CHAPTER-3

η -CLOSED SETS AND $g\eta$ -CLOSED SETS IN TOPOLOGICAL SPACES AND TOPOLOGICAL ORDERED SPACES

3.1. INDRODUCTION

In 1965, Njastad [75] introduced some properties of the topology of α -sets. In 1963, Levine [58] introduced the notion of semi-open sets in topological spaces. In 1937, Stone [103] introduced regular open-sets in topological spaces. In 1968, Velicko [114] introduced δ -open sets in topological spaces. In 1970, Levine [60] introduced the concept of generalized closed sets. In 1965, Nachbin [70] initiated the study of topological ordered spaces. In 2002, Veera Kumar [111] introduced the study of *i*-closed, *d*-closed and *b*-closed sets and several topologies [7, 31, 49, 56, 84, 85, 86, 87, 101] introduced topological ordered spaces. In 2016, Sayed and Mansour introduced [91] new near open sets in Topological Spaces. Motivated by various open and closed sets discussed in the previous literature, in this chapter η -open sets using the concept of semi open and α_{δ} -open set in topological spaces are introduced. Strong and weak forms of open and closed sets have been introduced and investigated by several topologies [8, 15, 59, 64, 71, 81].

In this chapter, a new class of η -open sets, $g\eta$ -closed sets, $g\eta$ -open sets, $g\eta$ -neighbourhoods in topological spaces and $g\eta$ -closed sets in topological ordered spaces are defined and their relations with various existing closed sets are analyzed.

3.2. η -CLOSED SET

The concept of η -open set is defined and some new results are given in this section.

Definition 3.2.1: A subset *R* of a topological space (X,τ) is called α_{δ} -open set if $R \subseteq int(cl_{\delta}(int(R)))$ and α_{δ} -closed set if $cl(int_{\delta}(cl(R))) \subseteq R$.

Definition 3.2.2: In a topological space (X,τ) , a subset *R* is called

(*i*) an η -open set if $R \subseteq int(cl_{\delta}(int(R))) \cup cl(int(R))$.

(*ii*) an η -closed set if $R \supseteq cl(int_{\delta}(cl(R))) \cap int(cl(R))$.

 $\eta O(X)$ (resp. $\eta C(X)$) denotes the family of all η -open (resp. η -closed set) subsets of a topological space (X, τ) .

Theorem 3.2.3:

(*i*) Every open set is an η -open set.

(*ii*) Every *r*-open set is an η -open set.

(*iii*) Every α -open set is an η -open set.

Remark 3.2.4: The following example reveals that the converse of the above theorem need not be true.

Example 3.2.5: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$. Here the set

 $\{e, f\}$ is an η -open set but not open, α -open, r-open set.

Lemma 3.2.6: Intersection of two η -open sets need not be an η -open set.

Example 3.2.7: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$. Here the sets $\{e, f\}$ and $\{f, g\}$ are η -open sets, but $\{e, f\} \cap \{f, g\} = \{f\}$ is not an η -open set.

Lemma 3.2.8: The finite union of η -open sets is an η -open set.

Proof: Let $\{R_{\alpha}\}_{\alpha \in \Delta}$ be a family of η -open sets in a space (X, τ) , then

$$\begin{split} R_{\alpha} &\subseteq int(cl_{\delta}(int(R_{\alpha}))) \cup cl(int(R_{\alpha})), \forall \alpha \epsilon \Delta \qquad (\text{ where } \Delta = 1, 2 \dots n) \\ \text{now, } \cup_{\alpha \epsilon \Delta} R_{\alpha} &\subseteq \cup_{\alpha \epsilon \Delta} \{int(cl_{\delta}(int(R_{\alpha}))) \cup cl(int(R_{\alpha}))\} \\ &= [\cup_{\alpha \epsilon \Delta} \{int(cl_{\delta}(int(R_{\alpha})))\}] \cup [\cup_{\alpha \epsilon \Delta} \{cl(int(R_{\alpha}))\}] \\ &\subseteq [int \{cl_{\delta}(\bigcup_{\alpha \epsilon \Delta} (int(R_{\alpha})))\}] \cup [cl\{\bigcup_{\alpha \epsilon \Delta} (int(R_{\alpha}))\}] \end{split}$$

$$\subseteq \left[int\left\{cl_{\delta}\left(\left(int\cup_{\alpha\in\Delta}(R_{\alpha})\right)\right)\right\}\right]\cup\left[cl\left\{int\left(\cup_{\alpha\in\Delta}(R_{\alpha})\right)\right\}\right]$$

 $\Rightarrow \bigcup_{\alpha \in \Delta} R_{\alpha}$ is also an η -open set.

Definition 3.2.9: Let (X, τ) be a topological space. Then

(i) The union of all η -open sets of X contained in R is called η -interior of R and is denoted by η -int(R).

(*ii*) The intersection of all η -closed sets of X containing R is called η -closure of R and is denoted by η -cl(R).

Proposition 3.2.10: Let *A* be a subset of a topological space (X,τ) then

(i) $\alpha cl_{\delta}(A) = A \cup cl(int_{\delta}(cl(A)))$ and $\alpha int_{\delta}(A) = A \cap int(cl_{\delta}(int(A)))$

Theorem 3.2.11: The following results are equivalent for a topological space (X,τ) and $R \subseteq X$.

(*i*) *R* is an η -open set.

(*ii*) $R = \alpha_{\delta} int(R) \cup sint(R)$.

Proof: (*i*) \Rightarrow (*ii*) Let *R* be an η -open set. Then $R \subseteq int(cl_{\delta}(int(R))) \cup cl(int(R))$

[By proposition 1.2.5 & 3.2.10]. $\alpha_{\delta}int(R) \cup sint(R) = (R \cap int(cl_{\delta}(int(R)))) \cup$

$$\left(R \cap cl(int(R))\right) = R \cap (int\left(cl_{\delta}(int(R))\right) \cup cl(int(R))) = R$$

(*ii*) \Rightarrow (*i*) Suppose that $R = \alpha_{\delta} int(R) \cup sint(R)$. [By proposition 1.2.5 & 3.2.10].

$$R = (R \cap int(cl_{\delta}(int(R))) \cup (R \cap cl(int(R)))) \subseteq int(cl_{\delta}(int(R))) \cup cl(int(R)).$$

Therefore, *R* is an η -open.

Remark 3.2.12: Let (X,τ) be a topological space and $R \subseteq X$, then the following statements are equivalent:

(*i*) *R* is an η -closed set.

(*ii*) $R = \alpha_{\delta} cl(R) \cap scl(R)$.

Theorem 3.2.13: Let *R* be a subset of a topological space (X,τ) . Then $\eta cl(R) = \alpha_{\delta} cl(R) \cap scl(R)$.

Proof: Let $R \subseteq X$ and (X,τ) be a topological space. Since $\eta cl(R)$ is the smallest η -closed set containing $R. \eta cl(R) \supseteq cl\left(int_{\delta}\left(cl(\eta cl(R))\right)\right) \cap int\left(cl(\eta cl(R))\right) \supseteq cl\left(int_{\delta}(cl(R))\right) \cap int(cl(R))$. [By definition 3.2.2]. $R \cup \eta cl(R) \supseteq R \cup (cl(int_{\delta}(cl(R))) \cap int(cl(R)))$

$$\Rightarrow \eta cl(R) \supseteq (R \cup (cl(int_{\delta}(cl(R))) \cap (R \cup int(cl(R)))) \supseteq \alpha_{\delta} cl(R) \cap scl(R). --- \mathrm{I}$$

[By proposition 1.2.5 & 3.2.10] also $\eta cl(R) \subseteq \alpha_{\delta} cl(R)$ and $\eta cl(R) \subseteq scl(R)$ then $\eta cl(R) \subseteq \alpha_{\delta} cl(R) \cap scl(R) \dashrightarrow$ II. From I and II $\eta cl(R) = \alpha_{\delta} cl(R) \cap scl(R)$.

Remark 3.2.14: Let R be a subset of a topological space (X,τ) . Then $\eta int(R) = \alpha_{\delta} int(R) \cup sint(R)$.

