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2. REVIEW OF LITERATURE 

In recent years, the neuro disorders started to increase rapidly. The researchers 

significantly identified the proteins that cause the disorder due to mutations and strived hard 

to found the drugs for neuro disorders that prolong the symptoms. It is revealed that repeat 

mutations play a major role in neuro disorder called spinocerebellar ataxia and the several 

researches have been carried out in binding affinity prediction that aids drug design. Some of 

the important related research works in binding affinity prediction have been described. 

This chapter presents the literature review of binding affinity prediction methods used 

in both general approaches and traditional methods. Section 2.1 begins with the traditional 

approaches that are used in binding affinity prediction and section 2.2 describes the 

computational methods for predicting binding affinity using machine learning and deep 

learning. 

2.1 TRADITIONAL APPROACHES 

In traditional approaches the features were taken from readily available dataset called 

PDBBind, PDBculled, PDBBind-CN etc. In these approaches, the prediction of binding 

affinity was calculated based on the features like scoring functions, molecule descriptors etc. 

Some of the research works using traditional approaches are reviewed below:  

Hongjian Li et al., in [57] proposed a method for prediction of binding affinity in docked 

complex. They collected data from PDBBind. To predict affinity, features like RF score, 

physiochemical properties and gauss have been extracted. RF-Score features are elemental 

occurrence counts of a set of protein-ligand atom pairs in a complex. To calculate these 

features, atom types were selected so as to generate features that are as dense as possible, 

while considering all the heavy atoms commonly observed in PDB complexes (C, N, O, F, P, 

S, Cl, Br, I). As the number of protein-ligand contacts is constant for a particular complex, 

the more atom types were considered, the sparser the resulting features will be.  A minimal 

set of atom types was selected by considering atomic number only. A smaller set of 

interaction features has the additional advantage of leading to computationally faster scoring 

functions. Random forest predicted binding of protein-ligand complexes with the prediction 

rate of 0.80 and proved that it was superior to other models in prediction of binding affinity.  

Xueling Li et al., in [58] proposed a method for automatic protein-protein affinity 

binding based on svr-ensemble. Two-layer Support Vector Regression (TLSVR) model was 

employed to implicitly capture binding contributions and the input features for TLSVR in 

the first layer were scores of 2209 interacting atom pairs within each distance bin. The 
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dataset for this predicting model contained 1056 heterogeneous protein complexes that were 

obtained from PDBbind-CN, 2010 version. Those complexes include single residue mutation 

or multiple residue mutations. The dataset was then filtered with sequence similarity <50% 

by PDBculled with complex entity criteria and other default parameters. Thus 180 protein-

protein interaction complexes were formed as a dataset.  The base SVRs were combined by 

the second to infer the final affinities. Protein-protein binding affinity was predicted by 

using two-layer SVR (TLSVR). Each input vector at first layer of TLSVR is 2209-

dimensional. Each real value of a vector represents a score of an atom pair in interface 

within each of 71 bins, i.e. 1.8 Å: 0.2 Å: 16 Å of a protein complex. Here the contact atom 

pairs with distance below 1.8 Å of atom clashes were disregarded. The 71 individual SVR 

models were included at first layer. The predicted values from the individual SVR modes of 

the first layer were input into the second layer SVR (the combiner). The output of the 

combiner was the final predicted affinity. Parameters were default in individual SVR 

models. All the computational experiments were carried out with LIBSVM. TLSVR method 

obtained better result of 0.90 as correlation coefficient. 

