CHAPTER-4

gη-CONTINUITY IN TOPOLOGICAL SPACES AND TOPOLOGICAL ORDERED SPACES

4.1. INDRODUCTION

In the year 1991, Balachandran et.al [10] initiated the idea of continuous functions in topological spaces. In 1993, Cueva [22] introduced the concept of generalized continuous functions in topological spaces. Crossley and Hildebrand [21] introduced the notion of irresoluteness in the year 1972. In topological ordered spaces, Veera Kumar [111] introduced the study of continuous functions in the year 2002. Many authors like [12, 13, 66, 77, 80, 104] have introduced and investigated, strong and weak forms of continuous functions.

In this chapter, $g\eta$ -continuous functions, $g\eta$ -irresolute functions in topological spaces and $g\eta$ -continuous functions in topological ordered spaces are defined and their properties as well as their association with various continuous functions are analyzed.

4.2. $g\eta$ -CONTINUOUS FUNCTIONS

The notion of $g\eta$ -continuous functions and $g\eta$ -irresolute functions are studied in this section.

Definition 4.2.1: A function $a: (X, \tau) \to (Y, \sigma)$ is called η -continuous if $a^{-1}(W)$ is an η -closed in (X, τ) for every closed set W in (Y, σ) .

Definition 4.2.2: A function $a: (X, \tau) \to (Y, \sigma)$ is called $g\eta$ -continuous if $a^{-1}(W)$ is a $g\eta$ -closed (or $g\eta$ -closed) in (X, τ) for every closed (or open) set W in (Y, σ) .

Theorem 4.2.3: Let (X,τ) and (Y,σ) be topological spaces. Then for a mapping $a: (X,\tau) \to (Y,\sigma)$. The following results are true.

(*i*) Every continuous function is $g\eta$ -continuous.

- (*ii*) Every α -continuous function is $g\eta$ -continuous.
- (*iii*) Every *r*-continuous function is $g\eta$ -continuous.
- (*iv*) Every η -continuous function is $g\eta$ -continuous.
- (v) Every g-continuous function is $g\eta$ -continuous.
- (*vi*) Every g^* -continuous function is $g\eta$ -continuous.
- (vii) Every αg -continuous function is $g\eta$ -continuous.

(*viii*) Every $g\alpha$ -continuous function is $g\eta$ -continuous.

Proof: (i) Let $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ be continuous and W be a closed set in Y. Then $\mathfrak{a}^{-1}(W)$ is closed in X. Since every closed set is $g\eta$ -closed, $\mathfrak{a}^{-1}(W)$ is $g\eta$ -closed in X. Thus, inverse image of every closed set is $g\eta$ -closed. Therefore \mathfrak{a} is $g\eta$ -continuous.

Proof of (*ii*) to (*viii*) are similar to (*i*).

Remark 4.2.4: The following examples reveals that the converse of the above theorem need not be true.

Example 4.2.5: Let $X = Y = \{e, f, g\}, \quad \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Define $a: X \to Y$ as a(e) = e, a(f) = g, a(g) = f. Then $a^{-1}(\{g\}) = \{f\}, a^{-1}(\{e, g\}) = \{e, f\}, a^{-1}(\{f, g\}) = \{f, g\}$. Therefore a is $g\eta$ -continuous. Therefore a is $g\eta$ -continuous, since the inverse image of every closed set in Y is $g\eta$ -closed in X.

(*i*) Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{g\}, \{e, g\}\}.$ Define $a: X \to Y$ as a(e) = g, a(f) = f, a(g) = e. Then $a^{-1}(\{f\}) = \{f\}$ is $g\eta$ -closed but not closed, α -closed, r-closed in X. Here the set $\{f\}$ is closed in Y. Therefore a is $g\eta$ -continuous but not continuous, α -continuous, r-continuous. (*ii*) Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}$. Define $a: X \to Y$ as a(e) = g, a(f) = f, a(g) = e. Then $a^{-1}(\{f, g\}) = \{e, f\}$ is $g\eta$ -closed but not η -closed in X. Here the set $\{f, g\}$ is closed in Y. Therefore a is $g\eta$ -continuous but not η -continuous.

