CHAPTER-8

$g\eta$ -CLOSED SETS IN BITOPOLOGICAL SPACES

8.1. INDRODUCTION

In 1963, Kelly.J.C. [52] introduced the idea of bitopological space. In 1986, Fukutake [40] extended the concept of g-closed sets to bitopological spaces. Several authors [20, 39, 54, 83, 98, 100, 109] contributed much to develop the concept of bitopological spaces.

In this chapter, a new class of closed sets called $\tau_1\tau_2$ $g\eta$ -closed sets, $\tau_1\tau_2$ $g\eta$ -open sets, $\tau_1\tau_2$ $g\eta$ -closure of a set, $\tau_1\tau_2$ $g\eta$ -neighbourhoods are defined and some of their properties are studied.

8.2. $\tau_1 \tau_2 \ g\eta$ -CLOSED SETS IN BITOPOLOGICAL SPACES

The notion of $\tau_1 \tau_2 g\eta$ -closed sets are defined and some of their basic properties are developed in this section.

Definition 8.2.1: A subset *R* of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2 g\eta$ -closed if $\tau_2 \eta cl(R) \subseteq I$ whenever $R \subseteq I$ and *I* is τ_1 -open in *X*.

The family of all $\tau_1 \tau_2$ closed sets in a bitopological space (X, τ_1, τ_2) is denoted by $G\eta C(X, \tau_1, \tau_2)$.

Theorem 8.2.2:

- (*i*) Every τ_2 closed set is $\tau_1 \tau_2 g\eta$ -closed.
- (*ii*) Every $\tau_2 \alpha$ -closed set is $\tau_1 \tau_2 g\eta$ -closed.
- (*iii*) Every τ_2 regular-closed set is $\tau_1 \tau_2 g\eta$ -closed.
- (*iv*) Every $\tau_2 \eta$ -closed set is $\tau_1 \tau_2 g\eta$ -closed.
- (v) Every τ_2 g-closed set is $\tau_1 \tau_2$ g η -closed.

(*vi*) Every $\tau_2 g^*$ -closed set is $\tau_1 \tau_2 g\eta$ -closed.

(*vii*) Every $\tau_2 \alpha g$ -closed set is $\tau_1 \tau_2 g \eta$ -closed.

(*viii*) Every $\tau_2 \ g\alpha$ -closed set is $\tau_1 \tau_2 \ g\eta$ -closed.

Proof: (*i*) Let *R* be any τ_2 closed set in (X, τ_1, τ_2) and $R \subseteq I$, where *I* is τ_1 open. Since every τ_2 closed set is $\tau_2\eta$ -closed, $\tau_2\eta cl(R) \subseteq \tau_2 cl(R) = R$. Therefore $\tau_2\eta cl(R) \subseteq R \subseteq I$. Hence *R* is $\tau_1\tau_2$ $g\eta$ -closed set.

(*ii*) Let *R* be any $\tau_2 \alpha$ -closed set in (X, τ_1, τ_2) and $R \subseteq I$, where *I* is τ_1 open. Since every $\tau_2 \alpha$ -closed set is $\tau_2 \eta$ -closed, $\tau_2 \eta cl(R) \subseteq \tau_2 \alpha cl(R) = R$. Therefore $\tau_2 \eta cl(R) \subseteq R \subseteq I$. Hence *R* is $\tau_1 \tau_2 g\eta$ -closed set.

(*iii*) Let *R* be any τ_2 regular-closed set in (X, τ_1, τ_2) and $R \subseteq I$, where *I* is τ_1 open. Since every τ_2 regular-closed set is τ_2 closed. By (*i*), *R* is $\tau_1 \tau_2 g\eta$ -closed set.

(*iv*)Let *R* be any $\tau_2\eta$ -closed set in (X, τ_1, τ_2) and $R \subseteq I$, where *I* is τ_1 open. Since *R* is $\tau_2\eta$ -closed. Therefore $\tau_2\eta cl(R) = R \subseteq I$. Hence *R* is $\tau_1\tau_2 g\eta$ -closed set.

(v) Let R be any $\tau_2 g$ -closed set in (X, τ_1, τ_2) then $\tau_2 cl(R) \subseteq I$ whenever $R \subseteq I$, where I is τ_1 open. Since every τ_2 closed set is $\tau_2 \eta$ -closed, $\tau_2 \eta cl(R) \subseteq \tau_2 cl(R) = R$. Hence R is $\tau_1 \tau_2 g \eta$ -closed set.