Yu Su et al., in [59] planned a way for qualitative prediction of protein-protein affinity 

by volume correction. The dataset used here was X-ray structures of macromolecule-protein 

complexes from PDB. To evaluate the prediction ability for protein–protein complexes, six 

test sets were examined. Sets 1–5 were used as test and the set 6 was the union of sets 1-5 

with a whole of eighty six protein–protein complexes and traditional approach of Potential 

Mean Force (PMF) were applied. Some approaches to calculate PMF were based on the 

radial distribution function (RDF) in the statistical mechanics of simple liquids. In those 

approaches, the frequency was normalized in the manner of dividing occurrence numbers in a 

sphere volume without any correction. Therefore, when normalizing the occurrence 

frequency of atom pairs, the whole sphere volume was not a good indicator of the actual 

occupied volume. The authors normalized the occurrence numbers with the numbers in a 

whole sphere volume (4πr
2
dr) and also analyzed in detail, the distribution tendency of the 

occurrence numbers of residue pairs in protein systems with increasing distance and 

compared it with the occurrence numbers in a whole sphere. This abnormality was due to the 

occupied volume of atoms in protein complexes deviating significantly 

from r
2
 proportionality. The results obtained were more than 0.73 for all the five test sets. 

From these general approaches, it is observed that the prediction of binding affinity was 

time consuming and it gives low accuracy in terms of prediction rate. Predicting binding 

affinity was carried out through scoring functions in general approaches. At the same time 
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scoring functions were not able to forecast binding affinity or binding free energy for a 

couple of reasons.   

The reasons mainly determined enthalpic terms, and disregard entropy, especially of the 

protein. Entropy is needed, certainly, to calculate binding free energy.  

Scoring functions merely is familiar with the bound state of the protein-ligand system, not the 

unbound states of the protein and the ligand. Binding free energy can only be estimated using 

knowledge of the bound state and the unbound states of the binding partners. The issues in 

traditional approaches can be solved along with scoring functions, molecule descriptors to 

give better results. The machine learning and deep learning algorithms are used to train these 

features and better prediction rate is achieved. The computational methods based on machine 

learning and deep learning are reviewed below. 

2.2 COMPUTATIONAL METHODS 

In these computational methods various machine learning and deep learning techniques 

are considered for prediction of binding affinity. The features considered here are scoring 

functions, molecule descriptors and energy calculations that helps in accurate prediction. 

Some of the research works in computational methods are briefed below:   

Jacob D. Durrant and J. St. Andrew McCammon in [60] projected a neural network score 

to characterize the binding affinity of protein-ligand. Dataset was prepared using the protein-

ligand complexes obtained from PDB. The X-ray crystal and NMR structures were used to 

prepare a dataset. The structures from PDB contain Kd values from MOAD and PDBbind 

databases. These multiple Kd values were averaged to give one value for protein-ligand 

complex. Along with this value, features like energy calculations and scoring functions were 

used. Neural Network (NN) score along with traditional scoring functions successfully 

characterized the binding affinity of protein-ligand complexes. NN score were not only able 

to distinguish well docked complexes but also the true ligands docked with decoy 

compounds. 

Volkan Uslan et al., in [61] anticipated the way for significant prediction of HLA-

B*2705 compound. The authors projected the prediction of domain-peptide binding affinity 

models based on support vector regression. The models were applied to yeast bmh 14-3-3 and 

syh GYF pattern recognition domains. The features from the amino acid datasets CISAPS 

that has the physio-chemical and bio chemical properties were considered. Support vector 

regression was able to predict domain-peptide recognitions better than the partial least square 

algorithm.  
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Tammy Man‐Kuang Cheng et al., in [62] planned a scheme of protein-protein 

interaction. The accurate scoring of rigid‐body docking orientations represents one of the 

major difficulties in protein–protein docking prediction. They explored a technique called 

pyDock for rigid docking. It was based on Coulombic electrostatics with distance dependent 

dielectric constant, and implicit desolvation energy with atomic solvation parameters 

previously adjusted for rigid‐body protein–protein docking. The method was able to detect a 

near‐native solution from 12,000 docking poses and place it within the 100 lowest‐energy 

docking solutions in 56% of the cases, in a completely unrestricted manner and without any 

other additional information. 

