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5. BINDING AFFINITY PREDICTION USING PROTEIN-

MUTATED-LIGAND DOCKING AND REGRESSION 

TECHNIQUES 

Affinity prediction of mutated protein structures is tricky as the changes occur in 

structure due to mutation. SCA occurs commonly due to repeat mutation and the six types of 

SCA are considered for study. Each type of SCA has certain limit of repeats that comes under 

normal range and the limit exceeding the range is considered as mutation. The change in 

sequence occurs for repeat mutation when it is inherited from parent as the glutamine repeats 

increases in offspring. It is complicated to predict binding affinity through mutated protein 

structures. Hence there is a need to predict affinity through mutated protein structures which 

will enable to develop drugs for different types of mutation. Developing methodologies using 

mutated protein structures and ligand will provide clear understanding of their structural 

changes and chemical changes. 

The methods exist to predict binding affinity with mutated protein structures does not 

fabricate the better results of mutation induced protein structures. The general approaches 

implemented for mutation induced protein structures contain the structure of virus and 

animals where mutation induced protein structures of homo sapiens is very exceptional. 

Some of the works in mutation induced approaches implemented through general approach 

and machine learning are, assessment of cancer missense mutation in protein structures [84], 

hot-spot mutations in selectable genes [85], mutation induced protein stability changes [86].    

This chapter illustrates the development of binding affinity predictive models based on 

protein-mutated-ligand docking using various regression algorithms.  

5.1 PROTEIN-MUTATED-LIGAND DOCKING BASED BINDING AFFINITY 

PREDICTIVE MODELS USING SUPERVISED LEARNING 

This work explains binding affinity prediction models built through protein-ligand 

docking using supervised regression techniques. The problem is formulated as regression task 

and regression algorithms such as linear regression, random forest, support vector regression 

and artificiall neural network. The predictive models are built by identifying and deriving the 

significant features through scrutinizing the changes that occur due to mutation from the 

mutated docked complexes which aids precise learning. The performance of the models are 

evaluated using explained variance score, mean squared error, root mean squared error, 

median absolute error, mean absolute error.  
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Methodology 

Binding affinity predictive model is erected by gathering the protein structures from 

PDB corpus and assembling ligands from gene cards. The six types of SCA are considered 

namely SCA 1, SCA 2, SCA 3, SCA 6 and SCA 10 as these types are commonly caused by 

repeat mutation. The same seventeen protein structures are induced with repeat mutation 

using the information from HGMD database. Docking is performed using autodock and the 

changes occurred in protein sequence due to repeat mutation is analyzed.  

Mutated protein structures are docked with ligand and docked complexes are utilized 

for feature extraction and respective dataset is created. Predictive models are built by 

employing regression techniques such as linear regression, random forest support vector 

regression and artificial neural network. The framework for binding affinity prediction model 

based on protein-mutated-ligand docking is shown in Fig. 5.1 and the model comprises of 

four phases namely corpus creation, feature extraction and dataset development, model 

building and estimation of binding affinity predictive models. 

 

 

 

 

                                   

 

 

 

 

 

 

 

 

 

Fig. 5.1 Proposed Framework of Binding Affinity Based on Protein-Mutated-Ligand Docking 
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Corpus Development 

The same seventeen protein structures are used here also to develop the corpus. The 

mutational information provided in Table IV is used to mutate the protein structures with 

repeat mutation. The eighteen ligands used in previous case are utilized here to dock with 

each protein. The changes in the pattern of sequence caused due to mutation and overlap of 

normal, mutated 1oa8 protein structure is shown in chapter 3, Fig. 3.8 and Fig. 3.9 

respectively. The protein structure affected due to mutation, is validated using ramachandran 

plot. Each and every protein is validated with ramachandran plot after inducing repeat 

mutation and validity of the protein is shown in chapter 3, Fig. 3.10. The protein structure is 

considered as valid when the amino acids fall in the favourable region. The same docking 

process is adopted here also. But the position of the binding site varies when the mutated 

protein structure docked with ligand which helps precise computation of binding affinity.  

Docked position of mutated protein structure 1oa8 with ligand amantadine and the detailed 

description of PML corpus development have been given in section 3.2 of chapter 3. 

Feature Extraction and Dataset Creation 

Proficient features are squeezed from the mutated docked complexes generated through 

protein-mutated-ligand docking. Features such as energy calculations, physical properties, 

sequence descriptors, cyscore, rfscore and autodock vina scores are extracted from the 

mutated docked complexes. Energy calculations and physical properties of protein and ligand 

are extracted using autodock and pymol. Sequence descriptors are extracted using R-script 

whereas cyscore and rf-score are squeezed using linux. Autodock vina scores are extracted 

from autodock vina.  

