CHAPTER-5

CONTRA $g\eta$ -CONTINUITY IN TOPOLOGICAL SPACES AND TOPOLOGICAL ORDERED SPACES

5.1. INDRODUCTION

In 1996, Dontchev [32] introduced a new notion of continuity called contra-continuity. In 2007, Caldas et.al [16] introduced and investigate the notion of contra *g*-continuity. Many authors including [2, 33, 36, 41, 45, 47, 48, 88, 89, 93] contributed to develop the concept of contra continuity in topological spaces.

In this chapter, contra $g\eta$ -continuous functions, contra $g\eta$ -irresolute functions in topological spaces and contra $g\eta$ -continuous functions in topological ordered spaces are defined and its relation with various contra-continuous functions are analyzed.

5.2. CONTRA $g\eta$ -CONTINUOUS FUNCTIONS

The notion of contra $g\eta$ -continuous functions are studied in this section.

Definition 5.2.1: A function $a: (X, \tau) \to (Y, \sigma)$ is called contra η -continuous if $a^{-1}(W)$ is an η -closed in (X, τ) for every open set W in (Y, σ) .

Definition 5.2.2: A function $a: (X, \tau) \to (Y, \sigma)$ is called contra $g\eta$ -continuous if $a^{-1}(W)$ is a $g\eta$ -closed (or $g\eta$ -open) in (X, τ) for every open (or closed) set W in (Y, σ) .

Clearly, $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ is contra $g\eta$ -continuos if and only if $\mathfrak{a}^{-1}(G)$ is $g\eta$ -open in X for every closed set G in Y.

Theorem 5.2.3: Let (X,τ) and (Y,σ) be a topological spaces. Then for a mapping a: $(X,\tau) \rightarrow (Y,\sigma)$. The following results are true.

(*i*) Every contra continuous function is contra $g\eta$ -continuous.

(*ii*) Every contra α -continuous function is contra $g\eta$ -continuous.

(*iii*) Every contra *r*-continuous function is contra $g\eta$ -continuous.

(*iv*) Every contra η -continuous function is contra $g\eta$ -continuous.

(v) Every contra g-continuous function is contra $g\eta$ -continuous.

(vi) Every contra g^* -continuous function is contra $g\eta$ -continuous.

(*vii*) Every contra αg -continuous function is contra $g\eta$ -continuous.

(*viii*) Every contra $g\alpha$ -continuous function is contra $g\eta$ -continuous.

Proof: (i) Let $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ be contra continuous and W be an open set in Y. Then $\mathfrak{a}^{-1}(W)$ is closed in X. Since every closed set is $g\eta$ -closed, $\mathfrak{a}^{-1}(W)$ is $g\eta$ -closed in X. Thus, inverse image of every open set is $g\eta$ -closed. Therefore \mathfrak{a} is contra $g\eta$ -continuous.

Proof of (ii) to (viii) are similar to (i).

Remark 5.2.4: Example 5.2.5 show that the converse of the theorem 5.2.3 need not be true.

Example 5.2.5: Let $X = Y = \{e, f, g, h\}$, $\tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, f, g\}\}$ and $\sigma = \{Y, \varphi, \{g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = f, a(f) = h, a(g) = e, a(h) = g. Then $a^{-1}(\{g\}) = \{h\}$. Therefore a is contra $g\eta$ -continuos, since the inverse image of every open set in Y is $g\eta$ -closed in X.

(*i*) Let $X = Y = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, f, g\}\}$ and $\sigma = \{Y, \varphi, \{g\}, \{e, f\}, \{e, f, g\}\}$. Define $\mathfrak{a}: (X, \tau) \to (Y, \sigma)$ as $\mathfrak{a}(e) = h, \mathfrak{a}(f) = f, \mathfrak{a}(g) = e, \mathfrak{a}(h) = g$. Then $\mathfrak{a}^{-1}(\{e, f\}) = \{f, g\}$ is $g\eta$ -closed but not closed, r-closed, α -closed, g-closed, g^* -closed, αg -closed, $g\alpha$ -closed in X. Here the set $\{e, f\}$ is open in Y. Therefore \mathfrak{a} is contra $g\eta$ -continuous but not contra continuous, contra r-continuous, contra α -continuous, contra $g\alpha$ -continuous.

Contra gn-Continuity in Topological Spaces and Topological Ordered Spaces

(*ii*) Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{f, g\}\}$. Define $a: (X, \tau) \rightarrow (Y, \sigma)$ as a(e) = g, a(f) = f, a(g) = e. Then $a^{-1}(\{f, g\}) = \{e, f\}$ is $g\eta$ -closed but not η -closed in X. Here the set $\{f, g\}$ is open in Y. Therefore a is contra $g\eta$ -continuous but not contra η -continuous.

Remark 5.2.6: contra rg-continuous, contra gpr-continuous, contra $g\alpha r$ -continuous and contra $g\eta$ -continuous are not dependent on each other.

Example 5.2.7: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{g\}, \{e, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = f, a(f) = g, a(g) = e. Here a is contra $g\eta$ -continuous. Then $a^{-1}(\{g\}) = \{f\}$ is $g\eta$ -closed but not rg-closed, gpr-closed in X. Therefore a is not contra rg-continuous, contra gpr-continuous, contra gar-continuous.