Solène Grosdidier and Juan Fernández-Recio in [63] proposed a method for identifying 

protein hot spots. The structural prediction of protein-protein binding mode, and the 

identification of the relevant residues for the interaction was considered. Unfortunately, 

large-scale experimental measurement of residue contribution to the binding energy, based on 

alanine-scanning experiments, was costly and thus data was fairly limited. Recent 

computational approaches for hot-spot prediction have been reported. They had applied 

computational docking approach called Normalized Interface Propensity (NIP) values 

derived from rigid-body docking with electrostatics and desolvation scoring for the prediction 

of interaction hot-spots. This parameter achieved upto 80% positive predictive value other 

than existing methods. The NIP values derived from rigid-body docking can reliably identify a 

number of hot-spot residues whose contribution to the interaction arises from electrostatics 

and desolvation effects. This method can propose residues to guide experiments in complexes 

of biological or therapeutic interest, even in cases with no available 3D structure of the 

complex. 

Pedro J. Ballester, John B. O. Mitchell in [64] proposed a technique for predicting 

binding affinity of protein-ligand complexes using computational approach. The scoring 

functions that attempt such computational prediction are essential for analysing the outputs of 

molecular docking, which in turn is an important technique for drug discovery, chemical 

biology and structural biology. Each scoring function assumes a predetermined theory-

inspired functional form for the relationship between the variables that characterize the 

complex, which also include parameters fitted to experimental or simulation data and its 

predicted binding affinity. The inherent problem of this rigid approach was that it leads to 

poor predictivity for those complexes that do not conform to the modelling assumptions. 

Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not 

systematically used to guard against the overfitting of calibration data in parameter estimation 
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for scoring functions. They had proposed a novel scoring function called RF-score. Dataset 

which was used by them was PDBbind benchmark. Intermolecular interaction features were 

extracted and RF score was used. RF score was superior to other scoring functions. RF score 

with random forest achieves the correlation of 0.8. Other scoring functions such as drug 

score, x-score, HM-score etc., were considered and compared with RF score. Random forest 

was able to achieve the highest score among all the scores. 

Thomas Unterthiner et al., in [65] proposed a model for drug target prediction. In this 

work they used chEMBL database. In chEMBL database, 13 M compound descriptors, 1.3 M 

compounds, and 5 k drug targets, compared to the Kaggle dataset with 11 k descriptors, 164 k 

compounds, and 15 drug targets. Performance of deep learning was compared with seven 

target prediction methods, including two commercial predictors, three predictors deployed by 

pharma, and machine learning methods were used to scale this dataset. Deep learning 

outperformed all the methods with respect to the area under ROC curve and was significantly 

better than all commercial products. Deep learning surpassed the threshold to make virtual 

compound screening possible and has the potential to become a standard tool in industrial 

drug design.  

Rhys Heffernan et al., in [66] scrutinized how deep neural network architectures can be 

used to predict the secondary structure of a protein from genetic sequence. Authors used deep 

neural network in three iterations and achieved 82% accuracy in predicting the secondary 

structure. In this work, they had also predicted local backbone angles and solvent accessible 

surface area of protein. Iterative features had been used for solvent accessible surface area 

and backbone angles and dihedrals based on Cα atoms. First iteration was used for only seven 

representative physical chemical properties of amino acid residues and position specific 

scoring matrix (PSSM) from PSIBLAST. It was employed to predict SS, angles, and ASA, 

separately. In the second iteration, PSSM/PP plus predicted SS, angles, and ASA were 

employed from the first iteration. Additional iterations can be followed by using SS, angles, 

and ASA from the previous iteration in addition to PSSM and PP. Each iteration had three 

separate predictors and each predictor utilizes one stacked auto-encoder deep neural network.  

