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CHAPTER-8 

  -CLOSED SETS IN BITOPOLOGICAL SPACES  

8.1. INDRODUCTION 

        In 1963, Kelly.J.C. [52] introduced the idea of bitopological space. In 1986, 

Fukutake [40] extended the concept of g-closed sets to bitopological spaces. Several 

authors [20, 39, 54, 83, 98, 100, 109] contributed much to develop the concept of 

bitopological spaces. 

        In this chapter, a new class of closed sets called        -closed sets,                                 

       -open sets,        -closure of a set,        -neighbourhoods are defined and 

some of their properties are studied.  

 

8.2.        -CLOSED SETS IN BITOPOLOGICAL SPACES 

        The notion of         -closed sets are defined and some of their basic properties 

are developed in this section. 

Definition 8.2.1: A subset   of a bitopological space           is called                       

       -closed if            whenever     and   is   -open in  . 

The family of all      closed sets in a bitopological space           is denoted by 

            . 

Theorem 8.2.2: 

     Every    closed set is        -closed. 

      Every     -closed set is        -closed. 

      Every    regular-closed set is        -closed. 

     Every     -closed set is        -closed. 

    Every     -closed set is        -closed. 
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     Every      -closed set is        -closed. 

       Every      -closed set is        -closed. 

       Every      -closed set is        -closed. 

Proof:     Let   be any    closed set in           and    , where   is   open. Since 

every    closed set is    -closed,                   . Therefore          

   . Hence   is        -closed set. 

     Let   be any    -closed set in           and    , where   is   open. Since 

every    -closed set is    -closed,                    . Therefore          

   . Hence   is        -closed set. 

      Let   be any    regular-closed set in           and    , where   is   open. 

Since every    regular-closed set is    closed. By    ,   is        -closed set. 

    Let   be any    -closed set in           and    , where   is   open. Since   is 

   -closed. Therefore             . Hence   is        -closed set. 

    Let   be any    -closed set in           then           whenever    , 

where   is    open. Since every    closed set is    -closed,                   . 

Hence   is       -closed set. 

     Let   be any     
 -closed set in           then           whenever    , 

where   is   open. Since every      -closed set is    -closed. By    ,   is        -

closed set. 

      Let   be any      -closed set in           then            whenever    , 

where   is    open. Since every     -closed set is    -closed,                   

 . Hence   is        -closed set. 

       Let   be any      -closed set in           then            whenever    ,  
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where   is    -open. Since every    -closed set is    -closed,          

          . Hence   is        -closed set.  

The converse of the above theorem is not true as seen from the following example. 

Example 8.2.3:     Let            ,                                and 

                          . The set     is        -closed but not   -closed,        

   -closed,   regular-closed,    -closed,    
 -closed,     -closed,     -closed. 

     Let            ,                            and                            

          The set       is       -closed but not    -closed.  

Remark 8.2.4: Let   and   be two     closed sets, then their union and intersection 

need not be       -closed as seen from the following example. 

Example 8.2.5: Let            ,                                and      , 

                    . Here the set         are        -closed sets and         is 

not       -closed set. 

Example 8.2.6: Let            ,                            and    

                       . Here the sets         and         are        -closed sets 

and                 is not       -closed set. 

Theorem 8.2.7: Let   be a subset of a bitopological space          . If   is        

      -closed,            does not contain any non-empty   closed set. 

Proof: Suppose that   is       -closed. Let   be a non empty   closed set in   such 

that             . Then      . Since   is a        -closed set and     is 

  open,             . That is,             . So                

            . Therefore     . 

Corollary 8.2.8: Let   be       -closed. Then   is    closed if and only if         

  is    closed. 
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Proof: Suppose that   is        -closed and    closed. Since   is    closed, we have 

         . Therefore,             which is    closed. 

Conversely, suppose that   is        -closed and           is    closed. Since   is 

       -closed, we have           contains no nonempty    closed set by theorem 

8.2.7. Since           is itself    closed, we have            . Therefore, 

          implies that   is    closed. 

Theorem 8.2.9: Let   and   be subsets of a bitopological space          , such that 

            . If   is        -closed, then   is also        -closed set. 

Proof: Let     and   is    open in  . Since    , we have    . Since   is 

       -closed, we have           . As           ,                  . 

Hence           . Therefore   is        -closed. 