Theorem 3.2.15: Let *R* be a subset of a topological space (X,τ) . Then

(*i*) *R* is an η -open set if and only if $R = \eta int(R)$.

(*ii*) *R* is an η -closed set if and only if $R = \eta cl(R)$.

Proof: (*i*) *R* is an η -open set. Then by theorem 3.2.11. $R = \alpha_{\delta} int(R) \cup sint(R)$ and by remark 3.2.14 we have $R = \eta int(R)$.

Conversely, let $R = \eta int(R)$. Then by remark 3.2.14 $R = \alpha_{\delta} int(R) \cup sint(R)$ and by theorem 3.2.11, R is an η -open $R = \alpha_{\delta} int(R) \cup sint(R)$.

(*ii*) Let *R* be an η -closed set. Then by remark 3.2.12, $R = \alpha_{\delta} cl(R) \cap scl(R)$ and by theorem 3.2.13 we have $R = \eta cl(R)$.

Conversely, let $R = \eta cl(R)$. Then by theorem 3.2.13 $R = \alpha_{\delta} cl(R) \cap scl(R)$ and by remark 3.2.12, R is an η -closed set.

Theorem 3.2.16: Let *R* and *S* be a subset of a topological space (X,τ) . Then the following are true

(i) $\eta cl(X - R) = X - \eta int(R)$.

(*ii*) $\eta int(X - R) = X - \eta cl(R)$.

(*iii*) If $R \subseteq S$, then $\eta cl(R) \subseteq \eta cl(S)$.

(*iv*) $x \in \eta cl(R)$ if and only if there exists an η -open set E and $x \in E$ such that $E \cap R \neq \varphi$.

(v) $x \in \eta int(R)$ if and only if there exists an η -open set F and $x \in F$ such that $x \in F \subseteq R$.

(vi) $\eta cl(\eta cl(R)) = \eta cl(R)$ and $\eta int(\eta int(R)) = \eta int(R)$.

(*vii*) $\eta cl(R) \cup \eta cl(S) \subseteq \eta cl(R \cup S)$ and $\eta int(R) \cup \eta int(S) \subseteq \eta int(R \cup S)$.

(*viii*) $\eta int(R \cap S) \subseteq \eta int(R) \cap \eta int(S)$ and $\eta cl(R \cap S) \subseteq \eta cl(R) \cap \eta cl(S)$.

Proof: (*i*) Since $(X - R) \subseteq X$, [By theorem 3.2.13] $\eta cl(X - R) = \alpha_{\delta} cl(X - R) \cap scl(X - R)$ [By proposition 1.2.5 & 3.2.10] $\eta cl(X - R) = (X - \alpha_{\delta} int(R)) \cap (X - sint(R)) = X - (\alpha_{\delta} int(R) \cup sint(R)), \eta cl(X - R) = X - \eta int(R)$. [By remark 3.2.14].

(*ii*) Since $(X - R) \subseteq X$, [By theorem 3.2.15] $\eta int(X - R) = \alpha_{\delta} int(X - R) \cup sint(X - R)$ [By proposition 1.2.5 & 3.2.10] $\eta int(X - R) = (X - \alpha_{\delta} cl(R)) \cup (X - scl(R)) = X - (\alpha_{\delta} cl(R) \cap scl(R))$ [By theorem 3.2.15], $\eta int(X - R) = X - \eta cl(R)$.

(*iii*) Since $\eta cl(R) = \alpha_{\delta} cl(R) \cap scl(R)$ and $R \subseteq S$, $\eta cl(R) = \alpha_{\delta} cl(R) \cap scl(R) \subseteq \alpha_{\delta} cl(S) \cap scl(S) = \eta cl(S)$.

(*iv*) Let $x \notin \eta cl(R)$ then $x \notin \cap H$ where *H* is η -closed with $R \subseteq H$, so $x \in X - \cap H$. Therefore $x \in X - H$ for some η -closed set *H* containing *R*. And X - H is an η -open set containing *x* and hence $(X - H) \cap R = \varphi$.

Conversely, suppose that there exist an η -open set E containing x with $R \cap E = \varphi$. Then $R \subseteq X - E$ and X - E is η -closed. Hence $x \notin \eta cl(R)$.

(v) Necessity: Let $x \in \eta int(R)$. Then $x \in \bigcup \{F: F \text{ is } \eta \text{-open } F \subseteq R\}$ and hence there exist an η -open set F such that $x \in F \subseteq R$.

Sufficiency: Let *F* be η -open set such that $x \in F \subseteq R$. Then $R = \bigcup \{F : x \in F\}$ which is the union of η -open set. Therefore, $x \notin \eta cl(R)$.

$$(vi) \text{ Since } \eta cl(\eta cl(R)) = \alpha_{\delta} cl(\eta cl(R)) \cap scl(\eta cl(R)). \text{ [By theorem 3.2.13]}$$
$$\alpha_{\delta} cl(\alpha_{\delta} cl(R) \cap scl(R)) \cap scl(\alpha_{\delta} cl(R) \cap scl(R)) \subseteq (\alpha_{\delta} cl(R) \cap \alpha_{\delta} cl(scl(R))) \cap scl(\alpha_{\delta} cl(R) \cap scl(R)) = \alpha_{\delta} cl(R) \cap scl(R) = \eta cl(R). \text{Hence } \eta cl(\eta cl(R)) \subseteq \eta cl(R).$$
$$\text{But, } \eta cl(R) \subseteq \eta cl(\eta cl(R)). \text{ Therefore, } \eta cl(\eta cl(R)) = \eta cl(R).$$

(*vii*) Since $R \subseteq R \cup S$ and $S \subseteq R \cup S$ we have $\eta cl(R) \subseteq \eta cl(R \cup S)$ and $\eta cl(S) \subseteq \eta cl(R \cup S)$. Therefore, $\eta cl(R) \cup \eta cl(S) \subseteq \eta cl(R \cup S)$. And $R \subseteq (R \cup S)$ and $S \subseteq (R \cup S)$. We have $\eta int(R) \subseteq \eta int(R \cup S)$ and $\eta int(S) \subseteq \eta int(R \cup S)$. Therefore, $\eta int(R) \cup \eta int(S) \subseteq \eta int(R \cup S)$.

(*viii*) Since $R \supseteq R \cap S$ and $S \supseteq R \cap S$ we have $\eta cl(R) \supseteq \eta cl(R \cap S)$ and $\eta cl(S) \supseteq \eta cl(R \cap S)$. Therefore, $\eta cl(R) \cap \eta cl(S) \supseteq \eta cl(R \cap S)$.

And $R \supseteq (R \cap S)$ and $S \supseteq (R \cap S)$. We have $\eta int(R) \supseteq \eta int(R \cap S)$ and $\eta int(S) \supseteq \eta int(R \cap S)$. Therefore, $\eta int(R) \cap \eta int(S) \supseteq \eta int(R \cap S)$.

Remark 3.2.17: The inclusion relation in part (*vii*) and (*viii*) of the above theorem cannot be replaced by equality as shown by the following example.

Example 3.2.18: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{e, f\}, \{e, f, g\}\}.$

(*i*) If $R = \{e, f\}, S = \{h\}$ and $(R \cup S) = \{e, f, h\}$ then $\eta int(R) = \{e, f\}, \eta int(S) = \varphi$ and $\eta int(R \cup S) = \{e, f, h\}$. So, $\eta int(R \cup S) \supseteq \eta int(R) \cup \eta int(S)$.

(*ii*) If $R = \{e\}, S = \{f\}$ and $(R \cup S) = \{e, f\}$ then $\eta cl(R) = \{e\}, \eta cl(S) = \{f\}$ and $\eta cl(R \cup S) = X$, therefore $\eta cl(R) \cup \eta cl(S) \subseteq \eta cl(R \cup S)$.

Example 3.2.19: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}.$

(*i*) If $R = \{e, f\}$, $S = \{f, g\}$ and $(R \cap S) = \{f\}$ then $\eta cl(R) = \{e, f\}$, $\eta cl(S) = X$ and $\eta cl(R \cap S) = \{f\}$. So, $\eta cl(R \cap S) \subseteq \eta cl(R) \cap \eta cl(S)$.