Example 5.2.8: Let $X = Y = \{e, f, g\}, \quad \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = g, a(f) = e, a(g) = f. Here a is contra rg-continuous, contra gpr-continuous, contra gar-continuous. Then $a^{-1}(\{f, g\}) = \{e, g\}$ is rg-closed, gpr-closed, gar-closed but not $g\eta$ -closed in X. Therefore a is not contra $g\eta$ -continuous.

Theorem 5.2.9: Suppose that $G\eta C(X, \tau)$ is closed under arbitrary intersection. Then the following are equivalent for a function $a: X \to Y$:

(*i*) a is contra $g\eta$ -continuous.

(*ii*) For each $x \in X$ and each closed set A in Y containing a(x) there exists a $g\eta$ -open set B in X containing x such that $a(B) \subseteq A$.

(*iii*) For each $x \in X$ and each open set F of Y not containing a(x) there exists a $g\eta$ -closed set B in X not containing x such that $a^{-1}(F) \subseteq B$.

(*iv*) $a(g\eta cl(R) \subseteq ker(a(R))$ for every subset R of X.

(v) $g\eta cl(a^{-1}(S)) \subseteq a^{-1}(ker(S))$ for each subset S of Y.

Proof: (*i*) \Rightarrow (*ii*) Let *A* be a closed set in *Y* containing a(x) then $x \in a^{-1}(A)$. By (*i*), $a^{-1}(A)$ is $g\eta$ -open set in *X* containing *x*. Let $B = a^{-1}(A)$ then $a(B) = a(a^{-1}(A)) \subseteq A$.

 $(ii) \Rightarrow (i)$ Let *H* be a closed set in *Y* containing $\mathbb{a}(x)$ then $x \in \mathbb{a}^{-1}(H)$. From (ii), there exists a $g\eta$ -open set F_x in *X* containing *x* such that $\mathbb{a}(F_x) \subseteq H$ which implies $F_x \subseteq \mathbb{a}^{-1}(H)$. Hence $\mathbb{a}^{-1}(H) = \bigcup \{U_x : x \in \mathbb{a}^{-1}(H)\}$ which is $g\eta$ -open. Hence $\mathbb{a}^{-1}(H)$ is a $g\eta$ -open set in *X*.

 $(ii) \Rightarrow (iii)$ Let F be an open set in Y not containing a(x). Then Y - F is a closed set in Y containing a(x). From (ii), there exists a $g\eta$ -open set Z in X containing x such that $a(Z) \subseteq Y - F$. This implies $Z \subseteq a^{-1}(Y - F) = X - a^{-1}(F)$. Hence $a^{-1}(F) \subseteq$ X - Z. Set D = X - Z, then D is a $g\eta$ -closed set not containing x in X such that $a^{-1}(F) \subseteq D$.

 $(iii) \Rightarrow (ii)$ Let *H* be a closed set in *Y* containing a(x). Then *Y* – *H* is an open set in *Y* not containing a(x). From (*iii*), there exists a $g\eta$ -closed set *O* in *X* not containing *x* such that $a^{-1}(Y - H) \subseteq O$. This implies $X - O \subseteq a^{-1}(H)$ that is $a(X - O) \subseteq H$. Set C = X - O then *C* is a $g\eta$ -open set containing *x* in *X* such that $a(C) \subseteq H$.

(*i*) ⇒ (*iv*) Let *R* be any subset of *X*. Suppose $y \notin ker(\mathfrak{a}(R))$. Then by lemma [93] (3.5), there exists a closed set *H* in *Y* not containing *y* such that $\mathfrak{a}(R) \cap H = \varphi$. Hence we have $R \cap \mathfrak{a}^{-1}(H) = \varphi$ and $g\eta cl(R) \cap \mathfrak{a}^{-1}(H) = \varphi$ which implies $\mathfrak{a}(g\eta cl(R)) \cap H = \varphi$ and hence $y \notin g\eta cl(R)$. Therefore $\mathfrak{a}(g\eta cl(R)) \subseteq ker(\mathfrak{a}(R))$.

 $(iv) \Rightarrow (v) \text{ Let } S \subseteq \text{Ythen } \mathbb{a}^{-1}(S)) \subseteq X.\text{By } (iv), g\eta cl(\mathbb{a}^{-1}(S))) \subseteq ker(\mathbb{a}(\mathbb{a}^{-1}(S)))$ $\subseteq ker(S). \text{ Thus } g\eta cl(\mathbb{a}^{-1}(S)) \subseteq (\mathbb{a}^{-1}(ker(S))).$

 $(v) \Rightarrow (i)$ Let W be any open subset of Y. Then by (v) and lemma [93] (3.5), $g\eta cl(a^{-1}(W)) \subseteq a^{-1}(ker(W)) = a^{-1}(W) \text{and} g\eta cl(a^{-1}(W)) = a^{-1}(W)$. Therefore $a^{-1}(W)$ is a $g\eta$ -closed set in X. **Remark 5.2.10:** The composition of two contra $g\eta$ -continuous functions need not be contra $g\eta$ -continuous as seen from the following example.

Example 5.2.11: Let $X = Y = Z = \{e, f, g, h\}, \tau = \{X, \varphi, \{e\}, \{e, f\}, \{e, f, g\}\}, \sigma = \{Y, \varphi, \{g\}, \{e, f\}, \{e, f, g\}\} \text{ and } \mu = \{Z, \varphi, \{e\}, \{f, g\}, \{e, f, g\}\}.$ Define $a: (X, \tau) \rightarrow (Y, \sigma)$ be defined as a(e) = f, a(f) = h, a(g) = g, a(h) = e and $b: (Y, \sigma) \rightarrow (Z, \mu)$ be defined as b(e) = e, b(f) = g, b(g) = h, b(h) = f. Then the function a and b are contra $g\eta$ -continuous but their composition $b \circ a: (X, \tau) \rightarrow (Z, \mu) = \{e, f\}$ is not $g\eta$ -closed in (X, τ) .