 Babak Alipanahi et al., in [67] authors presented the prediction of sequence 

specificities of DNA and RNA binding proteins by deep learning. DeepBind approach was 

used and built standalone software tool that was fully automatic which handles millions of 

sequences per experiment. DeepBind can be used to predict deleterious SNVs in promoters, 

by training a deep neural network to discriminate between high-frequency derived alleles 

(neutral or negative) and simulated variants (putatively deleterious, or positive) from the 
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CADD framework44. The scores of ~600 DeepBind transcription factor models for the wild 

type and mutant sequences were used as inputs (~1,200 inputs; Supplementary Fig. 9). The 

rationale is that a true transcription factor binding site is likely to be located with other 

transcription factor binding sites, and so these additional scores collectively provide context. 

When evaluated using held-out test data, the neural network, called DeepFind, achieved an 

AUC of 0.71, which increased to 0.73 when we included as inputs the distance to the closest 

transcription start site and a transversion/transition flag. In this approach a set of sequences 

was used and for each sequence, an experimentally determined binding score was considered. 

Sequences had varying lengths of 14–101 and binding scores can be real-valued 

measurements or binary class labels. Deep learning outperforms other state-of-art methods, 

even when training on in vitro data and testing on in vivo data.  

Youjun Xu et al., in [68] proposed prediction models named Drug Induced Liver Injury 

(DILI) and a data set from the U.S. Food and Drug Administration (FDA’s) National Center 

for Toxicological Research (DL-NCTR) were developed in deep learning. Models were 

trained on 475 drugs and predicted with an accuracy of 86.9%, sensitivity of 82.5%, 

specificity of 92.9%, and area under the curve of 0.955. Authors used NCTR, Liew, Xu and 

combined datasets for both DILI positives and negatives. The performance of DL-NCTR 

model with 190 drugs performed well with accuracy of 80.5% and with sensitivity 70.3%, 

specificity 88.2%. DL-view model produced accuracy of 70% and 70% in sensitivity and 

70% in specificity. DL- combined model performs best with accuracy of 88.9% and 89.9%, 

87% of sensitivity and specificity accordingly. Undirected Graph Recursive Neural Networks 

(UGRNN) encoding approach with large datasets was developed for the prediction of DILI 

drugs and small compounds. The DL-combined model performs best with highest accuracy.  

Bharath Ramsundar et al., in [69] proposed the use of massively multitask networks for 

drug discovery.  Dataset was created by gathering large amount of data from public sources, 

more than 200 biological targets. Models with random forest, linear regression, single task 

model were trained on 259 datasets gathered from public sources. These datasets were 

divided into four groups PubChem Bio Assay (PCBA), Maximum Unbiased Validation 

(MUV), Directory of Useful Decoys, Enhanced (DUD-E), and Tox21. Three datasets with 

random forest achieved the highest enrichment scores with 40. PCBA group contained 128 

experiments in the PubChem, BioAssay database whereas MUV group contained 17 

challenging datasets. The DUD-E group contained 102 datasets and Tox21 datasets were 

used. Models were built using multitasking network like logistic regression, random forest, 
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single task neural network, max, pyramidal, one-hidden layer multitask neural network and 

pyramidal multitask neural network. 

Haiping Zhang et al., in [70] proposed deep learning based drug designing for novel 

corona virus. In this work, they considered 2019-nCov_3C-like protease as a potential target 

and built a structural model after systematically analyzing its sequence features. The authors 

built a pipeline with a deep learning based method developed in our group by representing 

molecules as vectors to identify potential drugs (peptides or small ligands) against the protein 

target of the 2019-nCoV virus. This method was extremely fast in virtual drug screening and 

it takes less than a day to finish the virtual screening over millions of protein–ligand or 

protein-peptide predictions, whereas traditional docking methods take several weeks with the 

help of a supercomputer. The dataset was prepared using virus RNA sequences from Global 

Initiative on Sharing All Influenza Data (GISAID) database. The amino acid sequence was 

translated from the RNA sequence by Translate web tool. Multiple sequence alignment is 

performed by using Clustal Omega program. They used Dense Fully Convolutional Neural 

Network (DFCNN) deep learning model to reverse search drug targets. Since the method was 

shown to have relatively higher accuracy and efficiency, it was suitable for applying to such 

an emerging disease outbreak. The DFCNN was a densely fully connected neural network, 

and the densely network allows deep layer without the gradient vanishing problem. The 

deeper layers make it to learn more abstract features from the data and concluded that this 

model works faster.  