(*ii*) If $R = \{e, f\}, S = \{e, g, h\}$ and $(R \cap S) = \{e\}$ then $\eta int(R) = \{e, f\}, \eta int(S) = \{e, g, h\}$ and $\eta int(R \cap S) = \varphi$, therefore $\eta int(R) \cap \eta int(S) \supseteq \eta int(R \cap S)$.

Definition 3.2.20: Let (X,τ) be a topological space and $R \subseteq X$. Then the η -boundary of R (briefly, $\eta b(R)$) is given by $\eta b(R) = \eta cl(R) \cap \eta cl(X - R)$.

Example 3.2.21: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$. Here the set $R = \{e, f, h\}, \eta b(R) = \{g\}.$

Theorem 3.2.22: If *R* is a subset of a topological space (X,τ) , then the following are true:

- (*i*) $\eta b(R) = \eta b(X R)$.
- $(ii) \eta b(R) = \eta cl(R) \eta int(R).$
- (*iii*) $\eta b(R) \cap \eta int(R) = \varphi$.

 $(iv) \eta b(R) \cup \eta int(R) = \eta cl(R).$

Proof: (*i*) Since $\eta b(R) = \eta cl(R) \cap \eta cl(X - R) = \eta b(X - R) = \eta cl(X - R) \cap \eta cl(R)$.

 $(ii) \eta b(R) = \eta cl(R) \cap \eta cl(X - R) = \eta cl(R) \cap (X - \eta int(R)) = (\eta cl(R) \cap X) - (\eta cl(R) \cap \eta int(R)) = \eta cl(R) - \eta int(R).$

 $(iii) \eta b(R) \cap \eta int(R) = (\eta cl(R) - \eta int(R)) \cap \eta int(R) = (\eta cl(R) \cap \eta int(R)) - (\eta int(R) \cap \eta int(R)) = \eta int(R) - \eta int(R) = \varphi . [By using (ii)].$

 $(iv)\eta b(R) \cup \eta int(R) = (\eta cl(R) - \eta int(R)) \cup \eta int(R) = (\eta cl(R) \cup \eta int(R)) - (\eta int(R) \cup \eta int(R)) = \eta cl(R) - \eta int(R) = \eta cl(R). [By using (iii)].$

Theorem 3.2.23: If *R* is a subset of a topological space (X,τ) , then the following are true:

(*i*) *R* is an η -open set if and only if $R \cap \eta b(R) = \varphi$.

(*ii*) *R* is an η -closed set if and only if $\eta b(R) \subseteq R$.

(*iii*) *R* is an η -clopen set if and only if $\eta b(R) = \varphi$.

Proof: (*i*) Let *R* is an η -open set. Then $R = \eta int(R)$. $R \cap \eta b(R) = \eta int(R) \cap \eta b(R)$ [By theorem 3.2.22] = $\eta int(R) \cap (\eta cl(R) - \eta int(R)) = (\eta int(R) \cap \eta cl(R)) - (\eta int(R) \cap \eta int(R)) = \varphi$.

Conversely, let $R \cap \eta b(R) = R \cap (\eta cl(R) - \eta int(R))$ [By theorem 3.2.22]= $(R \cap (\eta cl(R))) - (R \cap (\eta int(R))) = R - \eta int(R) = \varphi$. Hence R is η -open.

(*ii*) Let R is an η -closed set. Then $R = \eta cl(R)$. [By theorem 3.2.22] but $\eta b(R) = (\eta cl(R) - \eta int(R)) = R - \eta int(R) \subseteq R$.

Conversely, let $\eta b(R) \subseteq R$. [By theorem 3.2.22] $\eta cl(R) = \eta b(R) \cup \eta int(R) \subseteq R \cup \eta int(R) = R$. Thus $\eta cl(R) \subseteq R$ and $R \subseteq \eta cl(R)$. Hence R is η -closed set.

(*iii*) Let R is an η -clopen set. Then $R = \eta int(R)$, and $R = \eta cl(R)$ [By theorem 3.2.22] $\eta b(R) = (\eta cl(R) - \eta int(R)) = R - R = \varphi$.

Conversely, suppose that $\eta b(R) = \varphi$. Then $\eta b(R) = (\eta cl(R) - \eta int(R)) = \varphi$. Hence R is an η -clopen set.

Definition 3.2.24: Let (X,τ) be a topological space and $R \subseteq X$. Then $X - \eta cl(R)$ is called the η -exterior of R and is denoted by η -ext (R). Each point $q \in X$ is called an η -exterior point of R, if it is an η -interior point of X - R.

Example 3.2.25: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{f, g\}, \{e, f, g\}\}$. If $R = \{e\}, S = \{e, f\}, T = \{e, g\}$ then we have $\eta ext(R) = \{f, g, h\}, \eta ext(S) = \varphi$ and $\eta ext(T) = \varphi$.

Theorem 3.2.26: Let *R* and *S* are two subsets of a topological space (X,τ), then the following are true

- (i) $\eta ext(R) = \eta int(X R)$.
- (*ii*) $\eta ext(R)$ is an η -open set.
- (*iii*) $\eta ext(R) \cap \eta int(R) = \varphi$.
- $(iv) \eta ext(R) \cap \eta b(R) = \varphi.$
- $(v) \eta ext(R) \cup \eta b(R) = \eta cl(X R).$
- (*vi*) { η *int*(*R*), η *b*(*R*) and η *ext*(*R*)} from a partition of *X*.

(*vii*) If $R \subseteq S$, then $\eta ext(S) \subseteq \eta ext(R)$.

(viii) $\eta ext(R \cup S) \subseteq \eta ext(R) \cup \eta ext(S)$.

 $(ix) \eta ext(R \cap S) \supseteq \eta ext(R) \cap \eta ext(S).$

(x) $\eta ext(X) = \varphi$ and $\eta ext(\varphi) = X$.

Proof: (*i*) By definition 3.2.24 $\eta ext(R) = X - \eta cl(R) = \eta int(X - R)$.

(*ii*) From (*i*) $\eta ext(R) = \eta int(X - R)$. Since $\eta int(R)$ is the largest η -open sets of X contained in R. Thus $\eta ext(R)$ is an η -open.

(iii) $\eta ext(R) \cap \eta int(R) = (X - \eta cl(R)) \cap \eta int(R) = \eta int(X - R) \cap \eta int(R) = \varphi$.

 $(iv) \eta ext(R) \cap \eta b(R) = \eta int(X - R) \cap \eta b(X - R) = \varphi$. [By theorem 3.2.22].

(v) $\eta ext(R) \cup \eta b(R) = \eta int(X - R) \cup \eta b(X - R) = \eta cl(X - R)$. [By theorem 3.2.22].

(*vi*) From (*iii*), (*iv*) we have $\eta ext(R) \cap \eta int(R) = \varphi$ and $\eta ext(R) \cap \eta b(R) = \varphi$. Then by theorem 3.2.22 then $\eta b(R) \cap \eta int(R) = \varphi$. $\eta int(R) \cup \eta b(R) \cup \eta ext(R) = X$. Hence from (v) $\eta ext(R) \cup \eta b(R) = \eta cl(X - R)$ then $\eta int(R) \cup \eta cl(X - R) = \eta int(R) \cup X - \eta int(R) = X$.

(vii) Let $R \subseteq S$ then $\eta cl(R) \subseteq \eta cl(S)$ and hence $X - \eta cl(S) \subseteq X - \eta cl(R)$. So $\eta ext(S) \subseteq \eta ext(R)$.

 $(viii) \eta ext(R \cup S) = X - \eta cl(R \cup S) \subseteq X - (\eta cl(R) \cup \eta cl(S)) \subseteq (X - (\eta cl(R))) \cup (X - \eta cl(S)) \subseteq \eta ext(R) \cup \eta ext(S) \subseteq \eta ext(R) \cup \eta ext(S).$

 $(ix) \eta ext(R \cap S) = X - (\eta cl(R \cap S)) \supseteq X - (\eta cl(R) \cap \eta cl(S)) \supseteq (X - (\eta cl(R))) \cap (X - (\eta cl(S))) \supseteq \eta ext(R) \cap \eta ext(S) \supseteq \eta ext(R) \cap \eta ext(S).$

(x) $\eta ext(X) = X - \eta cl(X) = X - X = \varphi$ and $\eta ext(\varphi) = X - (\eta cl(\varphi)) = X - \varphi = X$.