Theorem 5.2.12: Let $a: (X, \tau) \to (Y, \sigma)$ and $b: (Y, \sigma) \to (Z, \mu)$ be functions. Then the following properties are hold:

(*i*) If a is $g\eta$ -irresolute and b is contra $g\eta$ -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

(*ii*) If a is contra $g\eta$ -continuous and b is continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

(*iii*) If a is contra η -continuous and b is continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

(*iv*) If a is contra $g\eta$ -continuous and b is contra continuous then $b \circ a: (X, \tau) \rightarrow (Z, \mu)$ is $g\eta$ -continuous.

(v) If a is $g\eta$ -continuous and b is contra continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

(*vi*) If a is continuous and b is contra continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

(*vii*) If a is contra continuous and b is continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

Contra gn-Continuity in Topological Spaces and Topological Ordered Spaces

(*viii*) If a is η -irresolute and b is contra η -continuous then $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

Proof: (i) Let Q be any open set in Z, since \mathbb{b} is contra $g\eta$ -continuous, $\mathbb{b}^{-1}(Q)$ is a $g\eta$ -closed set in Y and since \mathbb{a} is $g\eta$ -irresolute, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q))$ is $g\eta$ -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous.

(*ii*) Let Q be any open set in Z, since \mathbb{b} is continuous, $\mathbb{b}^{-1}(Q)$ is open in Y and since a is contra $g\eta$ -continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q))$ is $g\eta$ -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous.

(*iii*) Let Q be any open set in Z, since \mathbb{b} is continuous, $\mathbb{b}^{-1}(Q)$ is open in Y and since a is contra η -continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q))$ is η -closed in X, as every η -closed is $g\eta$ closed. Then $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q))$ is $g\eta$ -closed in X. Therefore $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous.

(*iv*) Let Q be any closed set in Z, since \mathbb{b} is contra continuous, $\mathbb{b}^{-1}(Q)$ is an open set in Y and since \mathbb{a} is contra $g\eta$ -continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q))$ is $g\eta$ -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous.

(v) Let Q be any open set in Z, since \mathbb{b} is contra continuous function, $\mathbb{b}^{-1}(Q)$ is a closed set in Y and since a is contra $g\eta$ -continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q))$ is $g\eta$ -closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous.

(vi) Let Q be a open set in Z. since b is a contra continuous function, $\mathbb{b}^{-1}(Q)$ is closed in Y and since a is continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q)) = (\mathbb{b} \circ \mathbb{a})^{-1}(Q)$ is closed in X. As every closed set is $g\eta$ -closed set, $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous.

(*vii*) Let Q be a open set in Z. since \mathbb{b} is a continuous function, $\mathbb{b}^{-1}(Q)$ is open in Y. Again since \mathbb{a} is contra continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q)) = (\mathbb{b} \circ \mathbb{a})^{-1}(Q)$ is closed in X. As every closed set is $g\eta$ -closed set, $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous. (*viii*) Let Q be a open set in Z, since \mathbb{b} is a contra η -continuous function, $\mathbb{b}^{-1}(Q)$ is η -closed which is $g\eta$ -closed in Y. Again since \mathbb{a} is η -irresolute, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q)) = (\mathbb{b} \circ \mathbb{a})^{-1}(Q)$ is η -closed in X. As every η -closed set is $g\eta$ -closed set, $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous.

Definition 5.2.13: A mapping $a: (X, \tau) \to (Y, \sigma)$ is said to be strongly $g\eta$ -continuous if the inverse image of every $g\eta$ -open set in *Y* is open in *X*.

Theorem 5.2.14: Let $a: (X, \tau) \to (Y, \sigma)$ is strongly $g\eta$ -continuous and $b: (Y, \sigma) \to (Z, \mu)$ is contra continuous, then their composition $b \circ a: (X, \tau) \to (Z, \mu)$ is contra $g\eta$ -continuous.

Proof: Let Q be any closed set in Z, since \mathbb{b} is contra continuous function, then $\mathbb{b}^{-1}(Q)$ is an open set in Y and since \mathbb{a} is strongly $g\eta$ -continuous, then $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q))$ is $g\eta$ -open in X. Hence $\mathbb{b} \circ \mathbb{a}$ is contra $g\eta$ -continuous.

Theorem 5.2.15: If a map $a: (X, \tau) \to (Y, \sigma)$ is strongly $g\eta$ -continuous, then it is $g\eta$ -continuous.

Proof: Let Q be any closed set in Y. Then Q is $g\eta$ -closed in Y. The inverse image $a^{-1}(Q)$ is closed in X implies that it is $g\eta$ -closed in X. So a is $g\eta$ -continuous.

Theorem 5.2.16: If $a: (X, \tau) \to (Y, \sigma)$ and $b: (Y, \sigma) \to (Z, \mu)$ are strongly $g\eta$ -continuous, then their composition $b \circ a: (X, \tau) \to (Z, \mu)$ is also strongly continuous.