(vi) Let R be any $\tau_2 g^*$ -closed set in (X, τ_1, τ_2) then $\tau_2 cl(R) \subseteq I$ whenever $R \subseteq I$, where I is τ_1 open. Since every $\tau_2 g^*$ -closed set is $\tau_2 g$ -closed. By (v), R is $\tau_1 \tau_2 g\eta$ closed set.

(*vii*) Let *R* be any $\tau_2 \alpha g$ -closed set in (X, τ_1, τ_2) then $\tau_2 \alpha cl(R) \subseteq I$ whenever $R \subseteq I$, where *I* is τ_1 open. Since every $\tau_2 \alpha$ -closed set is $\tau_2 \eta$ -closed, $\tau_2 \eta cl(R) \subseteq \tau_2 \alpha cl(R) \subseteq I$. Hence *R* is $\tau_1 \tau_2 g \eta$ -closed set.

(*viii*) Let *R* be any $\tau_2 g\alpha$ -closed set in (X, τ_1, τ_2) then $\tau_2 \alpha cl(R) \subseteq I$ whenever $R \subseteq I$,

where *I* is $\tau_1 \alpha$ -open. Since every $\tau_2 \alpha$ -closed set is $\tau_2 \eta$ -closed, $\tau_2 \eta cl(R) \subseteq \tau_2 \alpha cl(R) \subseteq I$. Hence *R* is $\tau_1 \tau_2 g\eta$ -closed set.

The converse of the above theorem is not true as seen from the following example.

Example 8.2.3: (*i*) Let $X = \{e, f, g, h\}$, $\tau_1 = \{X, \varphi, \{e\}, \{e, f\}, \{e, f, g\}\}$ and $\tau_2 = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$. The set $\{e\}$ is $\tau_1 \tau_2 g\eta$ -closed but not τ_2 -closed, $\tau_2 \alpha$ -closed, $\tau_2 g\alpha$ -closed, $\tau_2 g\alpha$ -closed.

(*ii*) Let $X = \{e, f, g, h\}, \tau_1 = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$ and $\tau_2 = \{X, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$. The set $\{f, g\}$ is $\tau_1 \tau_2 g \eta$ -closed but not $\tau_2 \eta$ -closed.

Remark 8.2.4: Let *R* and *S* be two $\tau_1 \tau_2$ closed sets, then their union and intersection need not be $\tau_1 \tau_2 g\eta$ -closed as seen from the following example.

Example 8.2.5: Let $X = \{e, f, g, h\}, \tau_1 = \{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, f, g\}\}$ and $\tau_2 = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$. Here the set $\{e\}, \{f\}$ are $\tau_1 \tau_2 g\eta$ -closed sets and $\{e\} \cup \{f\}$ is not $\tau_1 \tau_2 g\eta$ -closed set.

Example 8.2.6: Let $X = \{e, f, g, h\}$, $\tau_1 = \{X, \varphi, \{g\}, \{e, f\}, \{e, f, g\}\}$ and $\tau_2 = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$. Here the sets $\{e, f, g\}$ and $\{e, f, h\}$ are $\tau_1 \tau_2 g\eta$ -closed sets and $\{e, f, g\} \cap \{e, f, h\}$ is not $\tau_1 \tau_2 g\eta$ -closed set.

Theorem 8.2.7: Let *R* be a subset of a bitopological space (X, τ_1, τ_2) . If *R* is $\tau_1 \tau_2 g\eta$ -closed, $\tau_2 \eta cl(R) - R$ does not contain any non-empty τ_1 closed set.

Proof: Suppose that *R* is $\tau_1\tau_2g\eta$ -closed. Let *T* be a non empty τ_1 closed set in *X* such that $T \subseteq \tau_2\eta cl(R) - R$. Then $R \subseteq X - T$. Since *R* is a $\tau_1\tau_2 g\eta$ -closed set and X - T is τ_1 open, $\tau_2\eta cl(R) \subseteq X - T$. That is, $T \subseteq X - \tau_2\eta cl(R)$. So $T \subseteq (X - \tau_2\eta cl(R)) \cap (\tau_2\eta cl(R) - R)$. Therefore $T = \varphi$.

Corollary 8.2.8: Let *R* be $\tau_1 \tau_2 g \eta$ -closed. Then *R* is τ_2 closed if and only if $\tau_2 cl(R) - R$ is τ_1 closed.

Proof: Suppose that *R* is $\tau_1 \tau_2 g\eta$ -closed and τ_2 closed. Since *R* is τ_2 closed, we have $\tau_2 cl(R) = R$. Therefore, $\tau_2 cl(R) - R = \varphi$ which is τ_1 closed.