(*iii*) Let $X = Y = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{f, h\}, \{e, f, h\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, f, g\}\}$. Define $a: X \to Y$ as a(e) = e, a(f) = f, a(g) = g, a(h) = h. Then $a^{-1}(\{h\}) = \{h\}$ is $g\eta$ -closed but not g-closed, g^* -closed, αg -closed, $g\alpha$ -closed in X. Here the set $\{h\}$ is closed in Y. Therefore a is $g\eta$ -continuous but not g-continuous, g^* -continuous, αg -continuous, $g\alpha$ -continuous.

Remark 4.2.6: The concept of rg-continuous, gpr-continuous, $g\alpha r$ -continuous and $g\eta$ -continuous are not dependent on each other.

Example 4.2.7: Let $X=Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{f, g\}\}$. Define $a: X \to Y$ as a(e) = e, a(f) = g, a(g) = f. Here a is $g\eta$ -continuous. But a is not rg-continuous, gpr-continuous, $g\alpha r$ -continuous. Since for the closed set, $\{e\}$ in $Y, a^{-1}(\{e\}) = \{e\}$ is $g\eta$ -closed but not rg-closed, gpr-closed, $g\alpha r$ -closed in X.

Example 4.2.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}$. Define $a: X \to Y$ as a(e) = f, a(f) = e, a(g) = g. Here a is rg-continuous, gpr-continuous, gar-continuous. But a is not $g\eta$ -continuous. Since for the closed set, $\{f, g\}$ in $Y, a^{-1}(\{f, g\}) = \{e, g\}$ is rg-closed, gpr-closed, gar-closed but not $g\eta$ -closed in X.

Theorem 4.2.9: A mapping $a: (X, \tau) \to (Y, \sigma)$ be a function. Then the following results are equivalent.

- (*i*) a is $g\eta$ -continuous.
- (*ii*) The inverse image of each open set in *Y* is $g\eta$ -open in *X*.

Proof: (*i*) \Rightarrow (*ii*) Assume that $a: (X, \tau) \rightarrow (Y, \sigma)$ is $g\eta$ -continuous. Let *I* be an open set in *Y*. Then *Y* - *I* is closed in *Y*. Since a is $g\eta$ -continuous, $a^{-1}(Y - I)$ is $g\eta$ -closed in *X*. But $a^{-1}(\{Y - I\}) = X - a^{-1}(I)$. Thus $a^{-1}(I)$ is $g\eta$ -open in *X*.

 $(ii) \Rightarrow (i)$ Assume that the inverse image of each open set in Y is $g\eta$ -open in X. Let W be any closed set in Y. Then Y - W is open in X. But $a^{-1}({Y - W}) = X - a^{-1}(W)$ is $g\eta$ -open in X and so $a^{-1}(W)$ is $g\eta$ -closed in X. Hence it is proved that a is a $g\eta$ -continuous function.

Theorem 4.2.10: If a function $a: (X, \tau) \to (Y, \sigma)$ is $g\eta$ -continuous, then $a(g\eta cl(R)) \subseteq cl(a(R))$ for every subset *R* of *X*.

Proof: Let $a: (X, \tau) \to (Y, \sigma)$ be $g\eta$ -continuous. Let $R \subseteq X$. Then cl(a(R)) is closed set in Y. Since a is $g\eta$ -continuous, $a^{-1}(cl(a(R)))$ is $g\eta$ -closed in X and $R \subseteq$ $a^{-1}(a(R)) \subseteq a^{-1}(cl(a(R)))$, implies $g\eta cl(R) \subseteq a^{-1}(cl(a(R)))$. Hence $a(g\eta cl(R))$ $\subseteq cl(a(R))$.

Corollary 4.2.11: Let *X* and *Y* be any two topological spaces and $a: (X, \tau) \to (Y, \sigma)$ be a function. Then the following results are equivalent.

(*i*) a is $g\eta$ -continuous.

(*ii*) For each subset W of Y, $g\eta cl(a^{-1}(W)) \subseteq a^{-1}(cl(W))$.

Proof: (*i*) \Rightarrow (*ii*) Let *W* be a subset of *Y*. Then $a^{-1}(W)$ is a subset of *X*. Since *a* is $g\eta$ -continuous, $a(g\eta cl(R)) \subseteq cl(a(R))$, for each subset *R* of *X*. Hence in particular $a(g\eta cl(a^{-1}(W))) \subseteq cl(a(a^{-1}(W))) \subseteq cl(W)$. Hence $g\eta cl(a^{-1}(W)) \subseteq a^{-1}(cl(W))$.