Proof: Let Q be a $g\eta$ -open set in Z. Since \mathbb{b} is strongly $g\eta$ -continuous, $\mathbb{b}^{-1}(Q)$ is open in Y. Since $\mathbb{b}^{-1}(Q)$ is open, it is $g\eta$ -open in Y. As a is also strongly $g\eta$ -continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q)) = (\mathbb{b} \circ \mathbb{a})^{-1}(Q)$ is open in X and so \mathbb{b} is strongly continuous.

Definition 5.2.17: A mapping $a: (X, \tau) \to (Y, \sigma)$ is said to be perfectly $g\eta$ -continuous if the inverse image of every $g\eta$ -open set in *Y* is open and closed in *X*.

Theorem 5.2.18: Let $a: (X, \tau) \to (Y, \sigma)$ is perfectly $g\eta$ -continuous and $b: (Y, \sigma) \to (Z, \mu)$ is contra $g\eta$ -continuous, then their composition $b \circ a: (X, \tau) \to (Z, \mu)$ is perfectly $g\eta$ -continuous.

Proof: Let Q be any open set in Z. By theorem (3.3.2) every open set is $g\eta$ -open set which implies Q is $g\eta$ -open in Z and since \mathbb{b} is contra $g\eta$ -continuous function, $\mathbb{b}^{-1}(Q)$ is a $g\eta$ -closed set in Y and since \mathbb{a} is perfectly $g\eta$ -continuous, $\mathbb{a}^{-1}(\mathbb{b}^{-1}(Q))$ is both open and closed in X, which implies $(\mathbb{b} \circ \mathbb{a})^{-1}(Q)$ is both open and closed in X. Hence $\mathbb{b} \circ \mathbb{a}$ perfectly $g\eta$ -continuous.

Theorem 5.2.19: If $a: (X, \tau) \to (Y, \sigma)$ is perfectly $g\eta$ -continuous then it is strongly $g\eta$ -continuous.

Proof: Since $a: (X, \tau) \to (Y, \sigma)$ is perfectly $g\eta$ -continuous, $a^{-1}(Q)$ is both open and closed in *X*, for every $g\eta$ -open set *Y* in *X*. Therefore a is strongly $g\eta$ -continuous.

Theorem 5.2.20: If $a: (X, \tau) \to (Y, \sigma)$ is strongly continuous then it is perfectly $g\eta$ -continuous.

Proof: Since $a: (X, \tau) \to (Y, \sigma)$ is strongly continuous, $a^{-1}(Q)$ is both open and closed in X, for every $g\eta$ -open set Q in Y. Therefore a is perfectly $g\eta$ -continuous.

Theorem 5.2.21: Suppose that $G\eta C(X, \tau)$ is closed under arbitrary intersections. If a: $(X, \tau) \rightarrow (Y, \sigma)$ is contra $g\eta$ -continuous and Y is regular then a is $g\eta$ -continuous. **Proof:** Let $x \in X$ and W be an open set of Y containing a(x). Since Y is regular, there

exists an open set Q in Y containing $\mathfrak{a}(x)$ such that $cl(Q) \subseteq W$. Since \mathfrak{a} is contra $g\eta$ -continuous, there exists an $g\eta$ -open set C in X containing x such that $\mathfrak{a}(C) \subseteq cl(Q) \subseteq W$. Hence \mathfrak{a} is $g\eta$ -continuous.

Theorem 5.2.22: If a is $g\eta$ -continuous and if Y is locally indiscrete, then a is contra $g\eta$ -continuous.

Proof: Let Q be an open set of Y. Since Y is locally discrete, Q is closed. Since, a is $g\eta$ -continuous, $a^{-1}(Q)$ is $g\eta$ -closed in X. Therefore, a is contra $g\eta$ -continuous.

Theorem 5.2.23: If $a: (X, \tau) \to (Y, \sigma)$ is η -continuous and if Y is locally indiscrete, then a is contra $g\eta$ -continuous.

Proof: Let Q be an open set of Y. Since Y is locally discrete, Q is closed. Since, a is η -continuous, $a^{-1}(Q)$ is η -closed in X. As every η -closed set is $g\eta$ -closed set, a is contra $g\eta$ -continuous.

Theorem 5.2.24: If a function $a: (X, \tau) \to (Y, \sigma)$ is continuous and X is locally indiscrete space, then a is contra $g\eta$ -continuous.

Proof: Let Q be an open set of Y. Since a is continuous, $a^{-1}(Q)$ is open in X. And since X is locally discrete, $a^{-1}(Q)$ is closed in X. Every closed set is $g\eta$ -closed. $a^{-1}(Q)$ is $g\eta$ -closed in X. Therefore, a is contra $g\eta$ -continuous.

Definition 5.2.25: A function $a: (X, \tau) \to (Y, \sigma)$ is called almost contra $g\eta$ -continuous if $a^{-1}(P)$ is a $g\eta$ -closed set in X for every regular-open set P in Y.

Theorem 5.2.26: Every contra $g\eta$ -continuous function is almost contra $g\eta$ -continuous.

Proof: Let *P* be a regular-open set in *Y*. Since every regular-open set is open which implies *P* is open in *Y*. Since $a: (X, \tau) \rightarrow (Y, \sigma)$ is contra $g\eta$ -continuous then $a^{-1}(P)$ is $g\eta$ -closed in *X*, *a* is almost contra $g\eta$ -continuous.

Remark 5.2.27: The converse of the above theorem need not be true as may be seen by the following example.

