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4. BINDING AFFINITY PREDICTION MODEL USING PROTEIN-

LIGAND DOCKING AND REGRESSION TECHNIQUES 

 Binding affinity prediction for a hereditary disorder is significant for drug detection in 

therapeutic field. It is intricate to predict binding affinity when there is a structural change in 

protein due to binding with ligands and also with mutations that occur in protein structure. 

Hence, it is required to predict binding affinity for SCA to monitor the structural changes in 

protein and also the changes in their physio-chemical properties that enables in accurate 

prediction of binding affinity. The predicted binding affinity further reveals specific path for 

drug designing.  

Binding affinity prediction methods use general approaches and the machine learning 

algorithms aids in accurate prediction. Machine learning algorithms are used in genomics to 

recognize the genetic causes, treatments through genes and proteins and also the affinity 

prediction of proteins-ligands, protein-protein etc. Affinity prediction of various disorders 

and drug-target identification has been effectively done using various regression techniques. 

Some of the works performed using general approaches and machine learning are 

macromolecule-ligand interaction [81], protein-protein affinity prediction [58], drug-target 

interaction prediction [82], protein-RNA interactions [83]. 

 This chapter illustrates the development of binding affinity predictive models built 

through protein-ligand docking and supervised regression techniques. 

4.1 PROTEIN-LIGAND DOCKING BASED BINDING AFFINITY PREDICTIVE 

MODELS USING SUPERVISED LEARNING 

This work explains binding affinity prediction models built through protein-ligand 

docking using supervised regression techniques. The binding affinity prediction problem is 

formulated as regression task and the regression models are built through the intelligence 

attained from the training data. The performance of the models is evaluated using 

performance metrics such as explained variance score, mean squared error, root mean 

squared error, median absolute error, mean absolute error. 

Methodology 

Binding affinity predictive model is constructed by accumulating the protein structures 

from PDB corpus and gathering ligands from gene cards. Protein structures associated with 

six types of SCA are considered and the ligands relating to SCA are treated from various 

literatures and docked using autodock. Docked complexes are employed for feature 
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extraction and PLD dataset is created. This dataset is trained using various regression 

techniques such as linear regression, random forest, support vector regression and artificial 

neural network to build predictive models. The proposed framework of binding affinity 

prediction model based on protein-ligand docking is shown in Fig. 4.1. The model includes 

four components namely corpus development, feature extraction and dataset creation, model 

building and evaluation of the binding affinity predictive models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Proposed Framework of Binding Affinity Prediction Model Based on Protein-

Ligand Docking 

Corpus Development 

Protein structures associated with six types of SCA as given in Table III are taken from 

PDB and ligand from genecards. Structures of ligands shown in Fig. 1.10 are chosen from 

genecards. The ligands such as amantadine, benztropine, biperiden, bromocriptine, carbidopa, 

donepezil, entacapone, galantamine, levodopa, pergolide, pramipexole, procyclidine, 

rivastigmine, ropinirole, selegiline and tacrine are used to dock with proteins. Flexible 

docking is preferred where ligand rotates the protein and optimum pose is selected to get 

docked complex. Protein-ligand docking is performed in autodock and totally seventeen 
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protein structures and eighteen ligands are considered for docking. The protein structures are 

prepared for docking by adding hydrogen bonds and computing charges. The protein 

structures are then added with grid and autogrid file is computed. Ligand is prepared by 

finding its root to dock with the protein. The autodock file is computed for ligand. Protein 

and ligand is docked where the cluster of conformation energies are produced. The minimum 

energy is chosen for binding energy as it indicates the strong binding. Each protein is docked 

with ligand in order to produce the docked complex. Totally 307 complexes are created and 

the corpus is developed. The detailed description of PL corpus development has been given 

in section 3.2 of chapter 3.  

Feature Extraction and Dataset Creation 

Efficient features are derived from the docked complexes obtained through protein-

ligand docking. Dimensions like energy calculations and physical properties of protein and 

ligand are extracted using autodock, autodock vina and pymol. Energy calculations like 

vanderwaals energy, desolvation energy, torsional energy, electrostatic energy, inhibition 

constant, ligand efficiency etc., and physical properties like molecular weight of both protein, 

ligand, complex; surface area of solvent for protein, ligand and complex are extracted from 

the docked complexes of protein-ligand docking.  