 $(ii) \Rightarrow (i)$ Let W be a closed subset of Y. Then by (ii), $g\eta cl(a^{-1}(W)) \subseteq a^{-1}(cl(W))$. This implies, $a(g\eta cl(a^{-1}(W))) \subseteq a(a^{-1}(cl(W))) \subseteq cl(W)$. Take W = a(R), where R is a subset of X. Then $a(g\eta cl(R)) \subseteq cl(a(R))$. Hence by theorem 4.2.10 a is $g\eta$ -continuous.

Theorem 4.2.12: Let $a: (X, \tau) \to (Y, \sigma)$ be a function where *X* and *Y* are topological spaces. Suppose $G\eta O(X, \tau)$ is closed under arbitrary union, then the following are equivalent.

(i) a is $g\eta$ -continuous.

(*ii*) For each point $x \in X$ and each open set W in Y with $a(x) \in W$, there is a $g\eta$ -open set R in X such that $x \in R$ and $a(R) \subseteq W$.

Proof: (*i*) \Rightarrow (*ii*) Let *W* be an open set in *Y* and let $a(x) \in W$, where $x \in X$, Since a is $g\eta$ -continuous, $a^{-1}(W)$ is a $g\eta$ -open set in *X*. Also $x \in a^{-1}(W)$. Take $R = a^{-1}(W)$. Then $x \in R$ and $a(R) \subseteq W$.

 $(ii) \Rightarrow (i)$ Let W be an open set in Y and let $x \in a^{-1}(W)$. Then $a(x) \in W$ and there exist a $g\eta$ -open set R in X such that $x \in R$ and $a(R) \subseteq W$. Then $x \in R \subseteq a^{-1}(W)$. Hence $a^{-1}(W)$ is a $g\eta$ -neighbourhood of x and hence it is $g\eta$ -open. Hence a is $g\eta$ -continuous.

Theorem 4.2.13: Let $a: (X, \tau) \to (Y, \sigma)$ and $b: (Y, \sigma) \to (Z, \mu)$ be functions. Then the following properties hold:

(*i*) If a is $g\eta$ -continuous and b is continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -continuous.

(*ii*) If a is η -continuous and b is continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -continuous.

(*iii*) If a is g-continuous and b is continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -continuous.

Proof: (*i*) Let *R* be a closed set in *Z*, since **b** is a continuous function, $\mathbb{b}^{-1}(R)$ is closed set in *Y*. Again since **a** is $g\eta$ -continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is $g\eta$ -closed in *X*. Hence $\mathbb{b} \circ \mathbb{a}$ is $g\eta$ -continuous.

(*ii*) Let R be a closed set in Z, since b is a continuous function, $\mathbb{b}^{-1}(R)$ is closed set in Y. Again since a is η -continuous and every η -closed set is $g\eta$ -closed. $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is $g\eta$ -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is $g\eta$ -continuous.

(*iii*) Let R be a closed set in Z, since b is a continuous function, $b^{-1}(R)$ is closed set in Y. Again since a is g-continuous and every g-closed set is $g\eta$ -closed. $a^{-1}(b^{-1}(R)) = (b \circ a)^{-1}(R)$ is $g\eta$ -closed in X. Hence $b \circ a$ is $g\eta$ -continuous.

Remark 4.2.14: The composition of two $g\eta$ -continuous functions need not be $g\eta$ -continuous as seen from the following example.

Example 4.2.15: Let $X = Y = Z = \{e, f, g\}, \tau = \{X, \varphi, \{f, g\}\}, \sigma = \{Y, \varphi, \{e\}\}$ and $\mu = \{Z, \varphi, \{e\}, \{f, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ be defined as a(e) = f, a(f) = g, a(g) = e and $b: (Y, \sigma) \to (Z, \mu)$ be defined as b(e) = f, b(f) = e, b(g) = g. Then the function a and b are $g\eta$ -continuous but their composition $b \circ a: (X, \tau) \to (Z, \mu)$ is not $g\eta$ -continuous, since for the closed set $\{e\}$ in (Z, μ) , $(b \circ a)^{-1}(\{f, g\}) = \{f, g\}$ is not $g\eta$ -closed in (X, τ) .