Example 5.2.28: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{g\}, \{e, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}$. Define $a: (X, \tau) \to (Y, \sigma)$ as a(e) = f, a(f) = g, a(g) = e. Clearly, a is almost contra $g\eta$ -continuous. Since $a^{-1}(\{e, f\}) = \{e, g\}$ is not $g\eta$ -closed in X, a is not contra $g\eta$ -continuous.

Theorem 5.2.29: The following are equivalent for a function $a: (X, \tau) \to (Y, \sigma)$ (*i*)*a* is almost contra $g\eta$ -continuous. (*ii*) $a^{-1}(E)$ is $g\eta$ -open in X for every regular-closed set E in Y.

(*iii*) For each $x \in X$ and each regular-open set E of Y containing a(x), there exists a $g\eta$ -open set C of X containing x such that $a(C) \subseteq E$.

(*iv*) For each $x \in X$ and each regular-open set P of Y non-containing a(x), there exists a $g\eta$ -closed set K of X non-containing x such that $a^{-1}(P) \subseteq K$.

Proof: (*i*) \Rightarrow (*ii*) Let *E* be any regular-closed set of *Y*. Then (Y - E) is regular-open and therefore $a^{-1}(Y - E) = X - a^{-1}(E) \in G\eta C(X, \tau)$. Hence, $a^{-1}(E) \in G\eta O(X, \tau)$.

 $(ii) \Rightarrow (iii)$ Let $x \in X$ and let *E* be any regular-closed set of *Y* containing a(x). Then $a^{-1}(E) \in G\eta O(X, \tau)$ and $x \in a^{-1}(E)$. Taking $C = a^{-1}(E)$ we get $a(C) \subseteq E$.

 $(iii) \Rightarrow (ii)$ Let *E* be any regular-closed set of *Y* and $x \in a^{-1}(E)$. Then there exists a $g\eta$ -open set C_x of *X* containing *x* such that $a(C_x) \subset E$ and so $C_x \subset a^{-1}(E)$. Also, we have $a^{-1}(E) = \bigcup \{C_x : x \in a^{-1}(E)\}$. Hence, $a^{-1}(E)$ is $G\eta O(X, \tau)$.

(*ii*) ⇒ (*i*) Let V be any regular closed set of Y. Then Y - V is regular closed in Y. By (*ii*), $a^{-1}(Y - V) = X - a^{-1}(V)\epsilon G\eta O(X, \tau)$. This implies $a^{-1}(V)\epsilon G\eta C(X, \tau)$.

(*iii*) \Leftrightarrow (*iv*) Let *P* be any regular-open subset of *Y* not containing a(x). Then (*Y* - *P*) is a regular-closed set in *Y* containing a(x). Hence by (*iii*), there exists a $g\eta$ -open set *C* of *X* containing *x* such that $a(C) \subset (Y - P)$. Hence $C \subset$ $a^{-1}(Y - P) \subset X - a^{-1}(P)$ and so $a^{-1}(P) \subset (X - C)$. Now, since $C \in G\eta O(X, \tau)$, (*X* - *C*) is a $g\eta$ -closed set of *X* not containing *x*.

 $(iv) \Leftrightarrow (iii)$ Let *E* be a regular-closed set in *Y* containing $\mathfrak{a}(x)$. Then (Y - E) is a regular-open set in *Y* not containing $\mathfrak{a}(x)$. By (iv), there exists a $g\eta$ -open set *K* in *X* not containing *x* such that $\mathfrak{a}^{-1}(Y - E) \subset K$. That is $X - \mathfrak{a}^{-1}(E) \subset K$ implies $X - K \subset \mathfrak{a}^{-1}(E)$ and hence $\mathfrak{a}(X - K) \subset E$. Take C = X - K. Then *C* is a $g\eta$ -open set in *X* containing *x* such that $\mathfrak{a}(C) \subset E$.

Definition 5.2.30: A topological space X is said to be locally $g\eta$ -indiscrete if every $g\eta$ -open set of X is closed in X.

Theorem 5.2.31: A contra $g\eta$ -continuous function $a: (X, \tau) \to (Y, \sigma)$ is continuous when *X* is locally $g\eta$ -indiscrete.

Proof: Let Q be an open set in Y. Since, a is contra $g\eta$ -continuous then $a^{-1}(Q)$ is $g\eta$ -closed in X. Since, X is locally $g\eta$ -indiscrete which implies $a^{-1}(Q)$ is open in X. Therefore, a is continuous.

Theorem 5.2.32: Let $a: (X, \tau) \to (Y, \sigma)$ is $g\eta$ -irresolute map with Y as locally $g\eta$ -indiscrete space and $b: (Y, \sigma) \to (Z, \mu)$ is contra $g\eta$ -continuous, then $b \circ a$ is $g\eta$ -continuous.

Proof: Let A be a closed set in Z. Since, **b** is contra $g\eta$ -continuous, $b^{-1}(A)$ is $g\eta$ -open in Y. As Y is locally $g\eta$ -indiscrete, $b^{-1}(A)$ is closed in Y. Hence $b^{-1}(A)$ is $g\eta$ -closed in Y. Since, **a** is $g\eta$ -irresolute, $a^{-1}(b^{-1}(A)) = (b \circ a)^{-1}(A)$ is $g\eta$ -closed in X. Therefore $b \circ a$ is $g\eta$ -continuous.