Indra kundu et al., in [71] presented machine learning methods towards prediction of 

binding affinity using fundamental molecular properties. The prerequisites of this prediction 

are sufficient and unbiased features of training data and a prediction model which can fit the 

data well. In this study, they have applied Random forest and Gaussian process regression 

algorithms from the Weka package on protein–ligand binding affinity, which encompasses 

protein and ligand binding information from PdbBind database. The models were trained on 

the basis of selective fundamental information of both proteins and ligand, which can be 

effortlessly fetched from online databases or can be calculated with the availability of 

structure. The assessment of the models was made on the basis of correlation coefficient (R
2
) 

and root mean square error (RMSE). The Random forest model produced R
2
 and RMSE of 

0.76 and 1.31 respectively. The authors concluded that the features used for prediction 

outperformed the existing ones. 

Derek Jones et al., in [72] presented fusion models that combine features and inference 

from complementary representations to improve binding affinity prediction. It was the first 
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comprehensive study that uses a common series of evaluations to directly compare the 

performance of three-dimensional (3D)-convolutional neural networks (3D-CNNs), spatial 

graph neural networks (SG-CNNs), and their fusion. The authors used temporal and 

structure-based splits to assess performance on novel protein targets. To test the practical 

applicability of those models, the authors examined their performance in cases that assume 

that the crystal structure was not available. In those cases, binding free energies were 

predicted using docking pose coordinates as the inputs to each model. Comparison was done 

with those deep learning approaches based on docking scores and molecular 

mechanic/generalized born surface area (MM/GBSA) calculations. The results showed that 

the fusion models made more accurate predictions than their constituent neural network 

models as well as docking scoring and MM/GBSA rescoring, with the benefit of greater 

computational efficiency than the MM/GBSA method. 

Nguyen et al., (2019) in [73] presented prediction of drug-target based binding affinity 

prediction models using graph neural networks. Multiheaded input CNNs have been used in 

these regression problems in which the drug (small molecule) and protein were input 

separately, usually as SMILES strings and character based amino acid sequences 

respectively, passed through convolutional blocks, merged, then passed through dense layers. 

Here, the authors, replace SMILES strings with various graph convolutional layers. In this 

method, molecules were represented as mathematical graphs. The node feature vector were 

constituted of five types of atom features such as atom symbol, atom degree – number of 

bonded neighbors plus number of hydrogen, total number of hydrogen, implicit value of 

atom, and aromatic or not. Those atom properties constitute a multi-dimensional binary 

feature vector. An edge was set to a pair of atoms if there exists a bond between them. As a 

result, an indirect, binary graph with attributed nodes was built for each input SMILES string. 

GraphDTA can not only predict the affinity of drugs-targets better than non-deep learning 

models, but also outperform competing deep learning methods. GraphDTA performed 

consistently well across two separate benchmark databases in all the evaluation measures. 

The result suggested that representing molecules as graphs can improve the performance 

considerably. Also, it was confirmed that deep learning models were appropriate for drug-

target binding affinity problems. 

Majumdar et al., in [74] presented Deep learning-based potential ligand prediction 

framework for COVID-19 with drug–target interaction model. The authors implemented an 

architecture using 1D convolutional networks to predict drug–target interaction (DTI) values. 

