gn-open in (Y,o0). That is, a(F) is gn-closed in (Y,o). Thus a gn-closed. Further
(a=)~Y(F) = a(F) is gn-closed in (Y,0). Thus a~! gn-continuous. By assumption

a is gn-continuous and bijective. Hence a is gn-homeomorphism.

(ii) = (iii) Suppose a is a gn-homeomorphism. Then a is bijective, a and a~?* are
gn-continuous. Let a be a closed set in (X, 7). Since a™! is gn-continuous. Then

(a~H)~Y(F) = a(F) is gn-closed in (Y, ¢). Thus a is gn-closed.

(iii) = (i) Let a be a gn-closed map. Let G be an open in X. Then X — G is closed
in (X,t). Since a is gn-closed, a(X — G) is gn-closed in (Y,o). This implies
Y —a(G) is gn-closed in (Y, g). Therefore a(G) is gn-openin (Y, o).
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6.5 £g1-CLOSED MAPS

In this section the concept of xgn-closed maps are introduced and their basic

properties are obtained.

Definition 6.5.1: A function a: (X, 7,<) — (Y, 0, <) is said to be a xn-closed map if

the image of every closed set in (X, 7, <) is a xn-closed set in (Y, o, <).

Definition 6.5.2: A function a: (X, 7,<) = (Y, 0, <) is said to be a xgn-closed map if

the image of every closed set in (X, 7, <) is a xgn-closed set in (Y, g, <).

Theorem 6.5.3: Every i-closed, ia-closed, in-closed maps are ign-closed map, but

not conversely.

Proof: The proof follows from the fact that every i-closed, ia-closed, in-closed set is
an ign-closed set [3.5.2, 3.5.6]. Then every i-closed, ia-closed, in-closed maps are

ign-closed map.

Example 6.5.4: Let X =Y = {e,f, g}, T = {X, 0, {e}, {f}.{e, f}} and o = {Y, ¢, {e}},
<={(e,e),(f. /). (9,9). (e, f) (g, f)} Define a map a:(X,7,<) — (¥,0,<) by
a(e) =e, a(f) =g, a(g) = f. This map is ign-closed map, but not i-closed,
ia-closed, in-closed map. Since for the closed set W = {e, g} in (X,7,<), a(W) =

{e, f}is ign-closed but not i-closed, ia-closed, in-closed in (Y, g, <).

Theorem 6.5.5: Every d-closed, da-closed, dn-closed maps are dgn-closed map, but

not conversely.

Proof: The proof follows from the fact that every d-closed, da-closed, dn-closed sets
are dgn-closed set [3.5.8, 3.5.10]. Then every d-closed, da-closed, dn-closed maps

are dgn-closed map.

Example 6.5.6: Let X =Y ={e,f, g}, t=1{X,0,{e}} ando ={Y,0,{e}{f g}}
<={(e,e),(f, /), (9,9). (e, f), (f,9), (e,g)}. Define a map a: (X,7,<) - (¥,0,<)
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by a(e) = g, a(f) = f, a(g) = e. This map is dgn-closed map, but not d-closed,
da-closed, dn-closed map, since for the closed set W = {f, g} in (X,7,=<), a(W) =
{e, f}is dgn-closed but not d-closed, da-closed, dn-closed in (Y, g, <).

Theorem 6.5.7: Every b-closed, ba-closed maps are bgn-closed map, but not

conversely.

Proof: The proof follows from the fact that every b-closed, ba-closed sets are

bgn-closed set [3.5.14]. Then every b-closed, ba-closed maps are bgn-closed map.

Example 6.5.8: LetX =Y ={e,f, g}, 1 ={X,0,{e},{f,g}}and o = {Y, 9, {e}, {f},
{e,f1}, <={(e,e),(f.f) (g,9) (e,g)}. Define a map a: (X,7,<) = (Y,0,<) by
a(e) =f, a(f) =e, a(g) =g. This map is bgn-closed map, but not b-closed,
ba-closed map, since for the closed set W ={e} in (X,7,<), a(W) ={f} is
bgn-closed but not b-closed, ba-closed in (Y, o, <).

Theorem 6.5.9: Every bn-closed map is bgn-closed map, but not conversely.

Proof: The proof follows from the fact that every bn-closed set is bgn-closed set

[3.5.18]. Then every bn-closed maps are bgn-closed map.