Energy Calculations: Energy calculations are important in predicting binding affinity where 

the vanderwaals energy plays role in attraction and repulsion of atoms, molecules and 

surfaces. Vanderwaals is the weakest attraction, along with this bond covalent and ionic 

bonds helps in proper function of protein. Solvation energy is important because the complex 

is fed to a solvent where the chemical reaction occurs between the bonds and the energy is 

measured.  Torsional energy is measured as the dihedral angles in the protein structure where 

the energy changes due to rotation and the best value of energy is calculated. Electrostatic 

energy is the energy that occurs due to reaction of charged atoms and it is measured to 

calculate the changes in the energy. Inhibition constant measures the potency of inhibitor. 

These energy values are very significant to calculate binding affinity. Binding affinity is the 

measure, how well the structure binds with the ligand. Binding energy is the energy of 

docked complex that is bound together with the ligand. Physical properties are measured for 

ligand, complex and protein structure where the changes occur in molecular weight, atom 

count, charge and surface area of all the solvents are changed due to docking where they are 

collected from pymol. The derivation of each feature is given in detail below: 
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Binding Energy Range: The binding energy range describes at which cluster the binding 

energy falls. The binding energy range is the difference between highest and lowest energies 

among the protein-ligand complexes. For example, binding energy range obtained for the 

complex 1oa8 with amantadine shown in Fig. 3.6 is 0.26.  

Binding Energy: Binding energy is released when a drug molecule associates with a target, 

that leads to lower the overall energy of the complex. The release in binding 

energy transforms the ligand from its minimum energy to its bound conformation with 

the protein. Lower the binding energy more stable the complex. The binding energy is 

calculated using the equation given in 4.1.  

                       (4.1) 

Where P refers to the protein, L refers to the ligand, V refers to the pair-wise evaluations, and 

ΔS~conf~ denotes the loss of conformational entropy upon binding. Intermolecular energy 

and torsional energy both are significant to calculate binding energy. The energy of ligand 

and protein in the unbound state is calculated and then the energy of the protein-ligand 

complex is calculated. The binding energy is calculated as the difference between energy in 

unbound state and energy of protein-ligand complex. For example, binding energy obtained 

for the complex 1oa8 with amantadine shown in Fig. 3.6 is -6.47. 

Ligand Efficiency: Ligand efficiency is a measurement of the binding energy per atom of 

a ligand to its binding partner, such as a receptor or enzyme. Mathematically, ligand 

efficiency (LE) can be defined as the ratio of Gibbs free energy (ΔG) to the number of non-

hydrogen atoms of the compound. Ligand efficiency is calculated using the equation given in 

4.3. 

LE = (ΔG)/N                                                                                                                (4.2) 

where ΔG = -RTlnKi and N is the number of non-hydrogen atoms. It is transformed to the 

equation:  

LE = 1.4(-logIC50)/N                                                                                                   (4.3) 

For example, ligand efficiency obtained for the complex 1oa8 with amantadine shown in Fig. 

3.6 is -0.59. 

Inhibition Constant (pIC50): The inhibitor constant, Ki, is an indication of how potent 

an inhibitor is. It is the concentration required to produce half maximum inhibition. 

The IC50 value is determined at only one concentration of substrate over a range of inhibitor 
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concentrations. While Ki is a constant value for a given compound with an enzyme, 

an IC50 is a relative value, whose magnitude depends upon the concentration of sub- strate. 

According to the FDA, IC50 represents the concentration of a drug that is required for 50% 

inhibition in vitro. The inhibition constant is calculated using the equation given in 4.4. 

Ki = dissociation constant of the enzyme-inhibitor complex = Kd 

Ki = [E][I]/[EI]                                                                  

ln Kb = -ln Ki 

          deltaG(binding)    = -R*T*ln Kb 

          deltaG(inhibition) =  R*T*ln Ki 

Binding and Inhibition occur in opposite directions, so the minus-sign is lost:   

deltaG = R*T*lnKi,    

          deltaG/(R*T) = lnKi 

           Ki = exp(deltaG/(R*T))                                                                                             (4.4) 

For example, inhibition constant obtained for the complex 1oa8 with amantadine shown in 

Fig. 3.6 is 18.24.  

Intermolecular Energy: Intermolecular energy is the energy between non-bonded atoms that 

is the energy between atoms separated by 3-4 bonds or between atoms in different molecules. 