Conversely, suppose that *R* is $\tau_1\tau_2 g\eta$ -closed and $\tau_2cl(R) - R$ is τ_1 closed. Since *R* is $\tau_1\tau_2 g\eta$ -closed, we have $\tau_2cl(R) - R$ contains no nonempty τ_1 closed set by theorem 8.2.7. Since $\tau_2cl(R) - R$ is itself τ_1 closed, we have $\tau_2cl(R) - R = \varphi$. Therefore, $\tau_2cl(R) = R$ implies that *R* is τ_2 closed.

Theorem 8.2.9: Let *R* and *S* be subsets of a bitopological space (X, τ_1, τ_2) , such that $R \subseteq S \subseteq \tau_2 \eta cl(R)$. If *R* is $\tau_1 \tau_2 g\eta$ -closed, then *S* is also $\tau_1 \tau_2 g\eta$ -closed set.

Proof: Let $S \subseteq M$ and M is τ_1 open in X. Since $R \subseteq S$, we have $R \subseteq M$. Since R is $\tau_1 \tau_2 g\eta$ -closed, we have $\tau_2 \eta cl(R) \subseteq M$. As $S \subseteq \tau_2 \eta cl(R)$, $\tau_2 \eta cl(S) \subseteq \tau_2 \eta cl(R)$. Hence $\tau_2 \eta cl(S) \subseteq M$. Therefore S is $\tau_1 \tau_2 g\eta$ -closed.

8.3. $\tau_1 \tau_2 g\eta$ -OPEN SETS IN BITOPOLOGICAL SPACES

In this section, the notion of $\tau_1 \tau_2 g\eta$ -open sets are defined and some of their basic properties are developed.

Definition 8.3.1: A subset R of (X, τ_1, τ_2) is said to be $\tau_1 \tau_2 g\eta$ -open in X if its complement X - R is $\tau_1 \tau_2 g\eta$ -closed in (X, τ_1, τ_2) .

Theorem 8.3.2: A subset *R* of a bitopological space (X, τ_1, τ_2) is $\tau_1 \tau_2 g\eta$ -open if and only if $M \subseteq \tau_2 \eta int(R)$ whenever $M \subseteq R$ and *M* is τ_1 -closed in *X*.

Proof: Let *R* is $\tau_1\tau_2$ $g\eta$ -open. Let $M \subseteq R$ and *M* is τ_1 closed in *X*. Then $X - R \subseteq X - M$ and X - M is τ_1 open in *X*. Since *R* is $\tau_1\tau_2$ $g\eta$ -open, we have X - R is $\tau_1\tau_2$ $g\eta$ -closed. Hence $\tau_2\eta cl(X - R) \subseteq X - M$. Since $\tau_2\eta cl(R) = X - \tau_2\eta int(R)$. Consequently, $X - \tau_2\eta int(R) \subseteq X - M$. Therefore $M \subseteq \tau_2\eta int(R)$.

Conversely, Suppose that $M \subseteq \tau_2 \eta int(R)$ whenever $M \subseteq R$ and M is τ_1 closed in X. Let $X - R \subseteq N$ and N is τ_1 open in X. Then $(X - N) \subseteq R$ and (X - N) is τ_1 closed in X. By hypothesis, $(X - N) \subseteq \tau_2 \eta int(R)$. That is, $X - \tau_2 \eta int(R) \subseteq N$. Therefore $\tau_2 \eta cl(X - R) \subseteq N$. Consequently X - R is $\tau_1 \tau_2$ $g\eta$ -closed. Hence R is $\tau_1 \tau_2$ $g\eta$ -open. **Theorem 8.3.3:** Let *R* and *S* be subsets of a bitopological space (X, τ_1, τ_2) , such that $\tau_2\eta int(R) \subseteq S \subseteq R$. If *R* is $\tau_1\tau_2 g\eta$ -open, then *S* is also $\tau_1\tau_2 g\eta$ -open set.

Proof: Suppose that *R* and *S* are subsets of a bitopological space (X, τ_1, τ_2) such that $\tau_2\eta int(R) \subseteq S \subseteq R$. Let *R* be $\tau_1\tau_2$ $g\eta$ -open. Then $(X - R) \subseteq (X - S) \subseteq \tau_2\eta cl(X - R)$. Since (X - R) is $\tau_1\tau_2g\eta$ -closed. By theorem 8.2.9, (X - S) is $\tau_1\tau_2$ $g\eta$ -closed in *X*. Therefore *S* is $\tau_1\tau_2$ $g\eta$ -open.