Example 6.5.10: Let X =Y ={e, f, g}, t={X,0,{e},{f,g}} ando = {Y, o, {e}},
<={(e,e),(f, 1), (9,9). (e, g)}. Define a map a: (X,7,<) - (¥,0,<) by a(e) = f,
a(f) =e, a(g) = g. This map is bgn-closed map, but not bn-closed map, since for
the closed set W = {f, g} in (X, 7, <), a(W) = {e, g} is bgn-closed but not bn-closed

in(Y,o,<).
6.6 £g1-OPEN MAPS

Definition 6.6.1:A function a: (X,7,<) — (Y,0,<) is said to be a xn-open map if
the image of every open set in (X, 1, <) is a xn-open setin (Y, o, <).
Definition 6.6.2: A map a: (X,7,<) — (Y,0,<) is said to be a xgn-open map if the

image of every open setin (X, 7, <) is a xgn-open set in (Y, g, <).
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Theorem 6.6.3: Every i-open, ia-0pen, in-open maps are ign-open map, but not

conversely.

Proof: The proof follows from the fact that every i-open, ia-open, in-open sets are
ign-open set [3.5.2, 3.5.6]. Then every i-open, ia-0pen, in-open maps are ign-open

map.

Example 6.6.4: Let X =Y ={e,f, g}, 7 ={X,0,{f, 93} ando ={Y, ¢, {e}.{f. g3},
<={(e,e),(f. ). (9,9). (e, /), (f,9), (e, 9)}. Define a map a: (X,7,<) - (¥,0,<)
by a(e) =g, a(f) =f, a(g) =e. This map is ign-open map, but not i-open,
ia-open, in-open map, since for the open set W = {f, g} in (X, 71, <), a(W) = {e, f}

is ign-open but not i-open, ia-open, in-open in (Y, o, <).
Theorem 6.6.5: Every d-open, da-open maps are dgn-open map, but not conversely.

Proof: The proof follows from the fact that every d-open, da-open sets are dgn-open

set [3.5.8]. Then every d-open, da-open maps are dgn-open map.

Example 6.6.6: Let X =Y ={e,f,g}, t ={X, ¢, {e,f}} and o = {¥, ¢, {e}, {f},
{e.f}}, == {(e,e).(f.1).(g.9). (e, f), (g, )} Define a map a: (X,7,<) - (¥,0,<
) by a(e) =g, a(f) = f, a(g) = e. This map is dgn-open map, but not d-open,
da-open map, since for the open set W ={e, f} in (X,7,<), a(W) ={f,g} is
dgn-open but not d-open, da-open in (Y, o, <).

Theorem 6.6.7: Every dn-open map is dgn-open map, but not conversely.

Proof: The proof follows from the fact that every dn-open set is dgn-open set

[3.5.10]. Then every dn-open map is dgn-open map.

Example 6.6.8: Let X =Y ={e,f, g}, t={X,0.{g}} ando ={Y,9,{e}}, <=
{(e,e), (f./),(g.9).(e.f), (g, f)} Define a map a:(X,7,<) - (Y,0,<) by
ae) =g, a(f) =e, a(g) = f. This map is dgn-open map, but not dn-open map,
since for the open set W = {g} in (X, 7, <), a(W) = {f} is dgn-open but not dn-open

in(Y,o,<).
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Theorem 6.6.9: Every b-open, ba-open maps are bgn-open map, but not conversely.

Proof: The proof follows from the fact that every b-open, ba-open sets are bgn-open

set [3.5.14]. Then every b-open, ba-open maps are bgn-open map.

Example 6.6.10: Let X =Y ={e, f, g}, T = {X, o, {e}, {f,g}} and o ={Y,¢,{e},

e 1 <={(ee).(f./). (g.9) (e, 9). Define amap a: (X,7,<) - (¥,0,<) by
ale) =f, a(f) =e, a(g) = g. This map is bgn-open map, but not b-open, ba-open
map, since for the open set W = {f, g} in (X,t,<), a(W) = {e, g} is bgn-open but

not b-open, ba-open in (Y, g, <).
Theorem 6.6.11: Every bn-open map is bgn-open map, but not conversely.

Proof: The proof follows from the fact that every bn-open set is bgn-open set

[3.5.18]. Then every bn-open map is bgn-open map.