Remark 3.2.27: The example 3.2.28 shows that, the inclusion relation in part (*viii*), (*ix*) of theorem 3.2.26 cannot be replaced by equality.

Example 3.2.28: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{e, f\}, \{e, f, g\}\}$. Here the set $R = \{e, g\}, S = \{g, h\}$ then $\eta ext(R) = \{f, h\}, \eta ext(S) = \{e, f\}$ but $\eta ext(R \cup S) = \{f\}$. Therefore, $\eta ext(R \cup S) \subseteq \eta ext(R) \cup \eta ext(S)$. Also $\eta ext(R \cap S) = \{e, f, h\}$, hence $\eta ext(R \cap S) \supseteq \eta ext(R) \cap \eta ext(S)$.

Definition 3.2.29: If *R* is a subset of a topological space (X,τ) , then a point $q \in R$ is called an η -limit point of a set $R \subseteq X$ if every η -open set $F \subseteq X$ containing q, contains a point of *R* other than q. The set of all η -limit point of *R* is called an η -derived set of *R* and is denoted by $\eta d(R)$.

Example 3.2.30: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$. $R = \{f, g\}$, then $\eta d(R) = \{g\}$.

Theorem 3.2.31: The following five results are true. If *R* and *S* are two subsets of a topological space (X,τ) .

(*i*) If $R \subseteq S$, then $\eta d(R) \subseteq \eta d(S)$.

(*ii*) *R* is an η -closed set if and only if it contains each of its η -limit point.

(*iii*) $\eta cl(R) = R \cup \eta d(R)$.

 $(vi) \eta d(R \cup S) \supseteq \eta d(R) \cup \eta d(S).$

 $(v) \eta d(R \cap S) \subseteq \eta d(R) \cap \eta d(S).$

Proof: (*i*) By definition 3.2.29, we have $q \in \eta d(R)$ if and only if $F \cap (R - \{q\}) \neq \varphi$, for every η -open set F containing q. But $R \subseteq S$, then $F \cap (S - \{q\}) \neq \varphi$, for every η -open set F containing q. Hence $q \in \eta d(S)$. Therefore $\eta d(R) \subseteq \eta d(S)$.

(*ii*) Let *R* be an η -closed set and $q \notin R$ then $q \in (X - R)$ which is an η -open set, hence there exist an η -open set (X - R) such that $(X - R) \cap R = \varphi$. So $q \notin \eta d(R)$, therefore $\eta d(R) \subseteq R$.

Conversely, suppose that $\eta d(R) \subseteq R$ and $q \notin R$. Then $q \notin \eta d(R)$, hence there exist an η -open set F containing q such that $F \cap R = \varphi$ and hence $X - R = \bigcup_{q \in R} \{F, F \text{ is } \eta\text{-open}\}$. Therefore, R is η -closed.

(*iii*) Since $\eta d(R) \subseteq \eta cl(R)$ and $R \subseteq \eta cl(R)$. $\eta d(R) \cup R \subseteq \eta cl(R)$.

Conversely, suppose that $q \notin \eta d(R) \cup R$. Then $q \notin \eta d(R)$, $q \notin R$ and hence there exist an η -open set F containing q such that $F \cap R = \varphi$. Thus $q \notin \eta cl(R)$. $\eta cl(R) \subseteq \eta d(R) \cup R$, therefore, $\eta cl(R) = \eta d(R) \cup R$.

(*iv*) Since $R \subseteq R \cup S$ and $S \subseteq R \cup S$. We have $\eta d(R) \subseteq \eta d(R \cup S)$ and $\eta d(S) \subseteq \eta d(R \cup S)$. Therefore, $\eta d(R) \cup \eta d(S) \subseteq \eta d(R \cup S)$.

(*v*) Since $R \supseteq R \cap S$ and $S \supseteq R \cap S$. We have $\eta d(R) \supseteq \eta d(R \cap S)$ and $\eta d(S) \supseteq \eta d(R \cap S)$. Therefore, $\eta d(R) \cap \eta d(S) \supseteq \eta d(R \cap S)$.

Definition 3.2.32: Let (X,τ) be a topological space and $R \subseteq X$. Then the η -border of R (briefly, $\eta B(R)$) is given by $\eta B(R) = R - \eta int(R)$.

Example 3.2.33: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$. If $R = \{e, g\}, S = \{g\}$ then $\eta B(R) = \{f\}, \eta B(S) = \{e, f, g\}$.

Theorem 3.2.34: For a subset R of a topological space X the following results are true:

(*i*) $R = \eta int(R) \cup \eta B(R)$. (*ii*) $\eta int(R) \cap \eta B(R) = \varphi$. (*iii*) $\eta B(X) = \eta B(\varphi) = \varphi$. $(iv) \eta B(\eta int(R)) = \varphi.$ (v) $\eta int(\eta B(R)) = \varphi$. $(vi) \eta B(\eta B(R)) = \eta B(R).$ **Proof:**(i) η int $(R) \cup \eta B(R) = \eta$ int $(R) \cup (R - \eta$ int $(R)) = (\eta$ int $(R) \cup R) - \eta$ $(\eta int(R) \cup \eta int(R)) = R - \eta int(R) = R.$ (*ii*) $\eta int(R) \cap \eta B(R) = \eta int(R) \cap (R - \eta int(R)) = (\eta int(R) \cap R) - (\eta int(R) \cap R)$ $\eta int(R)$) = $\eta int(R) - \eta int(R) = \varphi$. (*iii*) $\eta B(X) = X - \eta int(X) = X - X = \varphi$ and $\eta B(\varphi) = \varphi - \eta int(\varphi) = \varphi - \varphi = \varphi$. $(iv) \eta B(\eta int(R)) = \eta int(R) - \eta int(R) = \varphi.$ (v) Since, $\eta int(\eta B(R)) = \eta int(R - \eta int(R)) = \eta int(R) - \eta int(\eta int(R)) =$ $\eta int(R) - \eta int(R) = \varphi.$ (vi) Since, $\eta B(\eta B(R)) = \eta B(R) - \eta int(\eta B(R)) = \eta B(R) - \varphi = \eta B(R)$.

Theorem 3.2.35: For a subset *R* of a topological space (X,τ) the following statements are equivalent:

(*i*) R is η -open.

(*ii*) $R = \eta int(R)$.

(*iii*) $\eta B(R) = \varphi$.

Proof: (*i*) \Rightarrow (*ii*) Obvious from theorem 3.2.15.

 $(ii) \Rightarrow (iii)$ Suppose that $R = \eta int(R)$. Then by definition 3.2.32, $\eta B(R) = \eta int(R) - \eta int(R) = \varphi$.

 $(iii) \Rightarrow (i)$ Let $\eta B(R) = \varphi$. Then by definition 3.2.32, $R - \eta int(R) = \varphi$ and hence $R = \eta int(R)$. Therefore R is η -open.

Definition 3.2.36: A subset *N* of a topological space (X,τ) is called an η -neighbourhood (briefly, η -nbd) of a point $q \in X$ if there exists an η -open set *F* such that $q \in F \subseteq N$. The class of all η -neighbourhood of $q \in X$ is called the η -neighbourhood system of *q* and denoted by ηN_q .

Example 3.2.37: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}, \eta N_g = \{e, g\}.$

Remark 3.2.38: For any topological spaces (X,τ) and for each $x \in X$ we have $N_x \subseteq \eta N_x$.

Example 3.2.39: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$. We have $\{e, g\} \in \eta N_g$.

Theorem 3.2.40: A subset *F* of a topological space (*X*, τ) is η -open if and only if it is an η -neighbourhood, for every point $q \in F$.

Proof: Necessity: Let F be an η -open set. Then F is an η -neighbourhood for each $q \in F$.