Energy profiles such as binding energy, inhibition constant, intermolecular energy, 

desolvation energy, electrostatic energy, total internal energy, torsional energy, molecular 

weight of protein, ligand and complex etc., Sequence descriptors consist of amino acid 

composition, autocorrelation, CTD, Quasi-sequence-order descriptors, Pseudo amino acid 

composition and profile-based descriptors. Cyscore posses hydrophobic free energy, cyscore, 

van der waals interaction energy, hydrogen-bond interaction and ligand‟s conformational 

entropy. Rfscore consists of thirty six values and each feature will denote the number of 

occurrences of a particular protein-ligand atom type pair interacting within a certain distance 

range. Autodock vina scores possess four scoring functions such as ∆Ggauss, ∆Grepulsion, 

∆Ghydrophobic and ∆GHbond.  
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Sequence descriptors are measured where the changes occur in sequence of amino acid, 

structure, protein folding and binding gets changed due to mutation. Cyscore is extracted for 

interaction energy profiles like hydrogen-bond, vanderwaals and cyscore. Scores from 

autodock vina are squeezed for free energy profiles of repulsion, hydrogen bond and 

hydrophobic. Rf score contains 36 features where the commonly occurred atoms in both the 

ligand and structure are computed where the energy calculations are extracted using 

autodock. Cyscore, rfscore and autodock vina scores are squeezed through unix where the 

sequence descriptors are extracted using R script. The description of the features is given in 

detail below. 

Binding Energy Range: The binding energy range describes at which cluster the binding 

energy falls. The binding energy range is the difference between highest and lowest energies 

among the protein-ligand complexes. For the mutated complex 1oa8 with amantadine shown 

in Fig. 3.11, the binding energy range obtained is 0.19. 

Binding Energy: Binding energy is released when a drug molecule associates with a target, 

that leads to lower the overall energy of the complex. The release in binding 

energy transforms the ligand from its minimum energy to its bound conformation with 

the protein. Lower the binding energy more stable the complex. The binding energy is 

calculated using the equation given in 5.1.  

                         (5.1) 

Where P refers to the protein, L refers to the ligand, V refers to the pair-wise 

evaluations, and ΔS~conf~ denotes the loss of conformational entropy upon binding. 

Intermolecular energy and torsional energy both are significant to calculate binding energy. 

The energy of ligand and protein in the unbound state is calculated and then the energy of the 

protein-ligand complex is calculated. The binding energy is calculated as the difference 

between energy in unbound state and energy of protein-ligand complex. For example, binding 

energy obtained for the mutated complex 1oa8 with amantadine is -4.73. 

Ligand Efficiency: Ligand efficiency is a measurement of the binding energy per atom of 

a ligand to its binding partner, such as a receptor or enzyme. Mathematically, ligand 

efficiency (LE) can be defined as the ratio of Gibbs free energy (ΔG) to the number of non-

hydrogen atoms of the compound. Ligand efficiency is calculated using the equation given in 

5.3. 
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LE = (ΔG)/N                                                                                                                   (5.2) 

where ΔG = -RTlnKi and N is the number of non-hydrogen atoms. It is transformed to the 

equation:  

LE = 1.4(-logIC50)/N                                                                                                     (5.3) 

For example, ligand efficiency obtained for the mutated complex 1oa8 with amantadine is  

-0.43. 

Inhibition Constant (pIC50): The inhibitor constant Ki is an indication of how potent 

an inhibitor is. It is the concentration required to produce half maximum inhibition. 

The IC50 value is determined at only one concentration of substrate over a range of inhibitor 

concentrations. While Ki is a constant value for a given compound with an enzyme, 

an IC50 is a relative value, whose magnitude depends upon the concentration of sub- strate. 

According to the FDA, IC50 represents the concentration of a drug that is required for 50% 

inhibition in vitro. The inhibition constant is calculated using the equation given in 5.10.  

Ki = dissociation constant of the enzyme-inhibitor complex = Kd 

Ki = [E][I]/[EI]                                                                                                            (5.4)                  

ln Kb = -ln Ki                                                                                                              (5.5)       

          deltaG(binding)    = -R*T*ln Kb                                                                                (5.6) 

          deltaG(inhibition) =  R*T*ln Ki                                                                                 (5.7)      

Binding and Inhibition occur in opposite directions, so the minus-sign is omitted  

deltaG = R*T*lnKi,                                                                                                     (5.8) 

          deltaG/(R*T) = lnKi                                                                                                   (5.9)       

          Ki = exp(deltaG/(R*T))                                                                                            (5.10) 

For example, inhibition constant obtained for the complex mut-1oa8 with amantadine is 

338.45.  