8.4. $\tau_1 \tau_2 g\eta$ -CLOSURE IN BITOPOLOGICAL SPACES

Definition 8.4.1: For a subset *R* of (X, τ_1, τ_2) , the intersection of all $\tau_1 \tau_2 g\eta$ -closed sets containing *R* is called the $\tau_1 \tau_2 g\eta$ -closure of *R* and is denoted by $\tau_1 \tau_2 g\eta cl(R)$.

That is, $\tau_1 \tau_2 g\eta cl(R) = \cap \{T: R \subseteq T, T \text{ is } \tau_1 \tau_2 g\eta \text{ closed in } X\}.$

Remark 8.4.2: If *R* and *S* are any two subsets of a bitopological space (X, τ_1, τ_2) , then $\tau_1 \tau_2 g\eta cl(X) = X$, $\tau_1 \tau_2 g\eta cl(\varphi) = \varphi$.

Example8.4.3: Let $X = \{e, f, g, h\}, \tau_1 = \{X, \varphi, \{e\}, \{e, f\}, \{e, f, g\}\}$ and $\tau_2 = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$. $\tau_1 \tau_2 g\eta$ -closed sets are $\{X, \varphi, \{e\}, \{f\}, \{g\}, \{h\}, \{e, g\}, \{e, h\}, \{f, h\}, \{g, h\}, \{e, f, g\}, \{e, f, h\}, \{e, g, h\}, \{f, g, h\}\}$. Let $R = \{e, g\}, \tau_1 \tau_2 g\eta cl(R) = \{e, g\}, \tau_1 \tau_2 g\eta cl(R) = \{e, g\}, \tau_1 \tau_2 g\eta cl(R) = \{x, y, z\}, \tau_1 \tau_2 g\eta cl(\varphi) = \varphi$.

Remark 8.4.4: If *R* and *S* are any two subsets of a bitopological space (X, τ_1, τ_2) . then

(*i*) $R \subseteq S \Rightarrow \tau_1 \tau_2 g\eta cl(R) \subseteq \tau_1 \tau_2 g\eta cl(S)$.

(*ii*) $\tau_1 \tau_2 g\eta cl(\tau_1 \tau_2 g\eta cl(R)) = \tau_1 \tau_2 g\eta cl(R).$

(*iii*) $\tau_1 \tau_2 g\eta cl(R \cup S) \supseteq \tau_1 \tau_2 g\eta cl(R) \cup \tau_1 \tau_2 g\eta cl(S)$.

 $(iv) \tau_1 \tau_2 g\eta cl(R \cap S) \subseteq \tau_1 \tau_2 g\eta cl(R) \cap \tau_1 \tau_2 g\eta cl(S).$

Theorem 8.4.5: *R* is a nonempty subset of a bitopological space (X, τ_1, τ_2) . $x \in \tau_1 \tau_2 g \eta cl(R)$ if and only if $R \cap U \neq \varphi$ for every $\tau_1 \tau_2 g \eta$ -open set *U* containing *x*. **Proof:** *R* is a nonempty subset of a bitopological space (X, τ_1, τ_2) and $x \in \tau_1 \tau_2 g \eta cl(R)$. Suppose there exists a $\tau_1 \tau_2 g \eta$ -open set *U* containing *x* such that $R \cap U = \varphi$. Then $R \subseteq X - U$ and X - U is a $\tau_1 \tau_2 g \eta$ -closed set and so $\tau_1 \tau_2 g \eta cl(R) \subseteq X - U$. Therefore $x \notin U$ which is a contradiction. Hence $R \cap U \neq \varphi$ for every $\tau_1 \tau_2 g \eta$ -open set *U* containing *x*.

Conversely, *R* is a nonempty subset of (X, τ_1, τ_2) and $x \in X$ such that $R \cap U \neq \varphi$ for every $\tau_1 \tau_2 g\eta$ -open set *U* containing $x. x \notin \tau_1 \tau_2 g\eta cl(R)$.

⇒ There exists a $\tau_1 \tau_2 g\eta$ -closed set *E* such that $R \subseteq E$ and $x \notin E$.

⇒ There exists a $\tau_1 \tau_2 g\eta$ -open set X - E containing x and $R \cap (X - E) = \varphi$ which is a contradiction. Therefore $x \in \tau_1 \tau_2 g\eta cl(R)$.