Sufficiency: Let *F* be an η -neighbourhood, for each $q \in F$. Then there exists an η -open set *B* containing *q* such that $q \in B \subseteq F$, so $F = \bigcup \{q : q \in B\}$. Therefore, *F* is an η -open.

Theorem 3.2.41: For a topological space (X,τ) . If ηN_q is an η -neighbourhood system of a point $q \in X$, then the following statements are true:

(*i*) ηN_q is not empty and *q* belongs to each member of ηN_q .

(*ii*) Each superset of the members of ηN_q belongs to ηN_q .

(*iii*) Each member $N \in \eta N_q$ is a superset of the member $B \in \eta N_q$, where B is an η -neighbourhood of each point $q \in B$.

Proof: (*i*) Since X is an η -open set containing q, $X \in \eta N_q$. So, $\eta N_q \neq \varphi$. Also, if $N \in \eta N_q$, then there exists an η -open set F such that $q \in F \subseteq N$. Therefore, q belongs to each member ηN_q .

(*ii*) Let *D* be a superset of $N \in \eta N_q$, then there exists an η -open set *F* such that $q \in F \subseteq N \subseteq D$. Which implies $q \in F \subseteq D$ and hence, *D* is an neighbourhood of *q*. Therefore, $D \in \eta N_q$.

(*iii*) Let N be an η -neighbourhood of $q \in X$, then there exists an η -open set B such that $q \in B \subseteq N$. Then by theorem 3.2.16(i), B is an η -neighbourhood of each of its points.

Definition 3.2.42: For a topological space (X,τ) , a subset *R* of *X* is said to be an η -dense in *X* if and only if $\eta cl(R) = X$. The family of all η -dense sets in (X,τ) will be denoted by $\eta D(X,\tau)$.

Example 3.2.43: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}, \text{ If } R = \{e, f\}, \text{ and } \eta cl(R) = X$. Hence R is η -dense in X.

Remark 3.2.44: Every η -dense set in a topological space (X,τ) is dense in (X,τ) by the fact that $\eta cl(R) \subseteq cl(R)$, while the converse may not be true.

Example 3.2.45: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\},$ If $R = \{e\}$, then cl(R) = X but $\eta cl(R) = \{e\}$. Therefore, *R* is dense in *X* but not an η -dense in *X*.

Theorem 3.2.46: For a topological space (X,τ) and $G \subseteq X$, the following are equivalent:

(*i*) G is an η -dense in X.

(*ii*) If H is an η -closed set in X containing G, then H = X.

(*iii*) $\eta int(X - G) = \varphi$.

Proof:

(*i*) ⇒ (*ii*) Let *G* be an η -dense set of *X*. Then $\eta cl(G) = X$. But *H* is an η -closed set containing *G*, then $\eta cl(G) \subseteq H$ and therefore H = X.

 $(ii) \Rightarrow (iii)$ Since $\eta cl(G)$ is an η -closed set contains G, By (ii) we have $\eta cl(G) = X$. Hence $\varphi = X - \eta cl(G) = \eta int(X - G)$.

 $(iii) \Rightarrow (i)$ Since $\eta int(X - G) = \varphi$. Then $\eta cl(G) = X$. Hence G is an η -dense in X.

Proposition 3.2.47: For a topological space (X,τ) , if $G \in \eta D(X,\tau)$, Then the following statements are true:

- (*i*) $\eta b(G) = \eta cl(X G).$
- (*ii*) $\eta ext(G) = \varphi$.

Proof: (*i*) From definition 3.2.20, we have $\eta b(G) = \eta cl(G) \cap \eta cl(X - G)$ and since $G \in \eta D(X, \tau)$, then $\eta b(G) = \eta cl(X - G)$.

(*ii*) Also by from definition 3.2.24, $\eta ext(G) = X - \eta cl(G)$ but $G \in \eta D(X, \tau)$, then $\eta ext(G) = \varphi$.

3.3. *g*η-CLOSED SET

A new class of sets, called $g\eta$ -closed sets in topological spaces is introduced and some of their properties are proved in this section.

Definition 3.3.1: A subset *R* of a topological space (X,τ) , is called $g\eta$ -closed set if $\eta cl(R) \subseteq I$ whenever $R \subseteq I$ and *I* is open. The class of all generalized η -closed sets is denoted by $G\eta C(X)$.

Theorem 3.3.2:

(*i*) Every closed set is $g\eta$ -closed.

- (*ii*) Every α -closed set is $g\eta$ -closed.
- (*iii*) Every regular-closed set is $g\eta$ -closed.
- (*iv*) Every η -closed set is $g\eta$ -closed.
- (v) Every g-closed set is $g\eta$ -closed.
- (*vi*) Every g^* -closed set is $g\eta$ -closed.
- (*vii*) Every αg -closed set is $g\eta$ -closed.

(*viii*) Every $g\alpha$ -closed set is $g\eta$ -closed.

Proof: (*i*) Let *I* be an open subset and *R* be any closed set in *X* such that $R \subseteq I$. Since every closed set is η -closed, $\eta cl(R) \subseteq cl(R) = R$. Therefore $\eta cl(R) \subseteq R \subseteq I$. Hence *R* is $g\eta$ -closed set in *X*.

(*ii*) Let *I* be an open subset and *R* be any α -closed set in *X* such that $R \subseteq I$. Since every α -closed set is η -closed, $\eta cl(R) \subseteq \alpha cl(R) = R$. Therefore $\eta cl(R) \subseteq R \subseteq I$. Hence *R* is $g\eta$ -closed set in *X*.

(*iii*) Let *I* be an open subset and *R* be any regular-closed set in *X* such that $R \subseteq I$. Since every regular-closed set is closed set. Therefore *R* is $g\eta$ -closed set in *X*.

(*iv*) Let *I* be an open subset and *R* be any η -closed set in *X* such that $R \subseteq I$. Since *R* is η -closed. Therefore $\eta cl(R) = R \subseteq I$. Hence *R* is $g\eta$ -closed set in *X*.

(*v*) Let *R* be any *g*-closed set in *X* and $cl(R) \subseteq I$ whenever $R \subseteq I$, where *I* is open. Since every closed set is η -closed, $\eta cl(R) \subseteq cl(R) = R$. Hence *R* is $g\eta$ -closed set in *X*.

(vi) Let R be any g^* -closed set in X. Since every g^* -closed set is g-closed. Therefore R is $g\eta$ -closed set in X.

(*vii*) Let *R* be any αg -closed set in *X* then $\alpha cl(R) \subseteq I$, whenever $R \subseteq I$, where *I* is open. Since every α -closed set is η -closed, $\eta cl(R) \subseteq \alpha cl(R) = R$. Hence *R* is $g\eta$ -closed set in *X*.

(*viii*) Let *R* be any $g\alpha$ -closed set in *X* then $\alpha cl(R) \subseteq I$, whenever $R \subseteq I$, where *I* is α -open. Since every α -closed set is η -closed, $\eta cl(R) \subseteq \alpha cl(R) = R$. Since every open set is an α -open set. And *I* is open in *X*. Hence *R* is $g\eta$ -closed set in *X*.

The following example reveals that the converse of the above theorem need not be true.

Example 3.3.3: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{f\}, \{g, h\}, \{f, g, h\}\}$. The set $\{g\}$ is $g\eta$ -closed but not a closed, α -closed, regular-closed, η -closed, g-closed, g^* -closed, αg -closed, $g\alpha$ -closed set.

Remark 3.3.4: The following examples shows that rg-closed, $g\alpha r$ -closed, gpr-closed and $g\eta$ -closed sets are not dependent on each other.

Example 3.3.5: Let (X,τ) be a topological space where $X = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$. The set $\{e\}$ is a $g\eta$ -closed set but not rg-closed, $g\alpha r$ -closed, gpr-closed set.

Example 3.3.6: Let (X,τ) be a topological space where $X = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$. The set $\{e, f\}$ is *rg*-closed, *gar*-closed, *gpr*-closed but not a *g* η -closed set.

Remark 3.3.7: The results of the theorem 3.3.2 are illustrated in the following diagram.

