CHAPTER-3

1n-CLOSED SETS AND gn-CLOSED SETS IN TOPOLOGICAL
SPACES AND TOPOLOGICAL ORDERED SPACES

3.1. INDRODUCTION

In 1965, Njastad [75] introduced some properties of the topology of a-sets. In
1963, Levine [58] introduced the notion of semi-open sets in topological spaces. In
1937, Stone [103] introduced regular open-sets in topological spaces. In 1968, Velicko
[114] introduced §-open sets in topological spaces. In 1970, Levine [60] introduced
the concept of generalized closed sets. In 1965, Nachbin [70] initiated the study of
topological ordered spaces. In 2002, Veera Kumar [111] introduced the study of
i-closed, d-closed and b-closed sets and several topologies [7, 31, 49, 56, 84, 85, 86,
87, 101] introduced topological ordered spaces. In 2016, Sayed and Mansour
introduced [91] new near open sets in Topological Spaces. Motivated by various open
and closed sets discussed in the previous literature, in this chapter n-open sets using
the concept of semi open and as-open set in topological spaces are introduced. Strong
and weak forms of open and closed sets have been introduced and investigated by
several topologies [8, 15, 59, 64, 71, 81].

In this chapter, a new class of n-open sets, gn-closed sets, gn-open sets,
gn-neighbourhoods in topological spaces and gn-closed sets in topological ordered

spaces are defined and their relations with various existing closed sets are analyzed.

3.2.7)-CLOSED SET

The concept of n-open set is defined and some new results are given in this

section.

Definition 3.2.1: A subset R of a topological space (X,t) is called as-open set if
R < int(cls(int(R))) and as-closed set if cl(ints(cl(R))) S R.
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Definition 3.2.2: In a topological space (X,t), a subset R is called
(i) ann-open set if R € int(cls(int(R))) U cl(int(R)).
(it) an n-closed set if R 2 cl(ints(cl(R))) nint(cl(R)).

n0(X) (resp. nC (X)) denotes the family of all n-open (resp. n-closed set) subsets of a

topological space (X,7).

Theorem 3.2.3:

(i) Every open set is an n-open set.
(ii) Every r-open set is an n-open set.
(iii) Every a-open set is an n-open set.

Remark 3.2.4: The following example reveals that the converse of the above theorem

need not be true.

Example 3.2.5: Let X = {e, f, g, h}, T = {X, 0, {f}, {9, h}. {f, g, h}}. Here the set

{e, f} is an n-open set but not open, a-open, r-open set.
Lemma 3.2.6: Intersection of two n-open sets need not be an n-open set.

Example 3.2.7: Let X = {e, f, g}, T = {X, ¢, {e}, {9} {e, g}}. Here the sets {e, f} and
{f, g} are n-open sets, but {e, f} N {f, g} = {f} is not an n-open set.

Lemma 3.2.8: The finite union of n-open sets is an n-open set.

Proof: Let {R,}qea be a family of n-open sets in a space (X,7), then

R, S int(cls(int(R,))) U cl(int(Ry)), YaeA (where A=1,2...... n)
NOW, Ugea Ry € Ugea {int(cls(int(Ry))) U cl(int(Ry))}

= [Ugen {int(cls(int(Re)))I U [Ugen {cl(int(Re))}]

< [int {cl5(Ugea (int(Re)) )31 U [cl{Uaea (int(Re)))]
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c |int {cts ((int Ugen (R))}| U [elf{int(Uges (R}
=Ugea R, 1S also an n-open set.
Definition 3.2.9: Let (X,7) be a topological space. Then

(i) The union of all n-open sets of X contained in R is called n-interior of R and is
denoted by n-int(R).

(ii) The intersection of all n-closed sets of X containing R is called n-closure of R and
is denoted by n-cl(R).

Proposition 3.2.10: Let A be a subset of a topological space (X,t) then
(i) acls(A) = AU cl(ints(cl(A))) and aints(A) = A N int(cls(int(A)))

Theorem 3.2.11: The following results are equivalent for a topological space (X,7)
andR € X.

(i) R is an n-open set.
(ii) R = agint(R) U sint(R).

Proof: (i) = (ii) Let R be an n-open set. Then R < int(cls(int(R))) U cl(int(R))

[By proposition 1.2.5 & 3.2.10 . asint(R) U sint(R) = (R n int (cl5(int(R)))) U

(Rnci(int(R))) = R n (int (cls(int(R)) ) U cl(int(R))) = R.

(ii) = (i) Suppose that R = agint(R) U sint(R). [By proposition 1.2.5 & 3.2.10].

R = (R nint (cls(int(R))) U (R n cl(int(R)) ))Cint (cls(int(R))) U cl(int(R)).
Therefore, R is an n-open.

Remark 3.2.12: Let (X,7) be a topological space and R < X, then the following

statements are equivalent:

(i) R is an n-closed set.
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(ii) R = agcl(R) N scl(R).

Theorem 3.2.13: Let R be a subset of a topological space (X,r). Then ncl(R) =
ascl(R) N scl(R).

Proof: Let R € X and (X,r) be a topological space. Since ncl(R) is the smallest
n-closed set containing R.ncl(R) 2 cl (int5 (cl(ncl(R))))nint (ct(net(r))) 2
cl (int5(cl(R))) N int(cl(R)). [By definition 322]. RUncl(R) 2R U
(cl(ints(cl(R))) N int(cl(R)))

= ncl(R) 2 (R U (cl(ints(cl(R))) N (R U int(cl(R)))) 2 ascl(R) N scl(R). -]

[By proposition 1.2.5 & 3.2.10] also ncl(R) € ascl(R) and ncl(R) < scl(R) then
ncl(R) € ascl(R) N scl(R) ---- 1. From I and Il ncl(R) = ascl(R) N scl(R).

Remark 3.2.14: Let R be a subset of a topological space (X,7). Then nint(R) =
asgint(R) U sint(R).

Theorem 3.2.15: Let R be a subset of a topological space (X,t). Then
(i) R is an n-open set if and only if R = nint(R).
(ii) R is an n-closed set if and only if R = ncl(R).

Proof: (i) R is an n-open set. Then by theorem 3.2.11. R = agsint(R) U sint(R) and
by remark 3.2.14 we have R = nint(R).