8.3.        -OPEN SETS IN BITOPOLOGICAL SPACES 

           In this section, the notion of         -open sets are defined and some of their 

basic properties are developed. 

Definition 8.3.1: A subset   of           is said to be        -open in   if its 

complement     is        -closed in          . 

Theorem 8.3.2: A subset   of a bitopological space           is        -open if and 

only if              whenever     and   is   -closed in  . 

Proof: Let   is         -open. Let     and   is    closed in  . Then     

    and     is    open in  . Since   is        -open, we have     is 

       -closed. Hence               . Since                     . 

Consequently,                . Therefore            . 

Conversely, Suppose that             whenever     and   is   closed in  . 

Let       and   is    open in  . Then         and       is    closed in 

 . By hypothesis,                . That is,              . Therefore 

            . Consequently     is         -closed. Hence   is        -open. 
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Theorem 8.3.3: Let   and   be subsets of a bitopological space          , such that 

             . If   is        -open, then   is also        -open set. 

Proof: Suppose that   and   are subsets of a bitopological space           such that 

             . Let   be         -open. Then                     

  . Since       is       -closed. By theorem 8.2.9,       is         -closed in 

 . Therefore   is        -open. 

8.4.        -CLOSURE IN BITOPOLOGICAL SPACES 

Definition 8.4.1: For a subset   of          , the intersection of all       -closed 

sets containing   is called the         -closure of   and is denoted by              . 

That is,                                                 . 

Remark 8.4.2: If    and   are any two subsets of a bitopological space          , 

then               ,               . 

Example8.4.3: Let            ,                                and      ,     

                    .        -closed sets are                                                

                                              Let       .            ={            

              ,               . 

Remark 8.4.4: If    and   are any two subsets of a bitopological space          . 

then  

                               . 

             (           )             . 

                                           . 

                                          . 

Theorem 8.4.5:   is a nonempty subset of a bitopological space          . 

               if and only if        for every       -open set   containing  . 
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Proof:   is a nonempty subset of a bitopological space           and              . 

Suppose there exists a        -open set   containing   such that      . Then 

      and     is a        -closed set and so                . 

Therefore     which is a contradiction. Hence       for every        -open 

set   containing  . 

Conversely,   is a nonempty subset of            and     such that        for 

every         -open set   containing  .              .  

  There exists a        -closed set   such that     and    . 

  There exists a        -open set     containing   and           which is 

a contradiction. Therefore                . 

8.5.        -NEIGHBOURHOODS IN BITOPOLOGICAL SPACES 

Definition 8.5.1: Let   be a bitopological space and let      . A subset   of   is said 

to be a        -neighbourhood of   if and only if there exists a        -open set   

such that      . 

Definition 8.5.2: A subset   of a bitopological space  , is called a        -

neighbourhood of     if and only if there exists a        -open set   such that 

     . 

Theorem 8.5.3: Every neighbourhood   of     is a        -neighbourhood of               

  in     . 

Proof: Let   be a neighbourhood of a point    . To prove that   is a        -

neighbourhood of  . By definition 8.5.2, there exists an open set   such that      . 

As every open set is        -open set   such that      . Hence   is        -

neighbourhood of  . 

Remark 8.5.4: In general a        -neighbourhood   of     need not be a 

neighbourhood of   in  , as from the following example. 
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Example 8.5.5: Let            ,                                and    

                       . The set       is        -neighbourhood of the point  , 

since the        -open set       is such that              . However the set       

is not a neighbourhood of the point {  , since no open set   exists such that     

     .  

Theorem 8.5.6: Let           be a bitopological space and for each      , the                      

  -neighbourhood system        has the following statements: 

    For all      ,              . 

                     implies      . 

                    ,     implies                . 

                     implies there exists                 such that     and  

                for every      . 

Proof:     Since   is a        -open set, it is a        -neighbourhood of every     . 

Hence there exists at least one        -neighbourhood (namely  ) for each      . 

Therefore               for every      . 

     Let                , then   is a        -neighbourhood of  . By definition of                        

       -neighbourhood,      . 

      Let                 and    . Then there is a        -open set   such that 

       . Since    ,         and so   is a        -neighbourhood of  . Hence 

               . 

     Let                , then there is a        -open set   such that        . 

Since   is a        -open set, it is a        -neighbourhood of each of its points. 

Therefore                 for every      .  

 

 