Where $A \longrightarrow B$ (resp. $A \iff B$) represent A implies B but not conversely (resp. A and B are independent).

Remark 3.3.8: Finite union (intersection) of $g\eta$ -closed sets need not be $g\eta$ -closed.

Example 3.3.9: (*i*).Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Here the set $\{e\}$ and $\{f\}$ are $g\eta$ -closed sets, but $\{e\} \cup \{f\} = \{e, f\}$ is not a $g\eta$ -closed set.

(*ii*).Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{g\}, \{h\}, \{g, h\}\}$. The set $\{e, g, f\}$ and $\{f, g, h\}$ are $g\eta$ -closed sets, but $\{e, g, f\} \cap \{f, g, h\} = \{g, h\}$ is not a $g\eta$ -closed set.

Theorem 3.3.10: For a $g\eta$ -closed set R, $\eta cl(R) - R$ contains no non-empty closed set, and the converse is true if the intersection of a closed set and a η -closed set is a closed set.

Proof: Necessity: Let *J* be a non-empty closed set in *X* such that $J \subseteq \eta cl(R) - R$. Then $R \subseteq X - J$. Since *R* is a $g\eta$ -closed set and X - J is open, $\eta cl(R) \subseteq X - J$. That is $J \subseteq X - \eta cl(R)$. So $J \subseteq (X - \eta cl(R)) \cap (\eta cl(R) - R)$. Therefore $J = \varphi$. **Sufficiency:** Let us assume that $\eta cl(R) - R$ contains no non-empty closed set. Let $R \subseteq I$, where *I* is open. Suppose that $\eta cl(R)$ is not contained in $I, \eta cl(R) \cap (X - I)$ is non-empty closed set contained in $\eta cl(R) - R$ which is a contradiction. Therefore $\eta cl(R) \subseteq I$. Hence *R* is $g\eta$ -closed.

Theorem 3.3.11: If *R* is a $g\eta$ -closed set in *X* and $R \subseteq S \subseteq \eta cl(R)$. Then *S* is also $g\eta$ -closed in *X*.

Proof: Let $S \subseteq I$, where *I* is open. $R \subseteq S \subseteq I$ and *R* is $g\eta$ -closed, $\eta cl(R) \subseteq I$. As $S \subseteq \eta cl(R), \eta cl(S) \subseteq \eta cl(R)$. Hence $\eta cl(S) \subseteq I$. Therefore *S* is $g\eta$ -closed in *X*.

Theorem 3.3.12: Let R be a $g\eta$ -closed set in X. Then R is η -closed if and only if $\eta cl(R) - R$ is closed.

Proof: Let *R* be a $g\eta$ -closed set in *X*. If we assume that *R* is an η -closed set then $\eta cl(R) - R = \varphi$, which is a closed set.

Conversely, let $\eta cl(R) - R$ be closed. In theorem 3.3.10, it is proved that $\eta cl(R) - R$ does not contain any non-empty closed set and hence $\eta cl(R) - R$ does not contain any non-empty closed set. So $\eta cl(R) - R$ is a closed subset of itself and then $\eta cl(R) - R = \varphi$. This implies that $R = \eta cl(R)$. Therefore R is a η -closed set.

Remark 3.3.13: Let $X = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{e, f\}, \{e, f, g\}\}$. Let $R = \{e, f, g\}$. Here η closed sets and $g\eta$ closed sets are $\{X, \varphi, \{e\}, \{f\}, \{g\}, \{h\}, \{e, g\}, \{e, h\}, \{f, g\}, \{f, h\}, \{g, h\}, \{e, f, h\}, \{e, g, h\}, \{f, g, h\}\}$. Although $\eta cl(R) - R = \{h\}$ is closed, R is not η -closed and $g\eta$ -closed.

Definition 3.3.14: For a subset *R* of (*X*, τ), intersection of all $g\eta$ -closed sets containing *R* is called the $g\eta$ -closure of *R* and is denoted by $g\eta cl(R)$. That is, $g\eta cl(R) = \cap \{J: R \subseteq J, Jis g\eta$ -closed in *X*\}.

Remark 3.3.15: The arbitrary intersection of $g\eta$ -closed sets is not necessarily $g\eta$ -closed, $g\eta cl(R)$ is not necessarily a $g\eta$ -closed set.

Remark 3.3.16: If *R* and *S* are any two subsets of (X,τ) , then

- (*i*) $g\eta cl(\varphi) = \varphi$ and $g\eta cl(X) = X$.
- (*ii*) $R \subseteq S \Rightarrow g\eta cl(R) \subseteq g\eta cl(S)$.
- (*iii*) $g\eta cl(g\eta cl(R)) = g\eta cl(R)$.
- $(iv) g\eta cl(R \cup S) \supseteq g\eta cl(R) \cup g\eta cl(S).$
- $(v) g\eta cl(R \cap S) \subseteq g\eta cl(R) \cap g\eta cl(S).$

Theorem 3.3.17: For a subset *R* of (X,τ) and $x \in X$, $g\eta cl(R)$ contains *x* if and only if $P \cap R \neq \varphi$ for every $g\eta$ -open set *P* containing *x*.

Proof: Let $R \subseteq X$ and let $x \in g\eta cl(R)$. If possible let there exists a $g\eta$ -open set P containing x such that $P \cap R = \varphi$. $R \subseteq X - P$. Therefore $g\eta cl(R) \subseteq X - P$ and then $x \notin g\eta cl(R)$, which is contradiction. Therefore $P \cap R \neq \varphi$ for every $g\eta$ -open set P containing x.

Conversely, assume that $x \notin g\eta cl(R)$. Then there exists a $g\eta$ -closed set J containing R such that $x \notin J$. Therefore $x \in X - J$ and X - J is $g\eta$ -open, $X - J \cap R = \varphi$, which is contradiction. Hence $x \notin g\eta cl(R)$ if and only if $P \cap R \neq \varphi$, for every $g\eta$ -open set P containing x.

Theorem 3.3.18: For every point x of a topological space (X, τ) , $X - \{x\}$ is either open or $g\eta$ -closed.

Proof: Suppose $X - \{x\}$ is not an open subset of X, then X is the only open set containing $X - \{x\}$. Therefore $\eta cl(X - \{x\}) \subseteq X$. Hence $(X - \{x\})$ is $g\eta$ -closed set in X.

Theorem 3.3.19: Let (X,τ) be a topological space and $S \subseteq R \subseteq X$. If *S* is $g\eta$ -closed set relative to *R* and *R* is both open and η -closed subset of *X*, then *S* is $g\eta$ -closed set relative to *X*.

Proof: Let $S \subseteq G$ and G be an open set in X. Then $S \subseteq R \cap G$. Since S is $g\eta$ -closed relative to R, $\eta cl(S) \subseteq R \cap G$. That is $R \cap \eta cl(S) \subseteq R \cap G$, we have $R \cap \eta cl(S) \subseteq G$ and then $R \cap \eta cl(S) \cup (X - \eta cl(S)) \subseteq G \cup (X - \eta cl(S))$. Since R is $g\eta$ -closed in X,

we have $\eta cl(R) \subseteq G \cup (X - \eta cl(S))$. Therefore $\eta cl(S) \subseteq G$, since $\eta cl(S)$ is not contained in $X - \eta cl(R)$. Thus S is $g\eta$ -closed set relative to X.

Theorem 3.3.20: Let *X* be a topological space and $R \subseteq Y \subseteq X$. If *R* is $g\eta$ -closed in *X*, then *R* is $g\eta$ -closed relative to *Y*.

Proof: $R \subseteq Y \cap G$ where G is open in X. Since R is $g\eta$ -closed in X. $R \subseteq G$ implies $\eta cl(R) \subseteq G$. That is $Y \cap \eta cl(R) \subseteq Y \cap G$, where $Y \cap \eta cl(R)$ is closure of R in Y. Thus R is $g\eta$ -closed relative to Y.

Theorem 3.3.21: A subset *R* of a space (X, τ) is $g\eta$ -closed if and only if for each $R \subseteq S$ and *S* is open, there exists a η -closed set *F* such that $R \subseteq F \subseteq S$.