Conversely, let R = nint(R). Then by remark 3.2.14 R = agint(R) U sint(R) and by
theorem 3.2.11, R is an n-open R = asint(R) U sint(R).

(ii) Let R be an n-closed set. Then by remark 3.2.12, R = ascl(R) n scl(R) and by
theorem 3.2.13 we have R = ncl(R).

Conversely, let R = ncl(R). Then by theorem 3.2.13 R = ascl(R) N scl(R) and by

remark 3.2.12, R is an n-closed set.
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Theorem 3.2.16: Let R and S be a subset of a topological space (X,r). Then the

following are true

() ncl(X — R) = X — nint(R).

(i) nint(X — R) = X — ncl(R).
(iii) If R < S, then ncl(R) < ncl(S).

(iv) x e ncl(R) if and only if there exists an n-open set E and x € E such that E N
R #+ ¢.

(v) x enint(R) if and only if there exists an n-open set F and x e F such that

xeF € R.

(vi) ncl(ncl(R)) =ncl(R) and nint(nint(R)) = nint(R).
(vii) ncl(R) U ncl(S) € ncl(R U S) and nint(R) U nint(S) < nint(R U S).
(viii) nint(R N S) S nint(R) N nint(S) and ncl(R N S) < ncl(R) N ncl(S).

Proof: (i) Since (X —R) € X, [By theorem 3.2.13] ncl(X —R) = ascl(X —R) N
scl(X —R) [By proposition 1.25 & 3.2.10] ncl(X —R) = (X — asint(R)) N
(X — sint(R)) = X — (asint(R) U sint(R)), ncl(X — R)=X — nint(R). [By remark
3.2.14].

(i) Since (X —R) < X, [By theorem 3.2.15] nint(X —R) = asint(X —R) U
sint(X —R) [By proposition 125 & 3.2.10] nint(X —R) = (X — ascl(R)) U
(X —scl(R)) = X — (ascl(R) nscl(R)) [By theorem 3.2.15], nint(X —R) = X —
ncl(R).

(iii) Since ncl(R) = ascl(R) Nnscl(R) and R € S, ncl(R) = ascl(R) Nnscl(R) <
ascl(S) N scl(S) = ncl(S).
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(iv) Let x € ncl(R) then x € N H where H is n-closed with R € H, so xeX —N H.
Therefore x e X — H for some n-closed set H containing R. And X — H is an n-open

set containing x and hence (X — H) N R = ¢.

Conversely, suppose that there exist an n-open set E containing x with RN E = ¢.
Then R € X — E and X — E is n-closed. Hence x & ncl(R).

(v) Necessity: Let x e nint(R). Then x e U {F:F is n-open F S R} and hence there

exist an n-open set F such that x e F € R.

Sufficiency: Let F be n-open set such that x e F € R. Then R = U {F: x € F} which is
the union of n-open set. Therefore, x & ncl(R).

(vi) Since nel(ncl(R)) = ascl(ncl(R)) n scl(ncl(R)). [By theorem 3.2.13]
ascl(ascl(R) N scl(R)) N scl(ascl(R) N scl(R)) € (ascl(R) a5cz(scz(R))) N
scl(ascl(R) N scl(R)) = ascl(R) N scl(R) = nel(R).Hence ncl(nel(R)) € nel(R).
But, ncl(R) € ncl(ncl(R)). Therefore, nel(ncl(R)) = nel(R).

(vii) Since RS RUS and S <€ RUS we have ncl(R) S ncl(RUS) and ncl(S) <
ncl(R U S). Therefore, ncl(R) U ncl(S) € ncl(R U S).

And R<c (RuS)and S € (RUS). We have nint(R) € nint(R U S) and nint(S) €
nint(R U S). Therefore, nint(R) U nint(S) < nint(R U S).

(viii) Since R2RnS and S2 RN S we have ncl(R) 2 ncl(R N S) and ncl(S) =2
ncl(R N S). Therefore, ncl(R) Nnncl(S) 2 ncl(R N S).

And R2(RnS)and S 2 (RN S). We have nint(R) 2 nint(R N S) and nint(S) 2
nint(R N S). Therefore, nint(R) N nint(S) 2 nint(R N S).

Remark 3.2.17: The inclusion relation in part (vii) and (viii) of the above theorem

cannot be replaced by equality as shown by the following example.

Example 3.2.18: Let X = {e,f, g, h}, T = {X, ¢, {e}, {f}.{e, f}.{e. f, 9}}.
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() If R={e,f},S=1{h}and (RUS) = {e, f,h} then nint(R) = {e, f}, nint(S) =
@ and nint(RU S) = {e, f, h}. So, nint(R U S) 2 nint(R) U nint(S).

(ii) f R={e},S={f} and (RUS) = {e, f} then ncl(R) = {e}, ncl(S) = {f} and
ncl(R U S) = X, therefore ncl(R) U ncl(S) S ncl(RU S).

Example 3.2.19: Let X = {e, f, g, h}, T = {X, 0, {f},{g, h}.{f, g, h}}.

IR ={e,f},S={f,gtand (RnS) ={f}thenncl(R) = {e, f}, ncl(S) = X and
ncl(RNS) ={f}.So,ncl(RNS) S ncl(R) Nnncl(S).

(i) T R={e,f},S={e g, h}and (RNS) = {e} then nint(R) = {e, f}, nint(S) =
{e,g,h} and nint(R N S) = ¢, therefore nint(R) N nint(S) 2 nint(RN S).

Definition 3.2.20: Let (X,7) be a topological space and R < X. Then the n-boundary
of R (briefly, nb(R)) is given by nb(R) = ncl(R) N ncl(X — R).

Example 3.2.21: Let X ={e,f,g,h}, T ={X, ¢, {e},{f, h},{e, f, h}}. Here the set
R ={e, f,h},nb(R) = {g}.

Theorem 3.2.22: If R is a subset of a topological space (X,7), then the following are

true:
(D) nb(R) = nb(X —R).

(i) nb(R) = ncl(R) — nint(R).

(iii) nb(R) N nint(R) = ¢.

(iv) nb(R) U nint(R) = ncl(R).

Proof: (i) Since nb(R) = ncl(R) nncl(X — R) = nb(X — R)=ncl(X — R) nncl(R).

(i) nb(R) = ncl(R) Nncl(X — R) = ncl(R) n (X — nint(R)) = (ncl(R) n X) —
(ncl(R) nnint(R)) = ncl(R) — nint(R).