Intermolecular Energy: Intermolecular energy is the energy between non-bonded atoms that 

is the energy between atoms separated by 3-4 bonds or between atoms in different molecules. 

For example, intermolecular energy obtained for the mutated complex 1oa8 with amantadine 

is -5.03. 

Desolvation Energy: Desolvation energy is the static van der waals energy. It is the lose of 

the interaction between substance or organic compound and solvent upon binding describes 

the energy. For example electro-statically bound particles, dissociate by releasing water in an 

aqueous solution. The desolvation energy is calculated using the equation given in 5.11. 

 ΔGdesolv = Wdesolv ∑i (C), j (Si * Vj * exp ( -rij
2
 / (2 * σ

2
) ) )                                                   (5.11) 
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For example, the desolvation energy obtained for the mutated complex 1oa8 with amantadine 

is -2.96.       

Electrostatic Energy: Electrostatic energy is the long term interaction between charged 

atoms. The example of electrostatic energy is, to hold balloon against ceiling. The 

electrostatic energy is calculated using the equation given in 5.12. 

 ΔGelec = Welec ∑i, j ( qi * qj ) / ( ε(rij) * rij )                                                                    (5.12) 

For example, the electrostatic energy obtained for the mutated complex 1oa8 with 

amantadine is -2.07. 

Total Internal Energy: Total energy is that the total of changes of all energetic terms 

enclosed in rating operates of matter or supermolecule upon binding, and the changes upon 

binding of the entropic terms. For example, the total internal energy obtained for the mutated 

complex 1oa8 with amantadine is 0.06. 

Torsional Energy: Torsion energy is related to dihedral term of internal energy. Torsional 

energy is calculated using the equation given in 5.13. 

ΔGtor = Wtor Ntor                                                                                                                                                (5.13) 

where Ntor is the number of all rotatable bonds, excluding guanidinium and amide bonds etc. 

For example, the torsional energy obtained for the mutated complex 1oa8 with amantadine is 

0.3.  

clRMS: It is the root mean square difference between current conformation and the lowest 

energy conformation in its cluster. For example, the clRMS obtained for the mutated complex 

1oa8 with amantadine is 0. 

refRms: It is the root mean square distinction between current conformation coordinates and 

current reference structure. By default the input substance is utilized as a result of the 

reference. For example, the refRMS obtained for the mutated complex 1oa8 with amantadine 

is 55.37. 

Binding Affinity: Affinity is a measure of the strength of attraction between a molecule and 

legend. High affinity binding has strong intermolecular force, whereas low affinity binding 

has weak intermolecular force. Affinity is calculated using the equation given in 5.17. 

[R] [R] K1 = [DR] K-1                                                                                              (5.14)  

K1/K−1 =[RR]/[R][R]                                                                                               (5.15) 

Binding Affinity = K1/K−1                                                                                       (5.16) 

Kd = K−1/K1                                                                                                              (5.17) 
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Here, Kd is called as binding affinity constant, K1 is termed as association constant and k-1 is 

rate constant. For example, the binding affinity obtained for the mutated complex 1oa8 with 

amantadine is -3.9.   

RMSD: The root mean squared deviation is used to validate the docking with respect to 

biological configuration. RMSD is the measure of the average distance between the atoms. 

The value of RMSD is obtained using the equation given in 5.18. The rmsd l.b denotes the 

root mean squared deviation lower bound whereas the rmsd u.b denotes the root mean 

squared deviation upper bound.  

𝑅𝑀𝑆𝐷 =  1/N  (xci − xdi )2 + (yci − ydi )2 + (zci − zdi )2N
i=1                               (5.18) 

For example, the RMSD obtained for the mutated complex 1oa8 with amantadine is 12.53, 

13.78 as rmsd l.b and rmsd u.b respectively. 

Physical properties: Physical properties such as molecular weight of ligand, molecular 

weight of complex, atom count in protein, atom count in ligand, atom count for complex, 

surface area of protein, surface area-solvent access of protein, surface area of ligand, surface 

area-solvent access of ligand, surface area solvent of complex and charges of protein are 

derived from pymol. For example, the physical properties obtained for the mutated complex 

1oa8 with amantadine are given below.  

molecular weight of ligand = 150.2487 

molecular weight of complex = 13041.16 

atom count in protein = 970 

atom count in ligand = 28 

atom count for complex = 1198 

surface area of protein = 1734.07 

surface area-solvent access of protein = 7834.37  

surface area of ligand = 700.997 

surface area-solvent access of ligand = 2760.95 

surface area solvent of complex = 13291.47 

charges of protein = -4    

RF Score: Rf-score has 36 features, along with energy based features these rf-score features 

aids in predicting the binding affinity. Rf-score features are extracted using python scripts. 