Example 6.6.12: Let X =Y ={e,f, g}, 7= {X, o, {e}, {f,g}} ando = {Y, o, {e}},
<={(ee),(f. 1), (g,9) (e, g). Define a map a: (X,7,<) —» (Y,0,<) by a(e) =f,
a(f) =e, a(g) = g. This map is bgn-open map, but not bn-open map, since for the
openset W = {e}in (X, 1, <), a(W) = {f} is bgn-open but not bn-open in (Y, g, <).

6.7 xg1-HOMEOMORPHISM

Definition 6.7.1: A bijection map a:(X,1,<) = (Y,0,<) is called

xn-homeomorphism if a is both xn-continuous map and xn-open map.

Definition 6.7.2: A bijection map a:(X,7,<) = (Y,0,<) is called

xgn-homeomorphism if a is both xgn-continuous map and xgn-open map.

Theorem 6.7.3: Every i-homeomorphism, ia-homeomorphism, maps are

ign-homeomorphism map, but not conversely.

Proof: The proof follows from the fact that every i-continuous, ia-continuous,
maps are ign-continuous map [4.4.3, 4.4.5]. Also every i-open map, ia-open maps

are ign-open map [6.6.3].
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Example 6.74: Let X=Y={e f,g9}, t={X, 0 {e}{f}.{ef}} and o=
V.0, {e}.{f.9}}, <={(e,e),(f.f).(g,9),(e,9)}. Define a map a:(X,7,<) -
(Y,0,<) by a(e) = f, a(f) = e, a(g) = g. This map is ign-continuous, but not an
i-continuous, ia-continuous, since for the closed set W = {e} in (Y, 0,<), a (W) =

{f}1s ign-closed but not an i-closed, ia-closed in (X, 7, <).

Theorem 6.7.5: Every in-homeomorphism map is ign- homeomorphism map, but not

conversely.

Proof: The proof follows from the fact that every in-continuous map is

ign-continuous map [4.4.5]. Also every in-open map is ign-open map [6.6.3].

Example 6.7.6: Let X =Y ={e,f, g}, T={X, 9, {e}} ando ={Y,¢,{e},{f, g3},
<={(e,e),(f. 1), (9,9). (e, g)}. Define amap a: (X,7,<) - (¥,0,<) by a(e) = f,
a(f) = e, a(g) = g. This map is ign-continuous, but not an in-continuous, since for
the closed set W = {f, g} in (Y,0,<), a~*(W) = {e, g} is not in-closed in (X, 7, <).

Theorem 6.7.7: Every d-homeomorphism, da-homeomorphism maps are

dgn-homeomorphism map, but not conversely.

Proof: The proof follows from the fact that every d-continuous, da-continuous maps
are dgn-continuous map [4.4.9]. Also every d-open map, da-open maps are

dgn-open map [6.6.5].

Example 6.7.8: Let X =Y ={e, f, g}, 1={X,0,{e}, {f}{e.f}} ando = {V, ¢, {e},
{f. g1 <= {(e.€), (f.1), (. 9), (e, 9)}. Define a map a:(X,7,<) - (¥,0,<) by
a(e) =f, a(f) = e, a(g) = g. This map is dgn-continuous, but not d-continuous,
da-continuous, since for the closed set W = {e} in (Y,0,<), a t(W) = {f} is

d gn-closed but not d-closed, da-closed in (X, 7, <).

Theorem 6.7.9: Every dn-homeomorphism map is dgn-homeomorphism map, but

not conversely.
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Proof: The proof follows from the fact that every dn-continuous maps are

dgn-continuous map [4.4.9]. Also every dn-open map is are dgn-open map [6.6.7].

Example 6.7.10: Let X =Y ={e,f, g}, T ={X,¢,{e}}} ando = {V, ¢, {e}. {f, 93},
<={(e,e),(f.1),(9,9). (e, 9)}. Define a map a: (X,7,<) - (¥,0,<) by a(e) =,
a(f) =e, a(g) = g. This map is dgn-continuous, but not dn-continuous, since for
the closed set W = {f,g} in (Y,0,<), a *(W) = {e, g} isdgn-closed but not
dn-closed in (X, 7, <).

Theorem 6.7.11: Every ba-homeomorphism, bn-homeomorphism, maps are

bgn-homeomorphism map, but not conversely.

Proof: The proof follows from the fact that every ba-continuous, bn-continuous maps
are bgn-continuous map [4.4.11]. Also every ba-open map, bn-open maps are
bgn-open map [6.6.9, 6.6.11].