(ii)) nb(R) N nint(R) = (ncl(R) — nint(R)) N nint(R) = (ncl(R) nnint(R)) —
(nint(R) nnint(R)) = nint(R) —nint(R) = ¢ .[ By using (i) 1.
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(iv)nb(R) U nint(R) = (ncl(R) - m’nt(R)) U nint(R) = (ncl(R) U nint(R)) —
(nint(R) U nint(R)) = ncl(R) — nint(R) = ncl(R). [ By using (iii)].

Theorem 3.2.23: If R is a subset of a topological space (X,t), then the following are

true:

() R is ann-open set if and only if R N nb(R) = ¢.
(ii) R is an n-closed set if and only if nb(R) S R.
(iii) R is an n-clopen set if and only if nb(R) = ¢.

Proof: (i) Let R is an n-open set. Then R = nint(R). R N nb(R) = nint(R) N nb(R)
[By theorem  3.2.22]= nint(R) N (ncl(R) — nint(R)) = (nint(R) N ncl(R)) —
(nint(R) N nint(R)) = Q.

Conversely, let Rnnb(R) = RN (ncl(R) —nint(R))[By theorem 3.2.22]= (R N

(ncl(R))) — (R N (nint(R))) = R — nint(R) = ¢. Hence R is n-open.

(ii) Let R is an n-closed set. Then R = ncl(R). [By theorem 3.2.22] but nb(R) =
(r)cl(R) — r)int(R)) =R —nint(R) € R.

Conversely, let nb(R) € R. [By theorem 3.2.22] ncl(R) = nb(R) Unint(R) S R U
nint(R) = R. Thus ncl(R) € R and R < ncl(R). Hence R is n-closed set.

(iii) Let R is an n-clopen set. Then R = nint(R), and R =ncl(R) [By theorem
3.2.22] nb(R) = (ncl(R) — nint(R)) =R—-R=0.

Conversely, suppose that nb(R) = ¢. Then nb(R) = (ncl(R) — nint(R)) = ¢.

Hence R is an n-clopen set.
Definition 3.2.24: Let (X,7) be a topological space and R € X. Then X —ncl(R) is

called the n-exterior of R and is denoted by n-ext (R). Each point q € X is called an

n-exterior point of R, if it is an n-interior point of X — R.
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Example 3.2.25: Let X ={e,f, g, h}, T = {X, 0, {e}, {f, g} {e.f.g}}. f R ={e}, S =
{e,f}, T = {e, g} then we have next(R) = {f, g, h}, next(S) = ¢ and next(T) = ¢.

Theorem 3.2.26: Let R and S are two subsets of a topological space (X,7), then the

following are true

(i) next(R) = nint(X — R).

(ii) next(R) is an n-open set.

(iii) next(R) n nint(R) = ¢.

(iv) next(R) nnb(R) = ¢.

(v) next(R) Unb(R) = ncl(X — R).

(vi) {nint(R),nb(R) and next(R)} from a partition of X.
(vii) If R € S, then next(S) < next(R).

(viii) next(R U S) < next(R) U next(S).

(ix) next(R N S) 2 next(R) N next(S).

(x) next(X) = ¢ and next(p) = X.

Proof: (i) By definition 3.2.24 next(R) = X — ncl(R) = nint(X — R).

(ii) From (i) next(R) = nint(X — R). Since nint(R) is the largest n-open sets of X

contained in R. Thus next(R) is an n-open.

(iii) next(R) N nint(R) = (X — ncl(R)) N nint(R) =nint(X — R) N nint(R) = ¢.
(iv) next(R) nnb(R) = nint(X — R) Nnb(X — R) = ¢. [ By theorem 3.2.22].

(v) next(R) Unb(R)=nint(X — R) Unb(X — R)=ncl(X — R). [By theorem 3.2.22].

(vi) From (iii), (iv) we have next(R) nnint(R) = ¢ and next(R) Nnb(R) = ¢.
Then by theorem 3.2.22 then nb(R) N nint(R) = ¢. nint(R) Unb(R) U next(R)=X.
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Hence from (v) next(R) Unb(R) =ncl(X —R) then nint(R) Uncl(X —R) =
nint(R) UX —nint(R) = X.

(vii) Let R< S then ncl(R) € ncl(S) and hence X —ncl(S) € X —ncl(R). So
next(S) < next(R).

(iii) next(RUS) =X —ncl(RUS) € X — (ncl(R) Uncl(S)cs(X — (ncl(R))) U
(X —ncl(S)) € next(R) U next(S) S next(R) U next(S).

(ix) next(RNS) =X — (cl(RN S)) 2 X — (ncl(R) nnel(S)) 2 (X — (ncl(R))) n
X - (ncl(S))) 2 next(R) N next(S) 2 next(R) N next(S).

(x) next(X) =X —ncl(X) =X — X = ¢ and next(p) = X — (ncl(p))=X — ¢ = X.

Remark 3.2.27: The example 3.2.28 shows that, the inclusion relation in part (viii),

(ix) of theorem 3.2.26 cannot be replaced by equality.

Example 3.2.28: Let X = {e, f,g,h}, Tt = {X, o, {e}, {f}.{e, f}. {e, f, g}}. Here the set
R ={e, g}, S ={g,h} thennext(R) = {f, h}, next(S) ={e, f} but next(RUS) =
{f}. Therefore, next(RUS) S next(R) Unext(S). Also next(RnS) = {e, f,h},
hence next(R N S) 2 next(R) N next(S).

Definition 3.2.29: If R is a subset of a topological space (X,t), then a point g € R is
called an n-limit point of a set R € X if every n-open set F € X containing g, contains
a point of R other than q. The set of all n-limit point of R is called an n-derived set of

R and is denoted by nd(R).

Example 3.2.30: Let X ={e f,g9}, t={X, 0 {e},{f}{e f}}. R={f g} then
nd(R) = {g}.

Theorem 3.2.31: The following five results are true. If R and S are two subsets of a

topological space (X,7).
() If R < S, thennd(R) < nd(S).

(ii) R is an n-closed set if and only if it contains each of its n-limit point.
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(iii) ncl(R) = R U nd(R).
(wi)nd(RU S) 2 nd(R) Und(S).
(w)nd(RnS) € nd(R) Nnnd(S).