For example, intermolecular energy obtained for the complex 1oa8 with amantadine shown in 

Fig. 3.6 is -6.76. 

Vanderwaal’s Desolvation Energy: Desolvation energy is the static van der waals energy. It 

is the lose of the interaction between substance or organic compound and solvent upon 

binding describes the energy. For example electro-statically bound particles, dissociate by 

releasing water in an aqueous solution. The desolvation energy is calculated using the 

equation given in 4.5. 

ΔGdesolv = Wdesolv ∑i (C), j (Si * Vj * exp ( -rij
2
 / (2 * σ

2
) ) )                                          (4.5) 

For example, the desolvation energy obtained for the complex 1oa8 with amantadine shown 

in Fig. 3.6 is -5.35. 

Electrostatic Energy: Electrostatic energy is the long term interaction between charged 

atoms. The example of electrostatic energy is, to hold balloon against ceiling. The 

electrostatic energy is calculated using the equation given in 4.6. 

ΔGelec = Welec ∑i, j ( qi * qj ) / ( ε(rij) * rij )                                                                (4.6) 

For example, the electrostatic energy obtained for the complex 1oa8 with amantadine shown 

in Fig. 3.6 is -1.42. 

Total Internal Energy: Total energy is that the total of changes of all energetic terms enclosed 
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in rating operates of matter or supermolecule upon binding, and the changes upon binding of 

the entropic terms. For example, the total internal energy obtained for the complex 1oa8 with 

amantadine shown in Fig. 3.6 is 0.06. 

Torsional Energy: Torsion energy is related to dihedral term of internal energy. Torsional 

energy is calculated using the equation given in 4.7. 

ΔGtor = Wtor Ntor                                                                                                                                                               (4.7) 

where Ntor is the number of all rotatable bonds, excluding guanidinium and amide bonds etc. 

For example, torsional energy obtained by the complex 1oa8 with amantadine shown in Fig. 

3.6 is 0.3. 

clRMS: It is the root mean squared error of difference between current conformation and the 

lowest energy conformation in its cluster. For example, the clRMS obtained for the complex 

1oa8 with amantadine shown in Fig. 3.6 is 0.  

refRMS: It is the root mean squared error of distinction between current conformation 

coordinates and current reference structure. By default the input substance is utilized as a 

result of the reference. For example, the refRMS obtained by the complex 1oa8 with 

amantadine shown in Fig. 3.6 is 30.29. 

Binding Affinity: Affinity is a measure of the strength of attraction between a molecule and 

legend. High affinity binding has strong intermolecular force, whereas low affinity binding 

has weak intermolecular force. Affinity is calculated using the equation given in 4.11.  

[R] [R] K1 = [DR] K-1                                                                                                (4.8) 

K1/K−1 =[RR]/[R][R]                                                                                                 (4.9) 

Binding Affinity = K1/K−1                                                                                       (4.10)      

Kd = K−1/K1                                                                                                              (4.11) 

Here, Kd is called as binding affinity constant, K1 is termed as association constant and k-1 is 

rate constant. For example, the binding affinity obtained by the complex 1oa8 with 

amantadine shown in Fig. 3.6 is -4.7.   

RMSD: The root mean squared deviation is used to validate the docking with respect to 

biological configuration. RMSD is the measure of the average distance between the atoms. 

The value of RMSD is obtained using the equation given in 4.12. The rmsd l.b denotes lower 

bound of root mean squared error whereas rmsd u.b denotes upper bound of root mean 

squared error.  

𝑅𝑀𝑆𝐷 =  1/N  (xci − xdi )2 + (yci − ydi )2 + (zci − zdi )2N
i=1                               (4.12) 
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For example, the RMSD obtained for the complex 1oa8 with amantadine shown in Fig. 3.6 is 

7.888, 9.231 as rmsd l.b and rmsd u.b respectively. 