Example 6.7.12: Let X =Y ={e,f, g}, 7= {X, ®, {e}} and o = {Y, p,{e}, {f,g}},
<={(ee),(f.f) (g,9), (e,g)} Defineamap a: (X,7,<) - (Y,0,<) by a(e) = f,
a(f) =e, a(g)=g. This map is bgn-continuous, but not ba-continuous,
bn-continuous, since for the closed set W = {f, g} in (Y,0,<), a (W) = {e, g} is

bgn-closed but not bsemi-closed, ba-closed, bn-closed in (X, 7, <).

Theorem 6.7.13: Every b-homeomorphism map is bgn-homeomorphism map, but not

conversely.

Proof: The proof follows from the fact that every b-continuous map is

bgn-continuous map [4.4.11]. Also every b-open map is bgn-open map [6.6.9].

Example 6.7.14: Let X =Y ={e,f, g}, t={X,p,{e},{f}.{e f}} and o ={Y,,
{e}.{f, g} =={(e,e),(f. /). (9,9). (e, g)}. Define a map a: (X,7,<) = (¥,0,<)
by a(e)=f, a(f)=e, a(g)=g. This map is bgn-continuous, but not
b-continuous, since for the closed set W ={e} in (Y,0,<), a *(W) = {f} is

bgn-closed but not b-closed in (X, 7, <).
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CHAPTER-7

gn-SEPARATION AXIOMS IN TOPOLOGICAL SPACES

7.1. INDRODUCTION

In 1943, Shamin [97] introduced the separation axioms in topological spaces.
Ekici, Jafari, Kar and Bhattacharyya [37, 46, 50] introduced some weak separation
axioms in topological spaces. Many authors [1, 3, 9, 17, 18, 53, 73] contributed much
to develop the separation axioms to the topological spaces.

In this chapter, a new class of separation axioms in topological spaces using
gn-closed sets are framed. Also the concept of gn-Ty spaces for k = 0, 1, 2 gn-D;
spaces for k =0, 1, 2 and gn- Ry spaces for k = 0, 1 and some of their properties are

also investigated.

7.2. gn-SEPARATION AXIOMS
Definition 7.2.1: A topological space (X,t) is said to be

(i) gnT, if for each pair of distinct points k, [ in X, there exists a gn-open set G such
that either keGandl € Gork € Gand L e G.

(ii) gnT, if for each pair of distinct points k, [ in X, there exists two gn-open sets G
and H suchthatke Ghutl ¢ Gandle Hbutk ¢ H.

(iii) gnT, if for each pair of distinct points k, [ in X, there exists two disjoint gn-open

sets G and H containing k and [ respectively.

Example 7.2.2: (i). Let X ={e,f, 9}, T={X,9,{f,g}}. Here gn-open sets are
{X,0,{f}, {9}, {f, g}}. Since for the distinct points f and g, there exists a gn-open set
G = {f}suchthat feGand g € G or G = {g} such that f ¢ G and geG. Therefore X is

gnT, space.

(ii) Let X ={e,f,g}, v={X ¢, {e}}. Here gn-open sets are {X,q,{e}, {f}, {g},
{e, f},{e, g}}. Since for the distinct points e and g, there exists two gn-open sets
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G ={e} and H ={g} such that ee G but g € G and e € H but g e H. In a similar
manner other pairs of distinct points may also be discussed. Therefore X is gnT;

space.

(iii) Let X ={e,f, g}, v={X, ¢,{e}}. Here gn-open sets are {X,¢,{e},{f},{g},
{e,f},{e,g}}. Since for the distinct points e and g, there exists two disjoint
gn-open set G = {e} and H = {g} containing {e} and {g} satisfying gnT, conditions.

And this is true for other pair of distinct points. Therefore X is gnT, space.
Remark 7.2.3: Let (X,7) be a topological space, then the following are true:
(i) Every gnT, space is gnT;.

(ii) Every gnT; space is gnT,.

Theorem 7.2.4: A topological space (X,7) is gnT, if and only if for any two distinct
points k, [ of X, gncl({k}) # gn({1}).

Proof: Necessity: Let (X,7) be a gnT, space and k, [ be any two distinct points of X.
There exists a gn-open set G containing k or [, say k but not [. Then X — G is a
gn-closed set which does not contain k but contains L. Since gncl({l}) is the smallest

gn-closed set containing [, gncl({l}) <X —G and therefore k & gncl({l}).
Consequently gncl({k}) # gncl({1}).