Proof: (i) By definition 3.2.29, we have q e nd(R) if and only if F n (R — {q}) # o,
for every n-open set F containing q. ButR < S, then F n (S — {q}) # ¢, for every
n-open set F containing q. Hence q € nd(S). Therefore nd(R) < nd(S).

(ii) Let R be an n-closed set and g &€ R then g € (X — R) which is an n-open set,
hence there exist an n-open set (X — R) such that (X —R)NR = ¢. So q & nd(R),
therefore nd(R) S R.

Conversely, suppose that nd(R) € R and q € R. Then q € nd(R), hence there exist
an n-open set F containing q such that FNR=¢ and hence X —R =
Uqer{ F, F is n-open}. Therefore, R is n-closed.

(iii) Since nd(R) < ncl(R) and R € ncl(R).nd(R) U R < ncl(R).

Conversely, suppose that ¢ € nd(R) U R. Then g & nd(R), q € R and hence there
exist an n-open set F containing q such that F N R = ¢. Thus ¢ & ncl(R). ncl(R) <
nd(R) U R, therefore, ncl(R) = nd(R) U R.

(iv) Since RS RUS and SS RUS. We have nd(R) € nd(RUS) and nd(S) <
nd(R U S). Therefore, nd(R) Und(S) € nd(RU S).

(v) Since R2RNS and S2 RNS. We have nd(R) 2nd(RnS) and nd(S) 2
nd(R N S). Therefore, nd(R) N nd(S) 2 nd(R N S).

Definition 3.2.32: Let (X,7) be a topological space and R < X. Then the n-border of R
(briefly, nB(R)) is given by nB(R) = R — nint(R).

Example 3.2.33: Let X ={e,f, g}, 1 ={X, 0, {e}, {f}{e.f}}. TR ={e, g}, S = {g}
thennB(R) = {f}, nB(S) = {e, f, g}
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Theorem 3.2.34: For a subset R of a topological space X the following results are

true:
(D) R = nint(R) U nB(R).
(i) nint(R) NnB(R) = ¢.
(it nB(X) = nB(¢) = ¢.
(iv) nB(nint(R)) = ¢.

(v) nint(mB(R)) = ¢.

(vi) nB(B(R)) = nB(R).

Proof:(i) nint (R) UnB(R) = nint(R) U (R — m’nt(R)) = (nint (R)UR) —
(nint(R) U nint(R)) = R —nint(R) = R.

(ii) nint(R) nnB(R) = nint(R) N (R — nint(R)) = (mint(R) N R) — (nint(R) N
nint(R)) = nint(R) — nint(R) = ¢.

({i) nB(X) = X —nint(X)=X — X = ¢ and nB(@)=¢ —nint(p) = ¢ —¢ = ¢.
(iv) nB(nint(R)) = nint(R) — nint(R) = ¢.

(v) Since, nint(mB(R)) = nint(R — nint(R)) = nint(R) — nint(nint(R)) =
nint(R) — nint(R) = ¢.

(vi) SincenB(nB(R)) = nB(R) — nint(nB(R)) = nB(R) — ¢ =nB(R).

Theorem 3.2.35: For a subset R of a topological space (X,7) the following statements

are equivalent:

(i) R is n-open.
(ii) R = nint(R).
(itt)) nB(R) = ¢.

Proof: (i) = (ii) Obvious from theorem 3.2.15.
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(i) = (iii) Suppose that R =nint(R). Then by definition 3.2.32,nB(R) =
nint(R) — nint(R) = ¢.

(iii) = (i) Let nB(R) = ¢@. Then Dby definition 3.2.32, R —nint(R) = ¢ and
hence R = nint(R). Therefore R is n-open.

Definition 3.2.36: A subset N of a topological space (X,r) is called an
n-neighbourhood (briefly, n-nbd) of a point g € X if there exists an n-open set F such
that qe F € N. The class of all n-neighbourhood of geX is called the
n-neighbourhood system of g and denoted by nN,.

Example 3.2.37: Let X = {e, f, g, h}, T = (X, ¢, {e}, {f, h}, {e, f, h}}. 1N, = {e, g}.

Remark 3.2.38: For any topological spaces (X,t) and for each x ¢ X we have N, €
NNy

Example 3.2.39: Let X ={e, f,g,h}, 7={X, 0 {e},{f h}{e f,h}}. We have
{e,g} enNy.

Theorem 3.2.40: A subset F of a topological space (X,7) is n-open if and only if it is

an n-neighbourhood, for every point q € F.

Proof: Necessity: Let F be an n-open set. Then F is an n-neighbourhood for each
qeF.

Sufficiency: Let F be an n-neighbourhood, for each g € F. Then there exists an
n-open set B containing q such that g e B € F, so F =U {q: q € B}. Therefore, F is an
n-open.

Theorem 3.2.41: For a topological space (X,7). If nN, is an n-neighbourhood system

of a point g € X, then the following statements are true:
(1) nN, is not empty and q belongs to each member of nN,.

(it) Each superset of the members of nN, belongs to nN,.
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(iii) Each member N e nN, is a superset of the member B € nN,, where B is an

n-neighbourhood of each point g € B.

Proof: (i) Since X is an n-open set containing q, X e nN,. So, nN, # ¢. Also, if
Ne nN,, then there exists an n-open set F such that q e F S N. Therefore, g belongs

to each member nN,.

(ii) Let D be a superset of N e nN,, then there exists an n-open set F such that
qgeF € N < D. Which implies g e F < D and hence, D is an neighbourhood of q.
Therefore, D € nN,.

(iii) Let N be an n-neighbourhood of g € X, then there exists an n-open set B such
that g e B € N. Then by theorem 3.2.16(i), B is an n-neighbourhood of each of its

points.

Definition 3.2.42: For a topological space (X,7), a subset R of X is said to be an
n-dense in X if and only if ncl(R) = X. The family of all n-dense sets in (X,7) will be
denoted by nD (X, 7).

Example 3.243: Let X ={e,f, g9}, t={X,p,{e},{f}.{e f}}, IfR={e [}, and
ncl(R) = X . Hence R is n-dense in X.

Remark 3.2.44: Every n-dense set in a topological space (X,t) is dense in (X,t) by the

fact that ncl(R) < cl(R), while the converse may not be true.

Example 3.2.45: Let X ={e,f,g}, t={X ¢, {e},{g}{e.g}}, IfR ={e}, then
cl(R) = X but ncl(R) = {e}. Therefore, R is dense in X but not an n-dense in X.