4.3. $g\eta$ -IRRESOLUTE FUNCTIONS

The notion of $g\eta$ -irresolute functions are studied in this section.

Definition 4.3.1: A function $a: (X, \tau) \to (Y, \sigma)$, where *X* and *Y* are topological spaces, is called $g\eta$ -irresolute if the inverse image of each $g\eta$ -closed ($g\eta$ -open) set in *Y* is a $g\eta$ -closed ($g\eta$ -open) set in *X*.

Example 4.3.2: Let $X = Y = \{e, f, g\}, \quad \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = g, a(g) = f. Then $a^{-1}(\{e\}) = \{e\}, \quad a^{-1}(\{f\}) = \{g\}, \quad a^{-1}(\{g\}) = \{f\}, \quad a^{-1}(\{e, g\}) = \{e, f\}, a^{-1}(\{f, g\}) = \{f, g\}$. Therefore a is $g\eta$ -irresolute. Since the inverse image of every $g\eta$ -open set in Y is $g\eta$ -open in X.

Theorem 4.3.3: A function $a: (X, \tau) \to (Y, \sigma)$ is $g\eta$ -irresolute if and only if $a^{-1}(W)$ is $g\eta$ -open in *X*, for every $g\eta$ -open set *W* in *Y*.

Proof: Necessity: Let W be a $g\eta$ -open set in Y. Then X - W is a $g\eta$ -closed set in Y. Since \mathfrak{a} is $g\eta$ -irresolute, $\mathfrak{a}^{-1}(X - W)$ is $g\eta$ -closed in X. But $\mathfrak{a}^{-1}(X - W) = (X - \mathfrak{a}^{-1}(W))$. Hence $X - \mathfrak{a}^{-1}(W)$ is $g\eta$ -closed in X and $\mathfrak{a}^{-1}(W)$ is $g\eta$ -open in X.

Sufficiency: Let W be a $g\eta$ -closed set in Y. Then X - W is a $g\eta$ -open set in Y. Since the inverse image of each $g\eta$ -open set in Y is $g\eta$ -open in X, $a^{-1}(X - W)$ is $g\eta$ -open in X. Also $a^{-1}(X - W) = X - a^{-1}(W)$. Hence $X - a^{-1}(W)$ is $g\eta$ -open in X and hence $a^{-1}(W)$ is $g\eta$ -closed in X. Hence a is $g\eta$ -irresolute.

Theorem 4.3.4: Let $a: (X, \tau) \to (Y, \sigma)$ and $b: (Y, \sigma) \to (Z, \mu)$ be functions. Then the following properties hold:

(*i*) If a and b are $g\eta$ -irresolute then $b \circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -irresolute.

(*ii*) If a is $g\eta$ -irresolute and b is $g\eta$ -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -continuous.

(*iii*) If a is η -irresolute and b is η -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -continuous.

(*iv*) If a is $g\eta$ -irresolute and b is η -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is $g\eta$ -continuous.

Proof: (i) Let W be a $g\eta$ -closed set in Z. Then $\mathbb{b}^{-1}(W)$ is a $g\eta$ -closed set in Y and $\mathbb{a}^{-1}(\mathbb{b}^{-1}(W))$ is also $g\eta$ -closed in X, since a and b are $g\eta$ -irresolutes. Thus $(\mathbb{b} \circ \mathbb{a})^{-1}(W) = \mathbb{a}^{-1}(\mathbb{b}^{-1}(W))$ is $g\eta$ -closed in X and hence $\mathbb{b} \circ \mathbb{a}$ is also $g\eta$ -irresolute.

(*ii*) Let W be any closed set in Z. Then $\mathbb{b}^{-1}(W)$ is a $g\eta$ -closed set in Y. Since \mathbb{b} is $g\eta$ -continuous and $\mathbb{a}^{-1}(\mathbb{b}^{-1}(W))$ is $g\eta$ -closed in X, since \mathbb{a} is $g\eta$ -irresolute. But $\mathbb{a}^{-1}(\mathbb{b}^{-1}(W)) = (\mathbb{b} \circ \mathbb{a})^{-1}(W)$, so that $(\mathbb{b} \circ \mathbb{a})^{-1}(W)$ is $g\eta$ -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is $g\eta$ -continuous.