Sufficiency: Suppose that k, leX, k # | and gncl({k}) # gncl({l}). Let m be a point
of X such that megncl({k}) but m & gncl({l}). We claim that k & gncl({l}). For if
kegncl({l}) then gncl({k}) S gncl({l}). This contradicts the fact that m & gncl({l}).
Consequently k belongs to the gn-open set X — gncl({l}) to which [ does not belong
to. Hence (X,t) is a gnT, space.

Theorem 7.2.5: In a topological space (X,7), if the singletons are gn-closed then X is

gnT, space and the converse is true if GnO (X, ) is closed under arbitrary union.
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Proof: Let {m} is gn-closed for every meX. Let k, leX with k # L. Now k # [ implies
leX — {k}. Hence X — {k} is a gn-open set that contains [ but not k. Similarly X — {}

IS a gn-open set containing k but not [. Therefore X is a gnT; space.

Conversely, let (X,7) be gnT; and k be any point of X. Choose leX — {k} then k # [
and so there exists a gn-open set G such that leG but k ¢ G. Consequently leG € X —
{k}, that is X — {k} = U{U;: leX — {k}} which is gn-open. Hence {k} is gn-closed.

Hence the result is true for any singleton set.

Theorem 7.2.6: For a topological space (X,t). The following results are equivalent to

each other.

(i) X is gnT,.

(ii) Let keX. For each [ # k, there exists a gn-open set G containing k such that
L& gnel({G}).

(iii) For each keX, N {gncl({G}): GeGnO (X, t) and keG} = {k}.

Proof: (i) = (ii) Let keX, and for any leX such that k + [, there exists disjoint

gn-open sets G and H containing k and [ respectively, since X is gnT,. S0 G € X —
H. Therefore, gncl({G}) € X — H.So l ¢ gncl({G}).

(ii) = (iii) If possible for some | # k, le N {gncl({G}): GeGnO(X, 1) and keG}. This
implies legncl({G}) for every gn-open set G containing k, which contradicts (ii)
Hence N {gncl({G}): GeGnO(X, 1) and keG} = {k}.

(iii) = (i) Let k,leX and k # [. Then there exists at least one gn-open set G
containing k such that [ € gncl({G}). Let H = X — gncl({G}), then leH and keG and
also G N H = ¢. Therefore X is gnT,.

Definition 7.2.7: A subset R of a topological space X is called a gn-difference set
(briefly gnD set) if there exists G, HeGnO(X,t) suchthat G +# Xand R = G — H.

Theorem 7.2.8: Every proper gn-open set is a gnD set.
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Proof: Let G be a gn-open set different from X. Take H = ¢@. ThenG =G —H isa

gnD set. But, the converse is not true as seen in the following example.

Example 7.2.9: Let X ={e, f, g}, v ={X,p,{e},{g},{e, g}}. Here gn-open sets are

X, o e} {ghle flle.gh{f,.g}} then G={ef}#X and H={eg} are
gn-opensetsin X. Let R=G—H={e,f} —{e,g} ={f} Then R={f}isa gnD

set but it is not gn-open.
Definition 7.2.10: A topological space (X,7) is said to be

(i) gnD, if for any pair of distinct points k and [ of X there exists a gnD set of X

containing k but not [ or a gnD set of X containing [ but not k.

(ii) gnD, if for any pair of distinct points k and [ of X there exists a gnD set of X

containing k but not [ and a gnD set of X containing [ but not k.

(iii) gnD, if for any pair of distinct points k and [ of X there exists two disjoint gnD

sets of X containing k and [ respectively.

Remark 7.2.11: For a topological space (X,t), the following properties are hold:
() If (X,7) is gnT;, thenitis gnD;, fori = 0,1,2.

(ii) If (X,7) is gnD;, then itis gnD;_4, for i = 1,2.

Theorem 7.2.12: A topological space (X,t) is gnD, if and only if it is gnT,.

Proof: Suppose that X is gnD,. Then for each distinct pair k, leX, at least one of k, [
say k belongs to a gnD set Q but [ ¢ Q. As Q is gnD set. Let Q = G; — G, wWhere
G, # Xand Gq,G,eGnO(X,t). Then keG,, and for [ ¢ Q we have two cases: (i)
l ¢ Gy, (ii) leG, and leG,. In case (i), keG, but | & G;. In case (ii), leG, butk & G,.
Thus in the both the cases, we obtain that X is gnT,.