Physical Properties: Physical properties such as molecular weight of ligand, molecular 

weight of complex, atom count in protein, atom count in ligand, atom count for complex, 

surface area of protein, surface area-solvent access of protein, surface area of ligand, surface 

area-solvent access of ligand, surface area solvent of complex and charges of protein are 

derived from pymol. For example, the physical properties obtained for for the complex 1oa8 

with amantadine are given below.  

molecular weight of ligand = 151.2487  

molecular weight of complex = 13041.16 

atom count in protein = 975 

atom count in ligand = 28 

atom count for complex = 1190  

surface area of protein = 12734.07 

surface area-solvent access of protein = 7834.376 

surface area of ligand = 700.997 

surface area-solvent access of ligand = 2760.954  

surface area solvent of complex = 13291.47 

charges of protein = -7  

Feature Importance using Correlation Matrix: Correlation matrix shows the correlation 

coefficients between two variables. In this work, pearson correlation matrix is used as the 

dataset constitutes continuous variables. The pearson correlation values lies between -1 to 1 

wherein the value 1 refers positive correlation, -1 demotes negative correlation and 0 refers to 

there is no correlation. The value below -0.5 or above 0.5 is referred to as notable correlation 

and values below these values are suggested as less notable correlation. The correlation 

matrix of feature vectors is shown in Fig. 4.2. In this correlation matrix the feature molecular 

weight of complex has the value of 1, root mean squared deviation upper bound have the 

value of 0.99, vanderwaals desolvation energy posses the high value of 0.9, atom count in 

protein holds the value of 0.82, torsional energy has the value of 0.7, binding energy posses 

the value of -0.59. The features, binding energy range and ligand efficiency have the low 

correlation values of 0.2 and 0.02 respectively. Electrostatic energy posses the value of -0.4 

and the binding energy range has the value of -0.2. This matrix determines the relation of 

independent variables (X) with dependent variable (Y). 
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Fig. 4.2 Correlation Matrix of Feature Vectors 

Feature importance refers to assigning scores for each input feature that indicates the 

relative importance of each feature in predictions. The higher the value the most contributive 

is the feature. Permutation Feature Importance (PFI) calculates relative importance score that 

is independent of the model used. It works by randomly changing the values of 

each feature column, one column at a time, and then evaluating the model. 

In this work, PFI is used as the feature importance measure by re-estimating the 

model after permuting one variable. The feature importance based on correlation matrix 

enables in identifying the contributive feature set with respect to binding affinity. By this way 

the feature values are validated and the P-value is determined for the contributive feature to 

discover its relationship with binding affinity. Permutation feature importance of features 

and the scores for each feature value are shown in Fig. 4.3 and Fig. 4.4 respectively.  
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Fig. 4.3 Permutation Feature Importance of Features 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Scores of Features 

P-value is calculated to reveal how strong the relationship is between dependant 

variable and independent variable. The feature importance based on correlation matrix shows 

that the most contributive feature is binding energy. Binding energy is computed based on 

torsional energy, desolvation energy, ligand efficacy, intermolecular energy, RMSD, 

electrostatic energy, total internal energy and physical properties. Thus the energy values are 

important for binding affinity prediction. The P-value obtained is less than 0.05 and it reveals 

that the relationship between binding affinity and binding energy is strong. The P-value for 

binding energy and binding affinity is shown in Fig. 4.5.  
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binding_energy range 0.06                  binding_affinity 0.5 

rmsd_l.b        0.002                       ligand efficiacy            -0.00713 

MW_complex        0.23                         inhibition constant      -0.01622 

MW_protein         0.3                          intermolecular_energy 0.46 

Mw_ligand 0.17                                vanderwaal desolvation  0.01  

surface_area solvent 0.34                 electrostatic energy   0 

surface_area_protein 0.46                 charge_protein                0.23 

binding_energy               0.65                 total_internal         1.14 

torsional          0                            clrms                  0  

atom_count 0.4                                  refrms                    0 
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Fig. 4.5 P-value of Binding Affinity with Binding Energy  

Features from 307 docked complexes are extracted and feature values are normalized 

using min-max normalization to scale the values from 0 to 1. Binding affinity values are 

derived from autodock and augmented with feature vectors. The summary of the above 

features are portrayed below. 