Theorem 3.2.46: For a topological space (X,r) and G < X, the following are

equivalent:
(i) G isann-dense in X.
(ii) If H is an n-closed set in X containing G, then H = X.

(iii) nint(X — G) = .
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Proof:

(i) = (ii) Let G be an n-dense set of X. Then ncl(G) = X. But H is an n-closed set
containing G, then ncl(G) € H and therefore H = X.

(ii) = (iii) Since ncl(G) is an n-closed set contains G, By (ii) we have ncl(G) = X.
Hence ¢ = X — ncl(G) = nint(X — G).

(iii) = (i) Since nint(X — G) = ¢. Then ncl(G) = X. Hence G is an n-dense in X.

Proposition 3.2.47: For a topological space (X,t), if Ge nD (X, t), Then the following

statements are true:
() nb(G) = ncl(X - G).
(ii) next(G) = ¢.

Proof: (i) From definition 3.2.20, we have nb(G) = ncl(G) Nnncl(X — G) and since
G e nD (X, 1), thennb(G) = ncl(X — G).

(ii) Also by from definition 3.2.24, next(G) = X —ncl(G) but G e nD(X, 1), then
next(G) = ¢.

3.3. gn-CLOSED SET

A new class of sets, called gn-closed sets in topological spaces is introduced and

some of their properties are proved in this section.

Definition 3.3.1: A subset R of a topological space (X,t), is called gn-closed set if
ncl(R) < I whenever R <1 and I is open. The class of all generalized n-closed sets
is denoted by GnC (X).

Theorem 3.3.2:

(i) Every closed set is gn-closed.
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(ii) Every a-closed set is gn-closed.

(iii) Every regular-closed set is gn-closed.
(iv) Every n-closed set is gn-closed.

(v) Every g-closed set is gn-closed.

(vi) Every g*-closed set is gn-closed.
(vii) Every ag-closed set is gn-closed.
(viii) Every ga-closed set is gn-closed.

Proof: (i) Let I be an open subset and R be any closed set in X such that R < I. Since
every closed set is n-closed, ncl(R) < cl(R) = R. Therefore ncl(R) € R < I. Hence
R is gn-closed set in X.

(ii) Let I be an open subset and R be any a-closed set in X such that R < I. Since
every a-closed set is n-closed, ncl(R) € acl(R) = R. Therefore ncl(R) <R < I.

Hence R is gn-closed set in X.

(iii) Let I be an open subset and R be any regular-closed set in X such that R < I.

Since every regular-closed set is closed set. Therefore R is gn-closed set in X.

(iv) Let I be an open subset and R be any n-closed set in X such that R < I. Since R
is n-closed. Therefore ncl(R) = R < I. Hence R is gn-closed set in X.

(v) Let R be any g-closed set in X and cl(R) < I whenever R < I, where [ is open.
Since every closed set is n-closed, ncl(R) € cl(R) = R. Hence R is gn-closed set in
X.

(vi) Let R be any g*-closed set in X. Since every g*-closed set is g-closed. Therefore

R is gn-closed set in X.
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(vii) Let R be any ag-closed set in X then acl(R) < I, whenever R € I, where [ is
open. Since every a-closed set is n-closed, ncl(R) € acl(R) = R. Hence R is

gn-closed set in X.

(viii) Let R be any ga-closed set in X then acl(R) < I, whenever R € I, where [ is
a-open. Since every a-closed set is n-closed, ncl(R) < acl(R) = R. Since every open

set is an a-open set. And [ is open in X. Hence R is gn-closed set in X.

The following example reveals that the converse of the above theorem need not be

true.

Example 3.3.3: Let X ={e,f,g,h}, T ={X,0,{f}{g,h}.{f, g, h}}. The set {g} is
gn-closed but not a closed, a-closed, regular-closed, n-closed, g-closed, g*-closed,

ag-closed, ga-closed set.

Remark 3.3.4: The following examples shows that rg-closed, gar-closed, gpr-

closed and gn-closed sets are not dependent on each other.

Example 3.35: Let (X,r) be a topological space where X={ef, g}
T =1{X,¢p,{e},{g}{e,g}}. The set {e} is a gn-closed set but not rg-closed,

gar-closed, gpr-closed set.

Example 3.3.6: Let (X,r) be a topological space where X ={e, f, g},
T ={X,p,{e},{f}{e f}}. The set {e, f} is rg-closed, gar-closed, gpr-closed but not

a gn-closed set.

Remark 3.3.7: The results of the theorem 3.3.2 are illustrated in the following

diagram.

Where A —> B (resp. A <—+——> B) represent A implies B but not conversely
(resp. A and B are independent).
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Remark 3.3.8: Finite union (intersection) of gn-closed sets need not be gn-closed.

Example 3.3.9: (i).Let X ={e, f, g}, T = {X, 9o, {e}, {f} {e, f}}. Here the set {e} and
{f} are gn-closed sets, but {e} U {f} = {e, f} is not a gn-closed set.

(i).Let X ={e, f,g,h}, T ={X,0,{g},{h},{g, h}}. The set {e, g, f} and {f, g, h} are
gn-closed sets, but {e, g, f} N {f, g, h} = {g, h} is not a gn-closed set.

Theorem 3.3.10: For a gn-closed set R, ncl(R) — R contains no non-empty closed
set, and the converse is true if the intersection of a closed set and a n-closed set is a

closed set.

Proof: Necessity: Let /] be a non-empty closed set in X such that ] € ncl(R) — R.
Then R € X — . Since R is a gn-closed set and X — J is open, ncl(R) € X —J. That
is] S X —ncl(R).So] < (X —ncl(R)) N (ncl(R) — R). Therefore | = ¢.
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Sufficiency: Let us assume that ncl(R) — R contains no non-empty closed set. Let
R < I, where [ is open. Suppose that ncl(R) is not contained in I, ncl(R) n (X — 1) is
non-empty closed set contained in ncl(R) —R which is a contradiction.

Therefore ncl(R) < I. Hence R is gn-closed.

Theorem 3.3.11: If R is a gn-closed set in X and R € S S ncl(R). Then S is also
gn-closed in X.

Proof: Let S < I, where I is open. R< S < and R is gn-closed, ncl(R) € I. As
S € ncl(R), ncl(S) < ncl(R). Hence ncl(S) < I. Therefore S is gn-closed in X.