Conversely, if X is gnT,, by Remark 7.2.11(i) X is gnD,.

Theorem 7.2.13: Suppose GnO(X, t) is closed under arbitrary union, then X is gnD,
if and only if itis gnD,.
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Proof: Necessity: Let k,leX and k # l. Then there exist two gnD sets Q,,Q, in X
such that keQ4, ! € Q4 and leQ,, k & Q,. Let Q; = G, — G, and Q, = Gz — G4, where
G4, G, G3 and G, are gn-open sets in X. From k ¢ Q,, the following two cases arise:
Case (i): k & G5. Case (ii): keG3 and keG,.

Case (i) k € G5. By | ¢ Q, we have two sub cases:

(a) 1 & G,. Since keG, — G,, it follows that keG; — (G, U G3), and since leG; — G,
we have l€G3 - (Gl V) 64), and (Gl - (GZ V) G3)) N (63 - (Gl V) G4,)) = Q.

(b) leG, and leG,. We have keG; — G, and leG,, and (G; — G,) N G, = o.

Case (ii) keG5 and keG,. We have leG; — G, and keG,. Hence (G; — G,) N G, = ¢.
Thus both case (i) and in case (ii), X is gnD,.

Sufficiency: Follows from Remark 7.2.11(ii).
Corollary 7.2.14: If a topological space (X,t) is gnD;, then itis gnT,.
Proof: Follows from 7.2.11(ii) and theorem 7.2.12.

Definition 7.2.15: A point keX which has only X as the gn-neighbourhood is called a
gm-neat point.

Proposition 7.2.16: For a gnT, topological space (X,r) which has atleast two

elements, the following results are equivalent:
(i) (X,7) is gnD, space.
(ii) (X,7) has no gn-neat point.

Proof: (i) = (ii) Since (X,7) is a gnD; space then each point k of X is contained in a
gnD set R = G — H and thus in G. By definition ¢ # X. This implies that k is not a
gn-neat point. Therefore (X,7) has no gn-neat point.

(i) = (i) Let X be a gnT, space, then for each distinct pair of points k, [ € X, atleast
one of them, k (say) has a gn-neighbourhood G containing k and not [. Thus G which
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is different from X is a gnD set. If X has no gn-neat point, then [ is not gn-neat point.
This means that there exists a gn-neighbourhood H of [ such that H # X. Thus
leH — G butnot k and H — G is a gnD set. Hence X is gnD,.

Definition 7.2.17: A topological space (X,t) is said to be gn-symmetric if for any pair
of distinct points k and [ in X, kegncl({l}) implies legncl({k}).

Theorem 7.2.18: If (X,7) is a topological space, then the following are equivalent:
() (X,7) is a gn-symmetric space.
(ii) {k} is gn-closed, for each keX.

Proof: (i) = (ii) Let (X,r) be a gn-symmetric space. Assume that {k} <
GeGnO(X, 1), but gncl({k}) € G. Then gncl({k}) n (X — G) # ¢. Now, we take
legncl({k}) n (X — G), then by hypothesis kegncl({l}) € X — G that is, k & G,

which is contradiction. Therefore {k} is gn-closed, for each keX.

(i) = (i) Assume that kegncl({1}), but I & gncl({k}). Then {1} € X — gncl({k})
and hence gncl({l}) € X — gncl({k}). Therefore keX — gncl({k}), which is
contradiction and hence legncl({k}).

Corollary 7.2.19: Let GnO(X,t) be closed under arbitrary union. If the topological

space (X,t) is a gnT; space, then it is gn-symmetric.

Proof: In a gnT, space, every singleton set is gn-closed by theorem 7.2.5 therefore,

by theorem 7.2.18, (X,7) is gn-symmetric.

Corollary 7.2.20: If a topological space (X,7) is gn-symmetric and gnT,, then (X,7) is
a gnT, space.

Proof: Let k # [ and as (X,7) is gnT,, we may assume that keG < X — {l} for some
GeGnO(X,t). Then k & gncl({l}) and hence | ¢ gncl({k}). There exists a gn-open
set H such that leH < X — {k} and thus (X,t) is a gnT; space.

Corollary 7.2.21: For a gn-symmetric space (X,7), the following are equivalent:
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(i) (X,7) is gnT, space.

(ii) (X,7) is gnD, space.