 

   

 

 

 

 

 

 

 

 

 

 

 

Features                          Count                             Features                    Count 

Binding energy range           1                                 Ligand efficiency            1    

Binding energy                     1                                 inhib_constant                 1                                                                                                   

intermol_energy                    1                                electrostatic_energy         1       

vdw_hb_desolv_energy        1                                 total_internal                   1   

       torsional_energy                   1                                 clRMS                             1  

 refRMS                                1                                 MW_protein                    1 

MW_ligand                           1                                 MW_complex                 1 

Atom count in protein           1                                 Atom count in ligand      1  

Atom count in complex         1                                 Surface area(mol)- protein   1 

SUMMARY OUTPUT 

       Regression Statistics 

      Multiple R 0.666056 

       R Square 0.443631 

       Adjusted R 

Square 0.441801 

       Standard Error 0.953319 

       Observations 307 

       

         ANOVA 

        

 

df SS MS F Significance F 

  Regression 1 220.2971 220.2971 242.3996 1.35E-40 

   Residual 304 276.2806 0.908818 

     Total 305 496.5776 

      

         

 

Coefficients 

Standard 

Error t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

50.0% 

Upper 

50.0% 

Intercept -2.13745 0.186942 -11.4337 2.02E-25 -2.50531 -1.76958 -2.26369 -2.01121 

binding_energy 0.537899 0.034549 15.56919 1.35E-40 0.469914 0.605884 0.514568 0.56123 
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Totally 27 features are extracted from each docked complex and PLD dataset with 307 

feature vectors of dimension 27 is developed. The feature vector corresponding to the docked 

complex of 1oa8 with amantadine is given below. The sample dataset is shown in Appendix 

A. 

 

 

 

 

 

Model Building 

Binding affinity predictive models are built by training the PLD dataset using various 

regression algorithms such as linear regression, random forest, support vector regression and 

artificial neural network. Various hyper parameters like number of iterations, learning rate, 

number of estimators etc., are used here to build the predictive models. The hyper parameters 

are used for random forest and artificial neural network. The number of estimators is used for 

random forest as it denotes the number of trees. The parameter number of iterations implies 

that the number of times the model executes while training. Learning rate parameter is used 

to control the rate or speed at which the model learns. Tuning of hyper parameter aids in 

achieving the better prediction rate. The dataset of 307 instances is split into training and 

testing set where 275 instances for training, 31 instances for testing.  The performances of the 

models are assessed by means of various metrics such as explained variance score, mean 

squared error, root mean squared error, R2 score, median absolute error and mean absolute 

error.  

Performance metrics like explained variance score and mean squared error are 

considered as significant metrics in regression task where explained variance score should be 

higher and the error rate should be low. The other error metrics like root mean squared error, 

median absolute error and mean absolute error should be minimal. R2 score value should be 

Surface area(sol_accessible)protein 1                   Surface area(mol) for ligand 1 

Surface area(sol_accessible)ligand  1                    Surface area(mol)-complex  1 

Surface area solvent-complex          1                    Charges for protein               1 

 rmsd u.b                                           1                    rmsd l.b                                 1 

 Binding affinity                               1                    Total                                     27 

 

0.671428571 0.101960784 0.41125  0.109090909 0.018654086 0.526315789  0.638586957 

0.597894737 1    0.14354067 0 0.06389217 0.213711243 0 0.210970899 0.077147016 

0.451612903 0.213884786 0.229693173 0.382196914 0.214054128 0.313410678 

0.215396263 0.179535747 0.378378378 0.148810443 0.155097236 
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higher and P-value should be less than 0.05 to determine the relationship stronger. The 

experimental results and performance analysis of predictive models based on protein-ligand 

docking dataset is given in section below. 

4.2 EXPERIMENT AND RESULTS 

Experiments have been carried out by implementing standard regression techniques 

namely linear regression, support vector regression, artificial neural network and random 

forest with PLD dataset using the scikit learn tool. Scikit-learn is an open source machine 

learning library in python. In scikit learn classification, regression and clustering algorithms 

is built on top of numpy, scipy and matplotlib libraries and also it contains the tools for 

statistical modelling. The standard 10-fold cross validation technique is used to estimate the 

collision on the predictive performance. The results attained from the regression models are 

investigated through performance measures namely explained variance score, mean squared 

error, root mean squared error, median absolute error and mean absolute error. The results are 

tabulated in Table 4.1.  