Definition 5.2.33: The $g\eta$ -frontier of a subset R of a space X, denoted by $g\eta$ -Fr(R), is defined as $g\eta$ -Fr $(R) = g\eta cl(R) \cap g\eta cl(X - R) = g\eta cl(R) - g\eta int(R)$.

Theorem 5.2.34: The set of all points x of X at which $a: (X, \tau) \to (Y, \sigma)$ is not contra $g\eta$ -continuous is identical with the union of $g\eta$ -frontier of the inverse image of closed sets of Y containing a(x).

Proof: Necessity: Let a be not contra $g\eta$ -continuous at a point x of X. Then by theorem 5.2.9 (ii), there exists a closed set H of Y containing $\mathfrak{a}(x)$ such that $\mathfrak{a}(C) \cap (Y - H) \neq \varphi$, for every $g\eta$ -open set C of X containing x, which implies $C \cap \mathfrak{a}^{-1}(Y - H) \neq \varphi$. Therefore, $x \in g\eta cl(\mathfrak{a}^{-1}(Y - H)) = g\eta cl(X - \mathfrak{a}^{-1}(H))$. Again, since $\mathfrak{a}^{-1}(H)$, we get $x \in g\eta cl(\mathfrak{a}^{-1}(H))$ and so $x \in g\eta Fr(\mathfrak{a}^{-1}(H))$.

Sufficiency: Suppose that $x \in g\eta Fr(a^{-1}(H))$ for some closed set H of Y containing a(x) and a is contra $g\eta$ -continuous at x. Then there exists a $g\eta$ -open set C of X containing x, such that $a(C) \subset H$. Therefore $x \in C \subset a^{-1}(H)$ and hence

 $x \in g\eta int(a^{-1}(H)) \subset X - g\eta Fr(a^{-1}(H))$ which is a contradiction. So a is not contra $g\eta$ -continuous at x.

Definition 5.2.35: A topological space (X, τ) is said to be $g\eta$ -normal if each pair of non-empty disjoint closed sets can be separated by disjoint $g\eta$ -open sets.

Theorem 5.2.36: If $a: (X, \tau) \to (Y, \sigma)$ is contra $g\eta$ -continuous, closed and injection and *Y* is ultranormal, then *X* is $g\eta$ -normal.

Proof: Let V_1 and V_2 be disjoint closed subsets of X. Since \mathfrak{a} is $g\eta$ -closed injection, $\mathfrak{a}(V_1)$ and $\mathfrak{a}(V_2)$ are disjoint closed subsets of Y. Again, since Y is ultranormal $\mathfrak{a}(V_1)$ and $\mathfrak{a}(V_2)$ are separated by disjoint clopen sets U and V respectively. Therefore, $\mathfrak{a}(V_1) \subseteq U$ and $\mathfrak{a}(V_2) \subseteq V$ that is $V_1 \subseteq \mathfrak{a}^{-1}(U)$ and $V_2 \subseteq \mathfrak{a}^{-1}(V)$, where $\mathfrak{a}^{-1}(U)$ and $\mathfrak{a}^{-1}(V)$ are disjoint $g\eta$ -open sets of X (since \mathfrak{a} is contra $g\eta$ -continuous). This shows that X is $g\eta$ -normal.

Definition 5.2.37: A topological space (X,τ) is called $g\eta$ -connected if and only if the only subsets of X that are both $g\eta$ -open and $g\eta$ -closed in X are the empty set and X itself.

Theorem 5.2.38: If $a: (X, \tau) \to (Y, \sigma)$ is contra $g\eta$ -continuous surjection, where X is $g\eta$ -connected and Y is any topological space, then Y is not a discrete space.

Proof: Suppose that Y is a discrete space. Let A be a proper nonempty open and closed subset of Y. Then $a^{-1}(A)$ is a proper nonempty $g\eta$ -open and $g\eta$ -closed subset of X, which contradicts to the fact that X is $g\eta$ -connected.

Theorem 5.2.39: If $a: (X, \tau) \to (Y, \sigma)$ is contra $g\eta$ -continuous surjection and X is $g\eta$ -connected, then Y is connected.

Proof: Suppose that *Y* is not connected. Then there exist non empty disjoint open sets *U* and *V* such that $Y = U \cup V$. So *U* and *V* are clopen sets of *Y*. Since a is contra $g\eta$ -continuous functions, $a^{-1}(U)$ and $a^{-1}(V)$ are $g\eta$ -open sets of *X*. Also $a^{-1}(U)$ and

 $a^{-1}(V)$ are non empty disjoint $g\eta$ -open sets of X and $X = a^{-1}(U) \cup a^{-1}(V)$, which contradicts to the fact that X is $g\eta$ -connected. Hence Y is connected.

5.3. CONTRA $g\eta$ -IRRESOLUTE MAPPINGS

In this section, the notion of contra $g\eta$ -irresolute functions are studied.

Definition 5.3.1: A function $a: (X, \tau) \to (Y, \sigma)$ is called contra $g\eta$ -irresolute if $a^{-1}(V)$ is $g\eta$ -closed in (X, τ) for every $g\eta$ -open set V of (Y, σ) .

Example 5.3.2: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{f, g\}\}$. Define a: $(X, \tau) \rightarrow (Y, \sigma)$ as a(e) = e, a(f) = g, a(g) = f. Then $a^{-1}(\{f\}) = \{g\}, a^{-1}(\{g\}) = \{f\}, a^{-1}(\{f, g\}) = \{f, g\}$. Then a is contra $g\eta$ -irresolute. Since the inverse image of every $g\eta$ -open set in Y is $g\eta$ -closed in X.