(iii) (X,7) is gnT, space.

Proof: (i) = (iii) Follows from corollary 7.2.20.

(iii) = (ii) = (i) Follows from Remark 7.2.11 and Corollary 7.2.14.

Definition 7.2.22: A topological space (X,7) is said to be gnR, if G is a gn-open set
and keG then gncl({k}) < G.

Theorem: 7.2.23 For a topological space (X,t) the following properties are equivalent
to each other.

(i) (X,7)isa gnR, space.

(ii) For any subset QeGnC(X,t), k& Q implies Q € G and k & G for some
GeGno (X, 7).

(iii) For any subset QeGnC(X, 1), k & Q implies Q N gncl({k}) = o.

(iv) For any two distinct points k and [ of X, either gncl({k}) = gncl({l}) or
gnel({k}) ngnel({1}) = o.

Proof: (i) = (ii) Let QeGnC(X,7) and k & Q. Then by (i) gncl({k}) € X — Q. Set

G =X — gncl({k}), then G is a gn-open set suchthat Q € G and k & G.

(ii) = (iii) Let QeGnC(X,t) and k & Q. There exists GeGnO(X,t) such that Q € G
and k & G. Since GegnO(X,1), G N gncl({k}) = @ and Q N gncl({k}) = o.

(iit) = (iv) Suppose that gncl({k}) # gncl({l}) for two distinct points k, € X.
There exists megncl({k}) such that m & gncl({l}) [or megncl({l}) such that
m & gncl({k})]. There exists HeGnO(X,t) such that [ ¢ H and meH, hence keH.
Therefore, we have k & gncl({l}). By (iii), we obtain gncl({k}) n gncl({l}) = ¢.
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(iv) = (i) Let HeGnO(X,t) and keH. Foreach l € H, k # L and k & gncl({l}). This
shows that gncl({k}) # gncl({l}). By (iv) gncl({k}) n gncl({l}) = ¢ for each
leX — H and hence gncl({k}) n[U gncl({l}):leX — H] = ¢. On the other hand,
since HeGnO(X,t) and leX — H, we have gncl({l}) € X — H and hence X — H =U
{gncl({l}):leX — H}. Therefore, we obtain (X —H)ngncl({k}) =¢ and
gncl({k}) € H. This shows that (X,7) is a gnR,, space.

Theorem 7.2.24: Let (X,7) be a topological space. If it is gnT, space and gnR, space

then it becomes a gnT; space.

Proof: Let k and [ be any two distinct points of X. Since X is gnT,, there exists a
gm-open set G such that keG and [ € G. As keG, implies that gncl({k}) € G. Since
l¢ G, solé&gncl({k}). Hence leH = X — gncl({k}) and it is clear that k & H.
Hence it follows that there exists a gn-open sets G and H containing k and [

respectively, such that I ¢ G and k & H. This implies that X is gnT, space.

Theorem 7.2.25: For a topological space (X,r) the following properties are

equivalent:
() (X,7) is gnR, space.
(ii) kegncl({1}) if and only if legncl({k}), for any two points k and [ in X.

Proof: (i) = (ii) Assume that X is gnR,. Let kegncl({l}) and H be any gn-open set
such that leH. Now by hypothesis, keH. Therefore, every gn-open set which contain [
contains k. Hence legncl({k}).

(ii) = (i) Let G be a gn-open set and keG. If | & G, then k & gncl({l}) and hence
[ & gncl({k}). This implies that gncl({k}) < G. Hence (X,7) is gnR, space.

Remark 7.2.26: From Definition 7.2.17 and theorem 7.2.25 the notion of

gn-symmetric and gnR, are equivalent.

Theorem 7.2.27: A topological space (X,7) is gnR, space if and only if for any two
points k and 1 in X, gncl({k}) # gncl({L}) implies gncl({k}) N gncl({l}) = ¢.
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Proof: Necessity: Suppose that (X, 1) is gnR, and k and leX such that gncl({k}) +
gncl({1}). Then, there exists megncl({k}) such that m & gncl({l}) [or m € gncl({l})
such that m & gncl({k})]. There exists HeGnO (X, t) such that [ ¢ H and meH, hence
keH. Therefore, we have k & gncl({l}). Thus ke[X — gncl({l})]eGnO(X, ), which

implies gncl({k}) € [X — gncl({I})] and gncl({k}) n gncl({l}) = ¢.