(*iii*) Let W be a closed set in Z, since b is a η -continuous, $\mathbb{b}^{-1}(W)$ is η -closed set in Y. Again since a is η -irresolute and every η -closed set is $g\eta$ -closed. $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is $g\eta$ -closed in X. Hence b $\circ \mathbb{a}$ is $g\eta$ -continuous.

(*iv*) Let W be a closed set in Z, since b is a η -continuous, $\mathbb{b}^{-1}(R)$ is η -closed in Y, as every η -closed set is $g\eta$ -closed. $\mathbb{a}^{-1}(\mathbb{b}^{-1}(R)) = (\mathbb{b} \circ \mathbb{a})^{-1}(R)$ is $g\eta$ -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is $g\eta$ -continuous.

Theorem 4.3.5: Let $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ be a function where *X* and *Y* are topological spaces. Suppose $G\eta O(X, \tau)$ is closed under arbitrary union, then the following are equivalent.

(*i*) a is $g\eta$ -irresolute.

(*ii*) For each point $x \in X$ and each $g\eta$ -open set W in Y with $a(x) \in W$, there is a $g\eta$ -open set R in X such that $x \in R$ and $a(R) \subseteq W$.

Proof: (*i*) \Rightarrow (*ii*) Let *W* be a $g\eta$ -open set in *Y* and let $a(x) \in W$, where $x \in X$, Since a is $g\eta$ -irresolute, $a^{-1}(W)$ is a $g\eta$ -open set in *X*. Also $x \in a^{-1}(W)$. Take $R = a^{-1}(W)$. Then $x \in R$ and $a(R) \subseteq a(a^{-1}(W)) \subseteq W$.

 $(ii) \Rightarrow (i)$ Let W be a $g\eta$ -open set in Y and let $x \in a^{-1}(W)$. Then $a(x) \in W$ and there exist a $g\eta$ -open set R in X such that $x \in R$ and $a(R) \subseteq W$. Then $x \in R \subseteq a^{-1}(W)$. Hence $a^{-1}(W)$ is a $g\eta$ -neighbourhood of x and hence it is $g\eta$ -open. Hence a is $g\eta$ -irresolute.

Remark 4.3.6: The concept of rg-irresolute, gpr-irresolute, $g\alpha r$ -irresolute and $g\eta$ -irresolute are independent.

Example 4.3.7: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = e, a(f) = f, a(g) = g. Here a is rg-irresolute, gpr-irresolute, gar-irresolute. But a is not $g\eta$ -irresolute. Since for the $g\eta$ -closed set $\{f\}$ in $Y, a^{-1}(\{f\}) = \{f\}$ is rg-closed, gpr-closed, gar-closed but not $g\eta$ -closed in X.

Example 4.3.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{f, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = f, a(f) = g, a(g) = e. Here a is $g\eta$ -irresolute. But a is not rg-irresolute, gpr-irresolute, $g\alpha r$ -irresolute. Since for the rg-closed, gpr-closed, $g\alpha r$ -closed set $\{g\}$ in $Y, a^{-1}(\{e\}) = \{g\}$ is $g\eta$ -closed but not rg-closed, gpr-closed, $g\alpha r$ -closed in X.

4.4. $xg\eta$ -CONTINUITY

In this section, the notion of $xg\eta$ -continuous functions are studied in topological ordered spaces.

Definition 4.4.1: A function $a: (X, \tau, \leq) \to (Y, \sigma, \leq)$ is called $x\eta$ -continuous if $a^{-1}(W)$ is $x\eta$ -closed in (X, τ, \leq) for every closed subset W in (Y, σ, \leq) .

Definition 4.4.2: A function $a: (X, \tau, \leq) \to (Y, \sigma, \leq)$ is called $xg\eta$ -continuous if $a^{-1}(W)$ is $xg\eta$ -closed in (X, τ, \leq) for every closed subset W in (Y, σ, \leq) .

Theorem 4.4.3: Every *i*-continuous function is $ig\eta$ -continuous, but not conversely.

Proof: The proof follows from the fact that every *i*-closed set is $ig\eta$ -closed [3.5.2].