Proof: Suppose that *R* is a $g\eta$ -closed set, $R \subseteq S$ and *S* is an open set. Then $\eta cl(R) \subseteq S$. If we put $F = \eta cl(R)$, hence $R \subseteq F \subseteq S$.

Conversely, assume that $R \subseteq S$ and S is an open set. Then by hypothesis there exists a η -closed set F such that $R \subseteq F \subseteq S$. So $R \subseteq \eta cl(R) \subseteq F$ and hence $\eta cl(R) \subseteq S$. Therefore R is $g\eta$ -closed.

3.4. $g\eta$ -OPEN SETS AND $g\eta$ -NEIGHBOURHOODS

In this section, $g\eta$ -open sets and $g\eta$ -neighbourhoods are introduced in topological spaces.

Definition 3.4.1: A subset *R* of a topological space (X,τ) is called a $g\eta$ -open set if X - R is $g\eta$ -closed in *X*. The family of all $g\eta$ -open sets in *X* is denoted by $G\eta O(X,\tau)$.

Definition 3.4.2: For a subset *R* of a topological space (X,τ) , the union of all $g\eta$ -open sets contained in *R* is called $g\eta$ -interior of *R* and is denoted by $g\eta int(R)$.

That is, $g\eta int(R) = \bigcup \{J: R \supseteq J, J \text{ is } g\eta \text{-open in } X\}.$

Remark 3.4.3: Every open set is $g\eta$ -open set.

Remark 3.4.4: (*i*) Finite intersection of $g\eta$ -open sets need not be $g\eta$ -open.

(*ii*) Finite union of $g\eta$ -open sets need not be $g\eta$ -open.

Theorem 3.4.5: Suppose $\eta int(R) \subseteq S \subseteq R$ and if R is $g\eta$ -open in X, then S is also $g\eta$ -open in X.

Proof: Suppose $\eta int(R) \subseteq S \subseteq R$ and R is $g\eta$ -open in X, then $X - R \subseteq X - S \subseteq g\eta cl(X - R)$. Since X - R is $g\eta$ -closed in X, by theorem 3.3.11, X - S is $g\eta$ -closed in X. Hence S is $g\eta$ -open in X.

Theorem 3.4.6: A subset $R \subseteq X$ is $g\eta$ -open if and only if $J \subseteq \eta int(R)$, whenever J is a closed set and $J \subseteq R$.

Proof: Necessity: Let *R* be a $g\eta$ -open set and let *J* be a closed subset of *R*. Then X - R is a $g\eta$ -closed set contained in the open set X - J. Hence $\eta cl(X - R) \subseteq X - J$. Since $\eta cl(X - R) = X - \eta int(R)$, we have $X - \eta int(R) \subseteq X - J$. Thus $J \subseteq \eta int(R)$.

Sufficiency: Let *J* be closed and $J \subseteq R$ implies $J \subseteq \eta int(R)$. Let $X - R \subseteq I$, where *I* is open. Then $X - I \subseteq R$, where X - I is closed. By hypothesis $X - I \subseteq \eta int(R)$. That is, $X - \eta int(R) \subseteq I$. Then $\eta cl(X - R) \subseteq I$ implies X - R is $g\eta$ -closed. Therefore *R* is $g\eta$ -open.

Definition 3.4.7: Let x be a point in a topological space X. A subset N of X is said to be a $g\eta$ -neighbourhood of x if and only if there exists a $g\eta$ -open set F such that $x \in F \subseteq N$.

Definition 3.4.8: A subset N of a topological space X is called a $g\eta$ -neighbourhood of

 $R \subseteq X$ if and only if there exists a $g\eta$ -open set F such that $R \subseteq F \subseteq N$.

Theorem 3.4.9: Every neighbourhood *N* of $x \in X$ is a $g\eta$ -neighbourhood of *x*.

Proof: Let *N* be a neighbourhood of a point $x \in X$. By definition of neighbourhoods, there exists an open set *F* such that $x \in F \subseteq N$. Since every open set *F* is $g\eta$ -open. *N* is a $g\eta$ -neighbourhood of *x*.

Remark 3.4.10: In general, a $g\eta$ -neighbourhood of $x \in X$ need not be neighbourhood of x in X as seen from the following example.

Example 3.4.11: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Then $g\eta$ -open sets are $\{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, g\}, \{f, g\}\}$. The set $\{f, g\}$ is a $g\eta$ -neighbourhood of $\{g\}$, then $g\eta$ -open set $\{f, g\}$ is such that $g \in \{f, g\} \subseteq \{f, g\}$. However, the set $\{f, g\}$ is not a neighbourhood of the point $\{g\}$, clearly no open set F exists such that $\{g\} \in F \subseteq \{f, g\}$.

Remark 3.4.12: The $g\eta$ -neighbourhood N of $x \in X$ need not be $g\eta$ -open in X.

Example 3.4.13: Let $X = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{f, g\}\}$. Then $g\eta$ -open sets are $\{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{f, g\}\}$. The set $\{e, g\}$ is a $g\eta$ -neighbourhood of $\{e\}$, since $e \in \{e\} \subseteq \{e, g\}$. But the set $\{e, g\}$ is not $g\eta$ -open.

Theorem 3.4.14: If a subset N of a space X is $g\eta$ -open, then N is a $g\eta$ -neighbourhood of each of its points.

Proof: Let *N* be $g\eta$ -open and $x \in N$. Then *N* is a $g\eta$ -open set such that $x \in N \subseteq N$. Since *x* is an arbitrary point of *N*, it follows that *N* is a $g\eta$ -neighbourhood of each of its points.

Theorem 3.4.15: Let X be a topological space. If J is $g\eta$ -closed subset of X and $x \in X - J$, then there exists a $g\eta$ -neighbourhood N of x such that $N \cap J = \varphi$.

Proof: Let *J* be a $g\eta$ -closed subset of *X* and $x \in X - J$, X - J is a $g\eta$ -open set of *X*. By theorem 3.3.12, X - J is a $g\eta$ -neighbourhood of each of its points. Hence there exists a $g\eta$ -neighbourhood *N* of *x* such that $N \subseteq X - J$. That is $N \cap J = \varphi$.

Definition 3.4.16: Let x be a point in a topological space X. The set of all $g\eta$ -neighbourhood of x is called the $g\eta$ -neighbourhood system at x and is denoted by $g\eta N(x)$.

Theorem 3.4.17: In a topological space X, for each $x \in X$, the $g\eta$ -neighbourhood system $g\eta N(x)$ satisfies the following results:

(*i*) For all $x \in X$, $g\eta N(x) \neq \varphi$.

(*ii*) $N \in g\eta N(x)$ implies $x \in N$.

(*iii*) $N \in g\eta N(x)$, $J \supseteq N$ implies $J \in g\eta N(x)$.

(*iv*) $N \in g\eta N(x)$ implies there exists $J \in g\eta N(x)$ such that $J \subseteq N$ and $J \in g\eta N(l)$ for every $l \in J$.

Proof: (*i*) Since X is a $g\eta$ -open set, it is a $g\eta$ -neighbourhood of every $x \in X$. Hence there exists at least one $g\eta$ -neighbourhood (namely X) for each $x \in X$. Therefore $g\eta N(x) \neq \varphi$ for every $x \in X$.

(*ii*) Let $N \in g\eta N(x)$, then N is a $g\eta$ -neighbourhood of x. By definition of $g\eta$ -neighbourhood, $x \in N$.

(*iii*) Let $N \in g\eta N(x)$ and $J \supseteq N$. Then there is a $g\eta$ -open set F such that $x \in F \subseteq N$. Since $N \subseteq J$, $x \in F \subseteq J$ and so J is a $g\eta$ -neighbourhood of x. Hence $J \in g\eta N(x)$.

(*iv*) Let $N \in g\eta N(x)$, then there is a $g\eta$ -open set J such that $x \in J \subseteq N$. Since J is a $g\eta$ -open set, it is a $g\eta$ -neighbourhood of each of its points. Therefore $J \in g\eta N(l)$ for every $l \in J$.