Theorem 3.3.12: Let R be a gn-closed set in X. Then R is n-closed if and only if
ncl(R) — R is closed.

Proof: Let R be a gn-closed set in X. If we assume that R is an n-closed set then

ncl(R) — R = ¢, which is a closed set.

Conversely, let ncl(R) — R be closed. In theorem 3.3.10, it is proved that ncl(R) — R
does not contain any non-empty closed set and hence ncl(R) — R does not contain any
non-empty closed set. So ncl(R) —R is a closed subset of itself and then

ncl(R) — R = ¢. This implies that R = ncl(R). Therefore R is a n-closed set.

Remark 3.3.13: LetX = {e, f,g,h}, T = {X, o {e}{f}L{e f} {e,f,g}}. Let R
={e, f, g} Here n closed sets and gnclosed sets are {X, ¢, {e}, {f},{g}, {h},{e, g},

{e,h}.{f, g3.{f, h}{g, h}.{e. f, h}.{e, g, h}.{f, g, h}}. Although ncl(R) — R = {h} is
closed, R is not n-closed and gn-closed.

Definition 3.3.14: For a subset R of (X,t), intersection of all gn-closed sets containing
R is called the gn-closure of R and is denoted by gncl(R).
That is, gncl(R) =n{J:R < J,Jis gn-closed in X}.

Remark 3.3.15: The arbitrary intersection of gn-closed sets is not necessarily

gn-closed, gncl(R) is not necessarily a gn-closed set.

Remark 3.3.16: If R and S are any two subsets of (X,7), then

1-Closed Sets and gn-Closed Sets in Topological Spaces and Topological Ordered Spaces 38



() gnel(p) = ¢ and gncl(X) = X.

(i) R € S = gncl(R) € gnel(S).

(iit) gnel(gncl(R)) = gncl(R).

(iv) gnel(R U S) 2 gnel(R) U gnel(S).
(v) gncl(R N S) < gncl(R) N gnel(S).

Theorem 3.3.17: For a subset R of (X,7) and x € X, gncl(R) contains x if and only if
P N R + ¢ forevery gn-open set P containing x.

Proof: Let R € X and let x € gncl(R). If possible let there exists a gn-open set P
containing x such that PN R = ¢. R € X — P. Therefore gncl(R) € X — P and then
x & gncl(R), which is contradiction. Therefore P N R # ¢ for every gn-open set P

containing x.

Conversely, assume that x & gncl(R). Then there exists a gn-closed set J containing
R such that x ¢ J. Therefore xeX —J and X — ] is gn-open, X — ] N R = ¢, which is
contradiction. Hence xegncl(R) if and only if P n R + ¢, for every gn-open set P

containing x.

Theorem 3.3.18: For every point x of a topological space (X,t), X — {x} is either
open or gn-closed.

Proof: Suppose X — {x} is not an open subset of X, then X is the only open set
containing X — {x}. Therefore ncl(X — {x}) € X. Hence (X — {x}) is gn-closed set
inX.

Theorem 3.3.19: Let (X,7) be a topological space and S € R € X. If S is gn-closed
set relative to R and R is both open and n-closed subset of X, then S is gn-closed set
relative to X.

Proof: Let S € G and G be an open set in X. Then S € RN G. Since S is gn-closed
relative to R, ncl(S) S RN G. ThatisRNncl(S) S RN G,wehave R N ncl(S) € G
and then R N ncl(S) U (X —ncl(S)) € G U (X —ncl(S)). Since R is gn-closed in X,
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we have ncl(R) € G U (X —ncl(S)). Therefore ncl(S) € G, since ncl(S) is not
contained in X — ncl(R). Thus S is gn-closed set relative to X.

Theorem 3.3.20: Let X be a topological space and R € Y € X. If R is gn-closed in
X, then R is gn-closed relative to Y.

Proof: R € Y N G where G is open in X. Since R is gn-closed in X. R € G implies
ncl(R) € G. That is Y nncl(R) €Y NG, where Y nncl(R) is closure of R in Y.
Thus R is gn-closed relative to Y.

Theorem 3.3.21: A subset R of a space (X, T) is gn-closed if and only if for each R <
S and S is open, there exists a n-closed set F suchthat R € F c S.

Proof: Suppose that R is a gn-closed set, R € S and S is an open set. Then ncl(R) €
S. Ifweput F =ncl(R),hence R € F C S.

Conversely, assume that R € S and S is an open set. Then by hypothesis there exists a
n-closed set F such that R € FCS S. S0 R S ncl(R) € F and hence ncl(R) € S.
Therefore R is gn-closed.

3.4. gn-OPEN SETS AND gn-NEIGHBOURHOODS

In this section, gn-open sets and gn-neighbourhoods are introduced in topological

spaces.

Definition 3.4.1: A subset R of a topological space (X,7) is called a gn-open set if
X — R is gn-closed in X. The family of all gn-open sets in X is denoted by GnO (X, 7).

Definition 3.4.2: For a subset R of a topological space (X,7), the union of all gn-open

sets contained in R is called gn-interior of R and is denoted by gnint(R).
That is, gnint(R) =U {J: R 2], ] is gn-open in X}.

Remark 3.4.3: Every open set is gn-open set.

Remark 3.4.4: (i) Finite intersection of gn-open sets need not be gn-open.

(i) Finite union of gn-open sets need not be gn-open.
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Theorem 3.4.5: Suppose nint(R) €S € R and if R is gn-open in X, then S is

also gn-openin X.

Proof: Suppose nint(R) €S € R and R is gn-open in X, then X —R € X —-SC
gncl(X — R). Since X — R is gn-closed in X, by theorem 3.3.11, X — S is gn-closed
in X. Hence S is gn-open in X.

Theorem 3.4.6: A subset R € X is gn-open if and only if ] € nint(R), whenever J is

aclosed setand J < R.

Proof: Necessity: Let R be a gn-open set and let J be a closed subset of R. Then
X — R is a gn-closed set contained in the open set X — J. Hence ncl(X —R) € X —].
Since ncl(X — R) = X — nint(R), we have X —nint(R) € X —J. Thus J € nint(R).