Proposition 5.3.3: Let $a: (X, \tau) \to (Y, \sigma)$ be a function. Then the following statements are equivalent.

(*i*) a is contra $g\eta$ -irresolute functions.

(*ii*) The inverse image of every $g\eta$ -closed set in Y is $g\eta$ -open in X.

Theorem 5.3.4: Let $a: (X, \tau) \to (Y, \sigma)$ and $b: (Y, \sigma) \to (Z, \mu)$ be two functions. Then the following statements hold:

(*i*) If a is $g\eta$ -irresolute and b is contra $g\eta$ -irresolute function then $b \circ a: (X, \tau) \rightarrow (Z, \mu)$ is a contra $g\eta$ -irresolute functions.

(*ii*) If a is contra $g\eta$ -irresolute and b is $g\eta$ -irresolute function then $b \circ a: (X, \tau) \rightarrow (Z, \mu)$ is a contra $g\eta$ -irresolute functions.

Proof: (*i*) Let *C* be any $g\eta$ -open set in (Z, μ) . Since **b** is contra $g\eta$ -irresolute, $b^{-1}(C)$ is $g\eta$ -closed in *Y*. Since **a** is $g\eta$ -irresolute, $(b \circ a)^{-1}(C) = a^{-1}(b^{-1}(C))$ is $g\eta$ -closed in *X*. Hence **b** \circ **a** is contra $g\eta$ -irresolute functions.

(*ii*) Let C be any $g\eta$ -open set in (Z, μ) . Since b is $g\eta$ -irresolute, $\mathbb{b}^{-1}(C)$ is $g\eta$ -open in Y. Since a is contra $g\eta$ -irresolute, $(\mathbb{b} \circ a)^{-1}(C) = a^{-1}(\mathbb{b}^{-1}(C))$ is $g\eta$ -closed in X. Hence $\mathbb{b} \circ a$ is contra $g\eta$ -irresolute functions.

Theorem 5.3.5: Every contra $g\eta$ -irresolute function is contra $g\eta$ -continuous.

Proof: Let $a: (X, \tau) \to (Y, \sigma)$ be contra $g\eta$ -irresolute and R be a open set in Y. Every open set is $g\eta$ -open, R is also $g\eta$ -open in Y. since a is a contra $g\eta$ -irresolute function, $a^{-1}(R)$ is $g\eta$ -closed in X. Thus a is contra $g\eta$ -continuous.

5.4. CONTRA $xg\eta$ -CONTINUITY

Definition 5.4.1: A function $a: (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is called

(i) x contra-continuous if $a^{-1}(W)$ is x-closed in (X, τ, \leq) for every open set W in (Y, σ, \leq) .

(*ii*) *x* contra α -continuous if $a^{-1}(W)$ is $x\alpha$ -closed in (X, τ, \leq) for every open set *W* in (Y, σ, \leq) .

(*iii*) x contra r-continuous if $a^{-1}(W)$ is xr-closed in (X, τ, \leq) for every open set W in (Y, σ, \leq) .

(*iv*) x contra *g*-continuous if $a^{-1}(W)$ is x*g*-closed in (X, τ, \leq) for every open set W in (Y, σ, \leq) .

(v) x contra g^* -continuous if $a^{-1}(W)$ is g^* -closed in (X, τ, \leq) for every open set W in (Y, σ, \leq) .

(vi) x contra η -continuous if $a^{-1}(W)$ is $x\eta$ -closed in (X, τ, \leq) for every open set W in (Y, σ, \leq) .

(vii) x contra $g\eta$ -continuous if $a^{-1}(W)$ is $xg\eta$ -closed in (X, τ, \leq) for every open set W in (Y, σ, \leq) .

Theorem 5.4.2: Every contra *i*-continuous, contra *i* α -continuous, contra *ir*-continuous, contra *i* η -continuous functions are contra *ig* η -continuous, but not conversely.

Proof: Every contra continuous, contra α -continuous, contra r-continuous, contra η -continuous functions are contra $g\eta$ -continuous [5.2.3]. Then every contra *i*-continuous, contra *i* α -continuous, contra *i*r-continuous, contra *i* η -continuous functions are contra *i* $g\eta$ -continuous.

Example5.4.3: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f\}, \{e, f\}\}, \leq = \{(e, e), (f, f), (g, g), (e, f), (e, g)\}$. Define a map $a: (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by a(e) = g, a(f) = e, a(g) = f. This map is contra $ig\eta$ -continuous, but not contra *i*-continuous, contra *i* α -continuous, contra *i*r-continuous, contra *i* η -continuous, since for the open set $W = \{f\}$ in $(Y, \sigma, \leq), a^{-1}(W) = \{g\}$ is $ig\eta$ -closed but not *i*-closed, *i* α -closed, *i*r-closed in (X, τ, \leq) .

Theorem 5.4.4: Every contra *ig*-continuous, contra *ig**-continuous functions are contra *ig* η -continuous, but not conversely.

Proof: Every contra *g*-continuous, contra g^* -continuous functions are contra $g\eta$ -continuous [5.2.3]. Then every contra *ig*-continuous, contra *ig**-continuous functions are contra *ig* η -continuous.