Table 4.1 Performance Results of Binding Affinity Predictive Models Based on 

Protein-Ligand Docking  

Regression 

Algorithms 

Explained 

Variance 

Score 

R2 

score 

Mean 

Squared 

error 

Root 

Mean 

Squared 

Error 

Median 

Absolute 

Error 

Mean 

Absolute 

error 

LR 0.70 0.70 0.32 0.57 0.35 0.23 

SVR 0.76 0.76 0.30 0.52 0.30 0.22 

RF 0.85 0.85 0.20 0.44 0.25 0.15 

ANN 0.82 0.82 0.20 0.44 0.22 0.15 

Table 4.1 shows that the results of linear regression predictive model based on protein-ligand 

docking obtained the explained variance score of 0.70 and mean squared error of 0.32. The 

results of root mean squared error, median absolute error, mean absolute error and R2 score 

obtained the values as 0.57, 0.35, 0.23 and 0.70 respectively. The support vector regression 

predictive model based on protein-ligand docking acquired the explained variance score of 

0.76 and mean squared error of 0.30. The results of root mean squared error, median absolute 

error, mean absolute error and R2 score obtained the values as 0.52, 0.30, 0.22 and 0.76 

respectively. The random forest predictive model based on protein-ligand docking yields the 

explained variance score of 0.85 and mean squared error of 0.20. The results of root mean 
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squared error, median absolute error, mean absolute error and R2 score obtained the values as 

0.44, 0.25, 0.15 and 0.85 respectively. The artificial neural network predictive model based 

on protein-ligand docking produces the explained variance score of 0.82 and mean squared 

error of 0.20. The results of root mean squared error, median absolute error, mean absolute 

error and R2 score obtained the values as 0.44, 0.22, 0.15 and 0.82 respectively. Among all 

the predictive models based on protein-ligand docking random forest achieves the highest 

prediction rate and low error rate. Random forest produces efficient results as it acts an 

estimator algorithm which aggregates the result of many decision trees and then outputs the 

most optimal result. The other predictive models with linear regression, support vector 

regression and artificial neural network obtained the lower prediction rate and higher error 

rate. The performance results of the binding affinity predictive models with PLD dataset to 

various metrics are portrayed in Fig. 4.6 to Fig. 4.11. 

 

Fig. 4.6 Explained Variance Score of Binding Affinity Predictive Models Based 

on Protein-Ligand Docking 
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Fig. 4.7 Mean Squared Error of Binding Affinity Predictive Models Based on 

Protein-Ligand Docking 

 

Fig. 4.8 R2 Score of Binding Affinity Predictive Models Based on Protein-Ligand 

Docking 
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Fig. 4.9 Root Mean Squared Error of Binding Affinity Predictive Models Based 

on Protein-Ligand Docking 

 

Fig. 4.10 Median Absolute Error of Binding Affinity Predictive Models Based on 

Protein-Ligand Docking 
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Fig. 4.11 Mean Absolute Error of Binding Affinity Predictive Models Based on 

Protein-Ligand Docking 

From Fig. 4.6, it is observed that the random forest based predictive model achieves 

higher explained variance score than the other regression algorithms. The Fig. 4.7 reveals that 

the R2 score curve goes superior for random forest based predictive model and inferior for 

other predictive models. It is exposed from Fig. 4.8, the random forest based predictive model 

obtains the low error rate compared to the other regression algorithms. The other error 

metrics from Fig. 4.9 to Fig. 4.11 discloses that the curve for random forest based predictive 

model goes inferior in error rate wherein the other predictive models achieve higher error 

rate. This concludes that evaluation results of random forest based predictive model through 

protein-ligand docking outperform other predictive models based on linear regression, 

support vector regression and artificial neural network. 

Findings 

The experimental results reveals that the features extracted from the docked complexes 

are exceedingly commits in determining binding affinity. PFI shows the importance of each 

feature where the binding energy attains the high score. P-value of binding energy with 

binding affinity shows that the value is less than 0.05 and this reveals that the relationship is 

strong between binding energy and binding affinity. Random forest based predictive model 

built with features of protein-ligand docking reveals that explained variance score is higher 

and the mean squared is low than other regression algorithms. The error rate associated with 
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binding affinity predictive models is less for random forest model and hence it is suitable for 

prediction of binding affinity for other disorders.   

SUMMARY 

This chapter illustrated the binding affinity predictive modelling using four different 

regression tasks. The implementation of various regression techniques for predicting the 

binding affinity based on protein-ligand dataset have been described in detail. Four 

independent models have been built and the performances of the models have been reported. 

The comparative analysis with respect to various evaluation metrics is also presented with 

tables and charts in this chapter. The development of predictive models to predict binding 

affinity based on mutations will be discussed in following chapter. 
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