Sufficiency: Let J be closed and /] < R implies | € nint(R). Let X — R < I, where |
isopen. Then X — I < R, where X — I is closed. By hypothesis X — I < nint(R). That
is, X —nint(R) € 1. Thenncl(X — R) < I implies X — R is gn-closed. Therefore R is
gm-open.

Definition 3.4.7: Let x be a point in a topological space X. A subset N of X is said to

be a gn-neighbourhood of x if and only if there exists a gn-open set F such that
xeF CN.

Definition 3.4.8: A subset N of a topological space X is called a gn-neighbourhood of
R € X if and only if there exists a gn-open set F suchthat R € F S N.
Theorem 3.4.9: Every neighbourhood N of x € X is a gn-neighbourhood of x.

Proof: Let N be a neighbourhood of a point x € X. By definition of neighbourhoods,
there exists an open set F such that x e F € N. Since every open set F is gn-open. N

is a gn-neighbourhood of x.

Remark 3.4.10: In general, a gn-neighbourhood of x € X need not be neighbourhood

of x in X as seen from the following example.
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Example 3.4.11: Let X = {e, f, g}, T = {X, ¢, {e}, {f}.{e, f}}. Then gn-open sets are

{X,0,{e},{f}{e,f}.{e, 93} {f, g3} The set {f, g} is a gn-neighbourhood of {g}, then
gn-open set {f, g} is such that g e {f,g} < {f, g}. However, the set {f, g} is not a
neighbourhood of the point {g}, clearly no open set F exists such that {g} e F <

{f, g}

Remark 3.4.12: The gn-neighbourhood N of x € X need not be gn-open in X.

Example 3.4.13: Let X ={e,f, g}, T ={X,p,{e},{f}.{e, f}{f g}}. Then gn-open
sets are {X,p,{e},{f}{e,f}{f g1} The set {e,g} is a gn-neighbourhood of {e},
since e € {e} < {e, g}. But the set {e, g} is not gn-open.

Theorem 3.4.14: If a subset N of a space X is gn-open, then N is a

gn-neighbourhood of each of its points.

Proof: Let N be gn-open and x € N. Then N is a gn-open set such that xe N S N.
Since x is an arbitrary point of N, it follows that N is a gn-neighbourhood of each of

its points.

Theorem 3.4.15: Let X be a topological space. If J is gn-closed subset of X and
x € X — ], then there exists a gn-neighbourhood N of x suchthat N nJ = ¢.

Proof: Let J be a gn-closed subset of X and x e X — J, X — ] is a gn-open set of X. By
theorem 3.3.12, X — ] is a gn-neighbourhood of each of its points. Hence there exists
a gn-neighbourhood N of x suchthat N € X —J. Thatis N n ] = ¢.

Definition 3.4.16: Let x be a point in a topological space X. The set of all
gn-neighbourhood of x is called the gn-neighbourhood system at x and is denoted by

gnh(x).

Theorem 3.4.17: In a topological space X, for each x € X, the gn-neighbourhood

system gnN (x) satisfies the following results:

(i) Forall x e X, gnN(x) # ¢.
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(i) N € gnN(x) implies x € N.

(iii) N € gnN(x),J 2 N implies J € gnN (x).

(iv) N € gnN(x) implies there exists ] € gnN(x) such that ] € N and ] e gnN (1) for
every le].

Proof: (i) Since X is a gn-open set, it is a gn-neighbourhood of every x € X. Hence
there exists at least one gn-neighbourhood (namely X) for each x € X. Therefore

gnN(x) # ¢ forevery x € X.

(ii) Let NegnN(x), then N is a gn-neighbourhood of x. By definition of
gn-neighbourhood, x € N.

(iii) Let N e gnN(x) and J 2 N. Then there is a gn-open set F such that x e F € N.
Since N € J,xeF < Jandso] isa gn-neighbourhood of x. Hence J € gnN (x).

(iv) Let N € gnN(x), then there is a gn-open set J such that x e /] € N. Since ] is a
gn-open set, it is a gn-neighbourhood of each of its points. Therefore J € gnN (1) for

every le].

3.5. £gN-CLOSED SETS

A new class of sets, called xgn-closed sets in topological ordered spaces are

introduced and some properties are provided.

Definition 3.5.1: A subset R of a topological ordered space (X,t,<) is called an
xgn-closed set if it is both increasing (ie. decreasing, increasing and decreasing) and

gn-closed set.

Theorem 3.5.2: Every i-closed, ia-closed, ir-closed, ig*-closed sets are ign-closed

set, but not conversely.

Proof: Every closed, a-closed, r-closed, g*-closed sets are gn-closed set [3.3.2].

Then every i-closed, ia-closed, ir-closed, ig*-closed sets are ign-closed set.
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Example 3.5.3: Let X ={e,f,g}, t={X, 0, {e}{f.g}} and <={(e ), (f.f),
(9.9, f)(f,9)(e,g)} Clearly (X,t,<) is a topological ordered space.
ign-closed sets are {X, @, {g},{f,g}}. i-closed, ia-closed, ir-closed, ig*-closed sets
are {X,9,{f,g}} Let R ={g}. Clearly R is an ign-closed set but not an i-closed,

ia-closed, ir-closed, ig*-closed set in X.
Theorem 3.5.4: Every ig-closed set is an ign-closed set, but not conversely.

Proof: Every g-closed set is a gn-closed set [3.3.2]. Then every ig-closed set is an

ign-closed set.

Example3.5.5: Let X ={e,f,g}, T ={X,0,{e},{f}{e,f}} and <= (e,e),(f, /),
(9,9), (e, f), (e, g)} Clearly (X,7,<) is a topological ordered space. ign-closed sets

are {X, 0, {f}.{g}{f, g3} ig-closed setis {X, ¢, {g}, {f, g}}. Let R = {f}. Clearly R is
an ign-closed set but not an ig-closed set in X.

Theorem 3.5.6: Every in-closed set is an ign-closed set, but not conversely.

Proof: Every n-closed set is a gn-closed set [3.3.2]. Then every in-closed set is an

ign-closed set.

Example3.5.7: Let X = {e, f, g}, T = {X, o, {e}} and <= {(e, e), (£, ), (g, 9), (e, f),

(g,/)} Clearly (X,7,<) is a topological ordered space. ign-closed sets are

{X,0,{f}{e,f}.{f, g3} in-closed set is {X,p,{f},{f,g}}. Let R ={e, f}. Clearly R
is an ign-closed set but not an in-closed set in X.