Example 4.4.4: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}, \le = \{(e, e), (f, f), (g, g), (e, g), (f, g)\}$. Define a map $\mathfrak{a}: (X, \tau, \le) \to (Y, \sigma, \le)$ by $\mathfrak{a}(e) = e, \mathfrak{a}(f) = f, \mathfrak{a}(g) = g$. This map is $ig\eta$ -continuous, but not *i*-continuous, since for the closed set is $W = \{g\}$ in $(Y, \sigma, \le), \mathfrak{a}^{-1}(W) = \{g\}$ is $ig\eta$ -closed but not *i*-closed in (X, τ, \le) .

Theorem 4.4.5: Every $i\alpha$ -continuous, $i\eta$ -continuous functions are $ig\eta$ -continuous, but not conversely.

Proof: The proof follows from the fact that every $i\alpha$ -closed, $i\eta$ -closed sets are $ig\eta$ -closed [3.5.2, 3.5.6].

Example 4.4.6: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}, \le \{(e, e), (f, f), (g, g), (e, f), (g, f)\}$. Define a map $a: (X, \tau, \le) \to (Y, \sigma, \le)$ by

a(e) = e, a(f) = g, a(g) = f. This map is $ig\eta$ -continuous, but not $i\alpha$ -continuous, $i\eta$ -continuous, since for the closed set $W = \{e, g\}$ in (Y, σ, \leq) , $a^{-1}(W) = \{e, f\}$ is $ig\eta$ -closed but not $i\alpha$ -closed, $i\eta$ -closed in (X, τ, \leq) .

Theorem 4.4.7: Every *ir*-continuous function is $ig\eta$ -continuous, but not conversely.

Proof: The proof follows from the fact that every *ir*-closed set is an $ig\eta$ -closed set [3.5.2].

Example 4.4.8: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \leq = \{(e, e), (f, f), (g, g), (e, f), (e, g), (f, g)\}$. Define a map $a: (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by a(e) = g, a(f) = f, a(g) = e. This map is $ig\eta$ -continuous, but not *ir*-continuous, since for the closed set $W = \{e\}$ in $(Y, \sigma, \leq), a^{-1}(W) = \{g\}$ is $ig\eta$ -closed but not *ir*-closed in (X, τ, \leq) .

Theorem 4.4.9: Every *d*-continuous, $d\alpha$ -continuous, dr-continuous, $d\eta$ -continuous functions are $dg\eta$ -continuous, but not conversely.

Proof: The proof follows from the fact that every *d*-closed, $d\alpha$ -closed, dr-closed, $d\eta$ -closed set is $dg\eta$ -closed [3.5.8, 3.5.10, 3.5.12].

Example 4.4.10: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}, \leq = \{(e, e), (f, f), (g, g), (e, f), (f, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathbb{A}(e) = g$, $\mathbb{A}(f) = f$, $\mathbb{A}(g) = e$. This map is $dg\eta$ -continuous, but not d-continuous, $d\alpha$ -continuous, dr-continuous, $d\eta$ -continuous, since for the closed set $W = \{f, g\}$ in $(Y, \sigma, \leq), \mathbb{A}^{-1}(W) = \{e, f\}$ is $dg\eta$ -closed but not d-closed, $d\alpha$ -closed, dr-closed in (X, τ, \leq) .

Theorem 4.4.11: Every *b*-continuous, $b\eta$ -continuous, $b\alpha$ -continuous, *br*-continuous functions are $bg\eta$ -continuous, but not conversely.

Proof: The proof follows from the fact that every *b*-closed, $b\eta$ -closed, $b\alpha$ -closed, *br*-closed sets are $bg\eta$ -closed [3.5.14, 3.5.16, 3.5.18].

Example 4.4.12: Let $X = Y = \{e, f, g\}, \quad \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\} \leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathfrak{a}: (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by $\mathfrak{a}(e) = f, \quad \mathfrak{a}(f) = e, \quad \mathfrak{a}(g) = g$. This map is $bg\eta$ -continuous, but not *b*-continuous, $b\eta$ -continuous, $b\alpha$ -continuous, br-continuous, since for the closed set $W = \{e\}$ in $(Y, \sigma, \leq), \quad \mathfrak{a}^{-1}(W) = \{f\}$ is $bg\eta$ -closed but not *b*-closed, $b\eta$ -closed, $b\eta$ -closed in (X, τ, \leq) .