The network was trained on the KIBA (Kinase Inhibitor Bioactivity) dataset. With this 

https://machinelearningmastery.com/crash-course-convolutional-neural-networks/
https://www.daylight.com/smiles/index.html
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network, the authors predicted the KIBA scores (which gives a measure of binding affinity) 

of a list of ligands against the S-glycoprotein of 2019-nCoV. Based on those KIBA scores, 33 

ligands were proposed that had a high binding affinity with the S-glycoprotein of 2019-nCoV 

and thus can be used for the formation of drugs. This research is of utmost importance where 

the proposed new compound, if validated by biochemists as an effective solution, can help 

mankind survive this tough time. In this work, the authors have trained a machine learning 

model for the prediction of KIBA scores for a pair of protein–ligand. Using that model, the 

top 33 ligands were identified that can be used to find a potential cure for SARS-CoV-2. 

 Shim J et al., in [75] proposed that a similarity based model that applies two 

dimensional [2D] convolutional neural network [CNN] to the outer products between column 

vectors of two similarity matrices for the drugs and targets to predict DT binding affinities. 

This was the first application of 2D CNN in similarity DT binding affinity prediction. The 

validation results on multiple public datas showed that the proposed model was an effective 

approach for DT binding affinity prediction and can be quite helpful in drug development 

process. Continouus value provide more information about the actual strength of DT binding. 

Experimental results showed that SimCNN-DTA outperformed other existing methods such 

as KronRLS and DeepDTA in prediction performance on the Davis and KIBA datasets. The 

case study found that drug candidates targeting EGFR showed that SimCNN-DTA included 

all existing EGFR drugs as 100 top ranked candidates among 1018 candidates. SimCNN-

DTA can be futher improved by adjusting the architecture of CNN according to the data 

structure. The SimCNN-DTA was an effective approach for DTA prediction and can be quite 

helpful in drug development process.The summary of literature review is given in Table 2.1. 

Table 2.1 Summary of Literature Review 

Authors Objective Dataset Algorithm Prediction 

Rate 

Tammy Man‐Kuang 

Cheng, Tom L. 

Blundell, Juan 

Fernandez‐Recio  

(2007) 

Protein-protein 

interaction 

using rigid 

body docking  

ICM and ICM-

DISCO benchmark 

datasets 

PyDock It predicted 

the 56% 

cases from 

80 unbound 

docking 

poses 

Solène 

Grosdidier and Juan 

Fernández-Recio 

(2008) 

Identification 

of protein 

hotspots using 

computational 

approach 

Structures from 

PDB 

Normalised 

Interface 

Propensity 

0.80 

Yu Su, Ao Zhou, Prediction of X-ray structures Traditional It obtained 
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Xuefeng Xia, Wen Li, 

Zhirong Sun 

(2009) 

protein-protein 

binding 

affinity 

from PDB approach of 

PMF 

more than 

0.73 for all 

the six test 

sets 

Jacob D. 

Durrant and J. Andrew 

McCammon 

(2010) 

Characterizing 

the protein-

ligand binding 

affinity  

Protein-Ligand 

complexes from 

PDB 

Neural 

Network 

Neural 

network 

combined 

with 

traditional 

functions 

successfully 

characterized 

the binding 

affinity of 

protein-

ligand 

Pedro J. 

Ballester, John B. O. 

Mitchell (2010) 

Predicting 

binding 

affinity of 

protein-ligand 

complexes 

using scoring 

functions 

PDBbind database Random 

Forest 

It produced 

the 

correlation 

coefficient 

of 0.953 

Li X., Zhu M., Li X., 

Wang HQ., Wang S 

(2012) 

Prediction of 

protein-protein 

binding 

affinity using 

SVR-ensemble 

Complexes from 

PDBbind-CN 

Two 

layered 

SVR 

ensemble 

SVR 

ensemble 

produced the 

correlation 

coefficient 

as 0.9 

Thomas Unterthiner, 

Andreas Mayr, Gunter 

KlambauerJesse, 

Marvin Steijaert, Jorg 

K. Wegner, Hugo 

Ceulemans, Sepp 

Hochreiter, (2014) 