Theorem 3.5.8: Every d-closed, da-closed, dg-closed, dg*-closed sets are

dgn-closed set but not conversely.

Proof: Every closed, a-closed, g-closed, g*-closed sets are gn-closed set [3.3.2].

Then every d-closed, da-closed, dg-closed, dg*-closed sets are dgn-closed set.

Example 3.5.9: Let X ={e,f, g}, Tt ={X,p,{e},{f}.{e f}} and <= {(e,e), (f,[),
(g9,9),(e,g)}. Clearly (X,1,<) is a topological ordered space. dgn-closed sets are
{X,p,{e},{e, g}}. d-closed, da-closed, dg-closed, dg*-closed sets are {X, ¢,{e, g}}.
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Let R = {e}. Clearly R is a dgn-closed set but not a d-closed, da-closed, dg-closed,
dg*-closed setin X.

Theorem 3.5.10: Every dn-closed set is a dgn-closed set, but not conversely.

Proof: Every n-closed set is a gn-closed set [3.3.2]. Then every dn-closed set is a

dgn-closed set.

Example 3.5.11: Let X ={e,f, g}, T= {X,(p,{e}} and <={(e,e),(f,f), (g,9),
(e, f), (g, )} Clearly (X,7,<) is a topological ordered space. dgn-closed sets are
{X,0,{g},{e,g}}. dn-closed set is {X,¢p,{g}}. Let R ={e,g}. Clearly R is a
dgn-closed set but not a dn-closed set in X.

Theorem 3.5.12: Every dr-closed set is a dgn-closed set, but not conversely.

Proof: Every r-closed set is a gn-closed set [3.3.2]. Then every dr-closed set is a

dgn-closed set.

Example3.5.13: Let X = {e, f, g}.r = {X, ¢, {e}, {f, g}}and <= {(e, &), (f. ), (g, 9),
(e,f),(f,9), (e,g)} Clearly (X,7,<) is a topological ordered space. dgn-closed sets
are {X,qp,{e},{e, f}}. dr-closed sets are {X,¢,{e}}. Let R ={e, f}. Clearly R is a

dgn-closed set but not a dr-closed set in X.

Theorem 3.5.14: Every b-closed, ba-closed, bg-closed, bg*-closed sets are

bgn-closed set, but not conversely.

Proof: Every closed, a-closed, g-closed, g*-closed sets are gn-closed set [3.3.2].

Then every b-closed, ba-closed, bg-closed, bg*-closed sets are bgn-closed set.

Example 3.5.15: Let X ={e,f, g}, T = {X, 9, {e}. {f} {e f}} and <= {(e, e),(f, f),
(9,9), (e, g)}. Clearly (X,1,<) is a topological ordered space. bgn-closed sets are
{X,p,{f},{e, g}}. b-closed, ba-closed, bg-closed, bg*-closed sets are {X, ¢, {e, g}}.
Let R = {f}. Clearly R is a bgn-closed set but not a b-closed, ba-closed, bg-closed,
bg*-closed set in X.
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Theorem 3.5.16: Every br-closed set is a bgn-closed set, but not conversely.

Proof: Every r-closed set is a gn-closed set [3.3.2]. Then every br-closed set is a

bgn-closed set.

Example 3.5.17: Let X = {e, f, g}, T = {X, 0, {e}, {f}. {e, f}} and <= {(e, e), (£, f),
(g9,9),(e,g)}. Clearly (X,1,<) is a topological ordered space. bgn-closed sets are
{X,0,{f},{e,g}}. br-closed set is {X,¢p,{e, g}}. Let R={f}. Clearly R is a

bgn-closed set but not a br-closed set in X.
Theorem 3.5.18: Every bn-closed set is a bgn-closed set, but not conversely.

Proof: Every n-closed set is a gn-closed set [3.3.2]. Then every bn-closed set is

a bgn-closed set.

Example 3.5.19: Let X ={e,f, g}, T={X ¢ {e}} and <= {(e€), (£, 1), (g, 9),

(e,9)}. Clearly (X,7,<) is a topological ordered space. bgn-closed sets are

{X,p,{f},{e,g}}. bn-closed set is a {X,p,{f}}. Let R=1{e, g}. Clearly R is a
bgn-closed set but not a bn-closed set in X.

Remark 3.5.20: The following example shows that xrg-closed, xgar-closed,

xgpr-closed and xgn-closed sets are independent of each other.

Example 3.5.21: Let X ={e,f, g}, T = {X, p,{e}, {g}. {e,g}} and <= {(e, e), (f, ),
(9,9), (e,9)}. Clearly (X,1,<) is a topological ordered space. The set {g} is an

ign-closed set but not irg-closed, igar-closed, igpr-closed set.

Example 3.5.22: LetX ={e,f,g}, T ={X, 0, {e}, {f}.{e f}} and <= (e, e),(f, ),
(9,9), (e, ), (g, )} Clearly (X, t,<) is a topological ordered space. The set {e, f} is

an irg-closed, igar-closed, igpr-closed set but not ign-closed set.

Example 3.5.23: Let X ={e,f, g}, T ={X,p,{e}.{f} {e, f}} and <= {(e, e),(f, ),
(9,9), (e,9)}. Clearly (X,7,<) is a topological ordered space. The set {e} is a
dgn-closed set but not drg-closed, dgar-closed, dgpr-closed set.
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Example 3.5.24: Let X ={e,f, g}, T={X, ¢, {e}} and <={(e,e),(f. 1), (g.9),
(e,f), (g} Clearly (X,t,<) is a topological ordered space. The set {e} is a
drg-closed, dgar-closed, dgpr-closed set but not dgn-closed set.

Example 3.5.25: Let X = {e,f, g}, T = {X, 9, {e}, {f}. {e, f}} and <= {(e, e), (f, f),
(9,9), (e,9)}. Clearly (X,7,<) is a topological ordered space. The set {f} is a
bgn-closed set but not brg-closed, bgar-closed, bgpr-closed set.

Example 3.5.26: LetX = {e, f, g}, 7 = {X, 0,{e}, {g}. {e, g}} and <= {(e, e),(f, ),
(g9,9), (e,g)}. Clearly (X,7,<) is a topological ordered space. The set {e, g} is a

brg-closed, bgar-closed, bgpr-closed set but not a bgn-closed set.
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