Sufficiency: Let HeGnO (X, t) and let keH. To show that gncl({k}) € H. Let | ¢ H,
that is leX —H. Then k #1 and k & gncl({l}). This shows that gncl({k}) #

gncl({1}). By assumption, gncl({k}) n gncl({l}) = ¢. Hence [ & gncl({k}) and
therefore gncl({k}) < H. Hence (X,7) is gnR, space.

Definition 7.2.28: A topological space (X,7) is said to be gnR; if for k, [ in X with
gncl({k}) # gncl({l}), there exists disjoint gn-open sets G and H such that

gncl({k}) € G and gncl({l}) < H.
Theorem 7.2.29: For a topological space (X,t). Every gnT, space is gnR, space.

Proof: Let k and [ be any two points X such that gncl({k}) # gncl({l}). By Remark
7.2.3(i), every gnT, space is a gnT; space. Therefore, by theorem 7.2.5, gncl({k}) =
{k}, gncl({1}) = {1} and hence {k} # {l}. Since (X,7) is gnT,, there exists disjoint
gn-open sets G and H such that gncl({k}) ={k} S G and gncl({l}) ={l} S H.
Therefore (X,7) is gnR; space.

Theorem 7.2.30: If a topological space (X,t) is gn-symmetric, then the following are

equivalent:

(i) (X,7) is gnT, space.

(ii) (X,7) is gnR, space and gnT, space.
(iii) (X,7) is gnR; space and gnT, space.

Proof: (i). = (ii) and (ii) = (iii) obvious.
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(iii). = (i) Let k and [ be two disjoint points of X. Since (X, 1) is a gnT, space, by
theorem 7.2.4, gncl({k}) # gncl({l}). Since X is gnR,, there exists a disjoint gn-
open sets G and H such that gncl({k}) < G and gncl({l}) < H. Therefore, there
exists disjoint gn-open sets G and H such that keG and leH. Hence (X,t) is a gnT,

space.
Remark 7.2.31: For a topological space (X,t) the following statements are equivalent:

() (X,7) is gnR; space.
(i) If k, 1 eX such that gncl({k}) #+ gncl({l}), then there exists gn-closed sets Q
and Q, such that keQ,, 1 & Q;, leQ, , k & Q,, X = Q; U Q,.

Theorem 7.2.32: If a topological space (X,7) is gnR, space, then (X,7) is gnR, space.

Proof: Let G be a gn-open set such that keG. If [ € G, then k & gncl({l}), therefore
gncl({k}) + gncl({1}). So there exists a gn-open set H such that gncl({l}) € H and
k ¢ H, which implies | ¢ gncl({k}). Hence gncl({k}) < G. Therefore, (X, 1) is gnR,

space.

Theorem 7.2.33: A topological space (X,t) is gnR, space if and only if keX —
gncl({1}) implies that k and [ have disjoint gn-open neighbourhoods.

Proof: Necessity: Let (X,z) be a gnR; space. Let keX — gncl({l}). Then
gncl({k}) # gncl({1}), so k and [ have disjoint gn-open neighbourhoods.

Sufficiency: First to show that (X,7) is gnR, space. Let G be a gn-open set and keG.
Suppose that [ ¢ G. Then, gncl({l}) NG = ¢ and k & gncl({l}). There exists two
gn-open sets G, and G, such that keGy, leG, and G, N G, = ¢. Hence, gncl({k}) S
gncl({G}) and gncl({k}) n G, < gncl({G}) N G, = . [For since G; is a gn-open
set, (X —G;) is a gn-closed set. So gncl({(X — G;)}) = (X — G;). Also since
GenNG =¢ and G, S X—-G). So gncl({Gy}) € gncl({(X — G,;}). Thus
gncl({Gy}) € (X — G))]. Therefore, I & gncl({k}). Consequently, gncl({k}) < G and
(X,T) i1s a gnR, space. Next to show that (X,r) is a gnR, space. Suppose that

gn-Separation Axioms in Topological Spaces 105



gncl({k}) # gncl({l}). Then, assume that there exists megncl({k}) such that
m & gncl({l}). There exists two gn-open sets H,, and H; such that meH,,, leH; and
H,, N H, = ¢. Since megncl({k}), keH,,. Since (K,pB) is gnR, space, we obtain
gncl({k}) € H,,, gncl({l}) € H, and H,,, N H; = ¢. Therefore (X,7) is gnR, space.
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