3.5. $xg\eta$ -CLOSED SETS

A new class of sets, called $xg\eta$ -closed sets in topological ordered spaces are introduced and some properties are provided.

Definition 3.5.1: A subset *R* of a topological ordered space (X, τ, \leq) is called an $xg\eta$ -closed set if it is both increasing (ie. decreasing, increasing and decreasing) and $g\eta$ -closed set.

Theorem 3.5.2: Every *i*-closed, $i\alpha$ -closed, ir-closed, ig^* -closed sets are $ig\eta$ -closed set, but not conversely.

Proof: Every closed, α -closed, r-closed, g^* -closed sets are $g\eta$ -closed set [3.3.2]. Then every *i*-closed, *i* α -closed, *ir*-closed, *ig**-closed sets are *ig* η -closed set. **Example 3.5.3:** Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, f), (f, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. *ign*-closed sets are $\{X, \varphi, \{g\}, \{f, g\}\}$. *i*-closed, *ia*-closed, *ir*-closed, *ig**-closed sets are $\{X, \varphi, \{f, g\}\}$. Let $R = \{g\}$. Clearly R is an *ign*-closed set but not an *i*-closed, *ia*-closed, *ir*-closed, *ig**-closed set in X.

Theorem 3.5.4: Every *ig*-closed set is an $ig\eta$ -closed set, but not conversely.

Proof: Every *g*-closed set is a $g\eta$ -closed set [3.3.2]. Then every *ig*-closed set is an $ig\eta$ -closed set.

Example3.5.5: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\leq = (e, e), (f, f), (g, g), (e, f), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. $ig\eta$ -closed sets are $\{X, \varphi, \{f\}, \{g\}, \{f, g\}\}$. ig-closed set is $\{X, \varphi, \{g\}, \{f, g\}\}$. Let $R = \{f\}$. Clearly R is an $ig\eta$ -closed set but not an ig-closed set in X.

Theorem 3.5.6: Every $i\eta$ -closed set is an $ig\eta$ -closed set, but not conversely.

Proof: Every η -closed set is a $g\eta$ -closed set [3.3.2]. Then every $i\eta$ -closed set is an $ig\eta$ -closed set.

Example3.5.7: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, f), (g, f)\}$. (*g*, *f*)}. Clearly (X, τ, \leq) is a topological ordered space. *ign*-closed sets are $\{X, \varphi, \{f\}, \{e, f\}, \{f, g\}\}$. *in*-closed set is $\{X, \varphi, \{f\}, \{f, g\}\}$. Let $R = \{e, f\}$. Clearly R is an *ign*-closed set but not an *in*-closed set in X.

Theorem 3.5.8: Every *d*-closed, $d\alpha$ -closed, dg-closed, dg^* -closed sets are $dg\eta$ -closed set but not conversely.

Proof: Every closed, α -closed, g-closed, g^* -closed sets are $g\eta$ -closed set [3.3.2]. Then every d-closed, $d\alpha$ -closed, dg-closed, dg^* -closed sets are $dg\eta$ -closed set.

Example 3.5.9: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. $dg\eta$ -closed sets are $\{X, \varphi, \{e\}, \{e, g\}\}$. *d*-closed, $d\alpha$ -closed, dg-closed, dg^* -closed sets are $\{X, \varphi, \{e, g\}\}$.

Let $R = \{e\}$. Clearly R is a $dg\eta$ -closed set but not a d-closed, $d\alpha$ -closed, dg-closed, dg^* -closed set in X.

Theorem 3.5.10: Every $d\eta$ -closed set is a $dg\eta$ -closed set, but not conversely.

Proof: Every η -closed set is a $g\eta$ -closed set [3.3.2]. Then every $d\eta$ -closed set is a $dg\eta$ -closed set.

Example 3.5.11: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, f), (g, f)\}$. Clearly (X, τ, \leq) is a topological ordered space. $dg\eta$ -closed sets are $\{X, \varphi, \{g\}, \{e, g\}\}$. $d\eta$ -closed set is $\{X, \varphi, \{g\}\}$. Let $R = \{e, g\}$. Clearly R is a $dg\eta$ -closed set but not a $d\eta$ -closed set in X.

Theorem 3.5.12: Every *dr*-closed set is a $dg\eta$ -closed set, but not conversely.

Proof: Every *r*-closed set is a $g\eta$ -closed set [3.3.2]. Then every *dr*-closed set is a $dg\eta$ -closed set.

Example3.5.13: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, f), (f, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. $dg\eta$ -closed sets are $\{X, \varphi, \{e\}, \{e, f\}\}$. dr-closed sets are $\{X, \varphi, \{e\}\}$. Let $R = \{e, f\}$. Clearly R is a $dg\eta$ -closed set but not a dr-closed set in X.

Theorem 3.5.14: Every *b*-closed, $b\alpha$ -closed, bg-closed, bg^* -closed sets are $bg\eta$ -closed set, but not conversely.

Proof: Every closed, α -closed, g-closed, g^* -closed sets are $g\eta$ -closed set [3.3.2]. Then every *b*-closed, $b\alpha$ -closed, bg-closed, bg^* -closed sets are $bg\eta$ -closed set.

Example 3.5.15: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. $bg\eta$ -closed sets are $\{X, \varphi, \{f\}, \{e, g\}\}$. b-closed, $b\alpha$ -closed, bg-closed, bg^* -closed sets are $\{X, \varphi, \{e, g\}\}$. Let $R = \{f\}$. Clearly R is a $bg\eta$ -closed set but not a b-closed, $b\alpha$ -closed, bg-closed, bg-closed

Theorem 3.5.16: Every *br*-closed set is a $bg\eta$ -closed set, but not conversely.

Proof: Every *r*-closed set is a $g\eta$ -closed set [3.3.2]. Then every *br*-closed set is a $bg\eta$ -closed set.

Example 3.5.17: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. $bg\eta$ -closed sets are $\{X, \varphi, \{f\}, \{e, g\}\}$. br-closed set is $\{X, \varphi, \{e, g\}\}$. Let $R = \{f\}$. Clearly R is a $bg\eta$ -closed set but not a *br*-closed set in X.

Theorem 3.5.18: Every $b\eta$ -closed set is a $bg\eta$ -closed set, but not conversely.

Proof: Every η -closed set is a $g\eta$ -closed set [3.3.2]. Then every $b\eta$ -closed set is a $bg\eta$ -closed set.

Example 3.5.19: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. $bg\eta$ -closed sets are $\{X, \varphi, \{f\}, \{e, g\}\}$. $b\eta$ -closed set is a $\{X, \varphi, \{f\}\}$. Let $R = \{e, g\}$. Clearly R is a $bg\eta$ -closed set but not a $b\eta$ -closed set in X.

Remark 3.5.20: The following example shows that xrg-closed, $xg\alpha r$ -closed, xgpr-closed and $xg\eta$ -closed sets are independent of each other.

Example 3.5.21: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. The set $\{g\}$ is an $ig\eta$ -closed set but not *irg*-closed, *igqr*-closed, *igpr*-closed set.

Example 3.5.22: Let $X = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\leq = (e, e), (f, f), (g, g), (e, f), (g, f)\}$. Clearly (X, τ, \leq) is a topological ordered space. The set $\{e, f\}$ is an *irg*-closed, *igar*-closed, *igpr*-closed set but not *ign*-closed set.

Example 3.5.23: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. The set $\{e\}$ is a $dg\eta$ -closed set but not drg-closed, $dg\alpha r$ -closed, dgpr-closed set.

Example 3.5.24: Let $X = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, f), (g, f)\}$. Clearly (X, τ, \leq) is a topological ordered space. The set $\{e\}$ is a drg-closed, $dg\alpha r$ -closed, dgpr-closed set but not $dg\eta$ -closed set.

Example 3.5.25: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. The set $\{f\}$ is a $bg\eta$ -closed set but not brg-closed, $bg\alpha r$ -closed, bgpr-closed set.

Example 3.5.26: Let $X = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Clearly (X, τ, \leq) is a topological ordered space. The set $\{e, g\}$ is a *brg*-closed, *bgar*-closed, *bgpr*-closed set but not a *bgη*-closed set.