Example5.4.5: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}\{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}, \{f, g\}\}, \leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathfrak{a}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathfrak{a}(e) = f, \mathfrak{a}(f) = e, \mathfrak{a}(g) = g$. This map is contra $ig\eta$ -continuous, but not contra ig-continuous, contra ig^* -continuous, since for the open set $W = \{f, g\}$ in $(Y, \sigma, \leq), \mathfrak{a}^{-1}(W) = \{e, g\}$ is $ig\eta$ -closed but not ig-closed, ig^* -closed in (X, τ, \leq) .

Theorem 5.4.6: Every contra $d\alpha$ -continuous, contra dr-continuous, contra dg^* -continuous, contra $d\eta$ -continuous functions are contra $dg\eta$ -continuous, but not conversely.

Proof: Every contra α -continuous, contra r-continuous, contra g^* -continuous, contra η -continuous functions are contra $g\eta$ -continuous [5.2.3]. Then every contra $d\alpha$ -continuous, contra dr-continuous, contra dg^* -continuous, contra $d\eta$ -continuous functions are contra $dg\eta$ -continuous.

Example 5.4.7: Let X be a topological space $\{e, f, g\}$ and X = Y. Let $\tau = \{X, \varphi, \{e\}, \{f, g\}\}$ and $\sigma = \{Y, \varphi, \{f, g\}\}, \leq = \{(e, e), (f, f), (g, g), (e, f), (e, g)\}$. The map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ is defined as $\mathbb{A}(e) = f$, $\mathbb{A}(f) = e$, $\mathbb{A}(g) = g$. This map is contra $dg\eta$ -continuous, but not contra $d\alpha$ -continuous, contra dr-continuous, contra dg^* -continuous, contra $d\eta$ -continuous, since for the open set $W = \{f, g\}$ in (Y, σ, \leq) , $\mathbb{A}^{-1}(W) = \{e, g\}$ is $dg\eta$ -closed but not $d\alpha$ -closed, dr-closed, dg^* -closed $d\eta$ -closed in (X, τ, \leq) .

Theorem 5.4.8: Every contra *d*-continuous, contra *dg*-continuous functions are contra $dg\eta$ -continuous, but not conversely.

Proof: Every contra continuous, contra *g*-continuous functions are contra $g\eta$ -continuous [5.2.3]. Then every contra *d*-continuous, contra *dg*-continuous functions are contra $dg\eta$ -continuous.

Example 5.4.9: Let $X = Y = \{e, f, g\}, \tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{f\}\}\}, \le = \{(e, e), (f, f), (g, g), (e, f), (g, f)\}$. Define a map $\mathfrak{a}: (X, \tau, \le) \to (Y, \sigma, \le)$ by $\mathfrak{a}(e) = g, \mathfrak{a}(f) = f, \mathfrak{a}(g) = e$. This map is contra $dg\eta$ -continuous, but not contra d-continuous, contra dg-continuous, since for the open set $W = \{e\}$ in $(Y, \sigma, \le), \mathfrak{a}^{-1}(W) = \{g\}$ is $dg\eta$ -closed but not d-closed, dg-closed in (X, τ, \le) .

Theorem 5.4.10: Every contra *b*-continuous, contra *bg*-continuous, contra $b\alpha$ -continuous, contra *br*-continuous, contra *bg**-continuous functions are contra *bg* η -continuous, but not conversely.

Proof: Every contra continuous, contra *g*-continuous, contra α -continuous, contra *r*-continuous, contra *g**-continuous functions are contra *g* η -continuous [5.2.3]. Then every contra *b*-continuous, contra *bg*-continuous, contra *ba*-continuous, contra *bg*-continuous, contra *bg*-continuous, contra *bg*-continuous.

Example 5.4.11: Let $X = Y = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}\}$ and $\sigma = \{Y, \varphi, \{e\}\}$, $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{A}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathbb{A}(e) = f$, $\mathbb{A}(f) = e$, $\mathbb{A}(g) = g$. This map is contra $bg\eta$ -continuous, but not contra

b-continuous, contra *bg*-continuous, contra *ba*-continuous, contra *br*-continuous, contra *bg*^{*}-continuous, since for the open set $W = \{e\}$ in (Y, σ, \leq) , $\mathbb{a}^{-1}(W) = \{f\}$ is *bg* η -closed but not *b*-closed, *bg*-closed, *ba*-closed, *br*-closed, *bg*^{*}-closed in (X, τ, \leq) .

Theorem 5.4.12: Every contra $b\eta$ -continuous function is contra $bg\eta$ -continuous, but not conversely.

Proof: Every contra η -continuous function is contra $g\eta$ -continuous [5.2.3]. Then every contra $b\eta$ -continuous function is contra $bg\eta$ -continuous.

Example 5.4.13: Let $X = Y = \{e, f, g\}$, $\tau = \{X, \varphi, \{e\}\}$ and $\sigma = \{Y, \varphi, \{e, f\}\}$, $\leq = \{(e, e), (f, f), (g, g), (e, g)\}$. Define a map $\mathbb{a}: (X, \tau, \leq) \to (Y, \sigma, \leq)$ by $\mathbb{a}(e) = e$, $\mathbb{a}(f) = g$, $\mathbb{a}(g) = f$. This map is contra $bg\eta$ -continuous, but not contra $b\eta$ -continuous, since for the open set $W = \{e, f\}$ in (Y, σ, \leq) , $\mathbb{a}^{-1}(W) = \{e, g\}$ is $bg\eta$ -closed but not $b\eta$ - closed in (X, τ, \leq) .