8.5. $\tau_1 \tau_2 g\eta$ -NEIGHBOURHOODS IN BITOPOLOGICAL SPACES

Definition 8.5.1: Let *X* be a bitopological space and let $x \in X$. A subset *O* of *X* is said to be a $\tau_1 \tau_2 g\eta$ -neighbourhood of *x* if and only if there exists a $\tau_1 \tau_2 g\eta$ -open set *A* such that $x \in A \subseteq O$.

Definition 8.5.2: A subset *O* of a bitopological space *X*, is called a $\tau_1 \tau_2 g\eta$ -neighbourhood of $R \subseteq X$ if and only if there exists a $\tau_1 \tau_2 g\eta$ -open set *A* such that $R \subseteq A \subseteq O$.

Theorem 8.5.3: Every neighbourhood O of $x \in X$ is a $\tau_1 \tau_2 g\eta$ -neighbourhood of X in $\tau_1 \tau_2$.

Proof: Let *O* be a neighbourhood of a point $x \in X$. To prove that *O* is a $\tau_1 \tau_2 g\eta$ neighbourhood of *x*. By definition 8.5.2, there exists an open set *A* such that $x \in A \subseteq O$. As every open set is $\tau_1 \tau_2 g\eta$ -open set *A* such that $x \in A \subseteq O$. Hence *O* is $\tau_1 \tau_2 g\eta$ neighbourhood of *X*.

Remark 8.5.4: In general a $\tau_1 \tau_2 g\eta$ -neighbourhood *O* of $x \in X$ need not be a neighbourhood of *x* in *X*, as from the following example.

Example 8.5.5: Let $X = \{e, f, g, h\}$, $\tau_1 = \{X, \varphi, \{e\}, \{e, f\}, \{e, f, g\}\}$ and $\tau_2 = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$. The set $\{e, g\}$ is $\tau_1 \tau_2 g\eta$ -neighbourhood of the point g, since the $\tau_1 \tau_2 g\eta$ -open set $\{e, g\}$ is such that $g \in \{e, g\} \subseteq \{e, g\}$. However the set $\{e, g\}$ is not a neighbourhood of the point $\{f\}$, since no open set A exists such that $g \in A \subseteq \{e, g\}$.

Theorem 8.5.6: Let (X, τ_1, τ_2) be a bitopological space and for each $x \in X$, the $g\eta$ -neighbourhood system $g\eta N(x)$ has the following statements:

(*i*) For all $x \in X$, $\tau_1 \tau_2 g\eta N(x) \neq \varphi$.

(*ii*) $N \in \tau_1 \tau_2 g\eta N(x)$ implies $x \in N$.

(*iii*) $N \in \tau_1 \tau_2 g\eta N(x), J \supseteq N$ implies $J \in \tau_1 \tau_2 g\eta N(x)$.

(*iv*) $N \in \tau_1 \tau_2 g\eta N(x)$ implies there exists $J \in \tau_1 \tau_2 g\eta N(x)$ such that $J \subseteq N$ and $J \in \tau_1 \tau_2 g\eta N(l)$ for every $l \in J$.

Proof: (*i*) Since X is a $\tau_1 \tau_2 g\eta$ -open set, it is a $\tau_1 \tau_2 g\eta$ -neighbourhood of every $x \in X$. Hence there exists at least one $\tau_1 \tau_2 g\eta$ -neighbourhood (namely X) for each $x \in X$. Therefore $\tau_1 \tau_2 g\eta N(x) \neq \varphi$ for every $x \in X$.

(*ii*) Let $N \in \tau_1 \tau_2 g\eta N(x)$, then N is a $\tau_1 \tau_2 g\eta$ -neighbourhood of x. By definition of $\tau_1 \tau_2 g\eta$ -neighbourhood, $x \in N$.

(*iii*) Let $N \in \tau_1 \tau_2 g\eta N(x)$ and $J \supseteq N$. Then there is a $\tau_1 \tau_2 g\eta$ -open set F such that $x \in F \subseteq N$. Since $N \subseteq J$, $x \in F \subseteq J$ and so J is a $\tau_1 \tau_2 g\eta$ -neighbourhood of x. Hence $J \in \tau_1 \tau_2 g\eta N(x)$.

(*iv*) Let $N \in \tau_1 \tau_2 g\eta N(x)$, then there is a $\tau_1 \tau_2 g\eta$ -open set J such that $x \in J \subseteq N$. Since J is a $\tau_1 \tau_2 g\eta$ -open set, it is a $\tau_1 \tau_2 g\eta$ -neighbourhood of each of its points. Therefore $J \in \tau_1 \tau_2 g\eta N(l)$ for every $l \in J$.