Drug-target 

prediction by 

deep neural 

networks 

chEMBL database Deep neural 

network 

0.83 

Li H., Leung KS., 

Wong MH., Ballester 

P.J (2015) 

Prediction of 

binding 

affinity from 

docked 

complexes 

PDBbind Random 

Forest 

0.80 

Rhys Heffernan, 

Kuldip Paliwal, James 

Lyons, Abdollah 

Dehzangi, Alok 

Sharma, Jihua Wang, 

Abdul Sattar, 

YuedongYang & 

Yaoqi Zhou (2015) 

Secondary 

structure 

prediction 

from genetic 

sequences 

TR4590 dataset Deep neural 

network 

82% of 

accuracy in 

secondary 

structure 

prediction 

Babak Alipanahi, Predicting the Protein binding Deep neural DeepBind 
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Andrew Delong, 

Matthew T 

Weirauch & Brendan 

J Frey (2015) 

sequence 

specificities of 

RNA and 

DNA- binding 

proteins 

microarrays 

(PBMs), 

RNAcompete 

assays, chromatin 

immunoprecipitation 

(ChIP)-seq 

network models 

trained in 

vitro data 

worked well 

for in vivo 

data 

Youjun Xu, Ziwei 

Dai, Fangjin Chen, 

Shuaishi Gao, 

Jianfeng Pei, and 

Luhua Lai (2015) 

Prediction of 

drugs for liver 

injury 

Four public datasets 

of DILI-positive and 

DILI-negative 

properties of drugs 

Deep neural 

network 

DILI 

prediction 

model 

predicted the 

drugs with 

80% of 

accuracy 

Bharath Ramsundar, 

Steven Keames, 

Patrick Riley, Dale 

Webster, David 

Konerding, Vijay 

Pande (2015) 

Multitask 

networks for 

drug discovery 

259 publicly 

available datasets 

Deep neural 

network 

Multitask 

networks 

performed 

well than 

single task 

models 

Huseyin Seker, 

Volkan Uslan (2016) 

Binding 

affinity 

prediction of 

domain-

peptide 

recognition 

Amino acid datasets Support 

Vector 

regression 

SVR 

predicts 

better than 

the partial 

least square 

Zhang, H., Saravanan, 

K.M., Yang, Y. (2020) 

Binding 

affinity 

prediction for 

drug designing 

Virus RNA dataset 

from GISAID 

DFCNN DFCNN 

predicts the 

binding 

affinity in a 

precise 

manner 

Indra kundu, goutam 

paul and raja banerjee 

(2018) 

Binding 

affinity 

prediction of 

protein-ligand 

complexes 

PDBBind Random 

forest and 

Gaussian 

regression 

Random 

forest gives 

best score of 

0.76 as R
2 

Derek Jones, Hyojin 

Kim, Xiaohua Zhang, 

Adam Zemla, Garrett 

Stevenson, W. F. 

Drew Bennett, Daniel 

Kirshner, Sergio E. 

Wong, Felice C. 

Lightstone, and 

Jonathan E. Allen 

(2021) 

Binding 

affinity 

prediction 

PDBBind 3D CNN 

and SG-

CNN 

Fusion 

model gave 

the best 

prediction 

rate 
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Nguyen et al., (2019) Drug-target 

based binding 

affinity 

prediction 

SMILES Graph 

neural 

networks 

Graph DTA 

model 

predicts the 

model 

accurately 

Majumdar, S., Nandi, 

S.K., Ghosal, et al., 

(2021) 

Deep learning 

based potential 

drug prediction 

KIBA dataset 1D CNN 33 ligands 

are found for 

curing covid 

Shim, J., Hong, ZY., 

Sohn, I. et al (2021) 

Prediction of 

Drug-target 

binding 

affinity using 

similarity- 

based CNN  

DAVIS and KIBA 

datasets 

2D CNN SIMCNN 

outperforms 

all the other 

models in 

prediction 

 