Each feature will comprise the number of occurrences of a particular protein-ligand atom type 

pair interacting within a certain distance range. The main criterion for the selection of atom 

types is to generate features that are as dense as possible, while considering all the heavy 
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atoms that are commonly observed in PDB complexes. As the number of protein-ligand 

contacts is constant for a particular complex, the more atom types are considered. Therefore, a 

minimal set of atom types is selected by considering atomic number. A smaller set of 

intermolecular features has the additional advantage of leading to computationally faster 

scoring functions. Here the nine common elemental atom types for both the protein P and the 

ligand L are considered. 

{P(j)}9j=1={C,N,O,F,P,S,Cl,Br,I}{L(i)}9i=1={C,N,O,F,P,S, Cl,Br,I}                          (5.19) 

The occurrence count for a particular j-i atom type pair is evaluated aswhere dkl is the 

Euclidean distance between k
th

 protein atom of type j and the l
th

 ligand atom of type i 

calculated from the PDBbind structure; Kj is the total number of protein atoms of type j and Li 

is the total number of ligand atoms of type i in the considered complex; Z is a function that 

returns the atomic number of an element and it is used to rename the feature with a mnemonic 

denomination; È is the heaviside step function that counts contacts within a dcutoff=12Å 

neighbourhood of the given ligand atom. For example, X7,8 is the number of occurrences of 

protein nitrogen interacting with a ligand oxygen within a 12Å neighbourhood. This cutoff 

distance is suggested as sufficient to implicitly capture solvation effects. This representation 

leads to a total of 81 features, of which 45 are necessarily zero across PDBbind complexes 

due to the lack of proteinogenic amino acids with F, P, Cl, Br and I atoms [87]. Therefore, 

each complex will be characterised by a vector with 36 features and is calculated using the 

equation given in 5.19. 

x⃗=(x6,6,x6,7,x6,8,x6,9,x6,15,x6,15,x6,17,x6,35,x6,53,x7,6,…,x8,53,x16,6,…,x1

6,53) ∈ℵ
36                                              

                                                                                 (5.20) 

Rf-score values obtained for the mutated complex 1oa8 with amantadine are 6.6, 7.6, 

8.6, 16.6, 6.7, 7.7, 8.7, 16.7, 6.8, 7.8, 8.8, 16.8, 6.16, 7.16, 8.16, 16.16, 6.15, 7.15, 8.15, 

16.15, 6.9, 7.9, 8.9, 16.9, 6.17, 7.17, 8.17, 16.17, 6.35, 7.35, 8.35, 16.35, 6.53, 7.53, 8.53, 

16.53. 

Cyscore: Cyscore is an empirical scoring function consists of four numerical features. The 

features like Cyscore, hydrophobic energy, van der Waals interaction energy, hydrogen-bond 

interaction energy and the ligand‟s conformational entropy are captured from the complexes 

using python script [88]. For example, the cyscore obtained for the mutated complex 1oa8 

with amantadine is -1.2146.  

Hydrophobic energy:  This energy is the observed tendency of nonploar substances to 

aggregate in an aqueous solution and water molecules are excluded. Positive free energy 
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change implies hydrophobicity and the negative free energy change implies hydrophilicity. 

Hydrophobic materials are used to remove oil from water and chemical separation process to 

remove non-polar substances from polar substances. For example, the hydrophobic energy 

obtained for the mutated complex 1oa8 with amantadine is -0.2891. 

Van der waals interaction energy: It is driven by induced electrical interactions between two 

or more atoms or molecules that are very close to each other. It is the weakest of all 

intermolecular attractions between molecules. Example of van der waals interactions are 

dipole-diploe interaction and every other interaction force. For example, the vanderwaals 

interaction energy obtained for the mutated complex 1oa8 with amantadine is -0.9255.  

Hydrogen-bond interaction energy: The nature of the donor and acceptor atoms which 

constitute the bond, their geometry, and environment, the energy of a hydrogen bond can 

vary between 1 and 40 kcal/mol. This bond is the strongest interaction than the van der waals 

interaction. Water, chloroform, ammonia are examples of hydrogen bond. For example, the 

hydrogen-bond interaction energy obtained for the mutated complex 1oa8 with amantadine is 

0. 

Ligand’s conformational entropy: Conformational entropy is an important component of the 

change in free energy upon binding of a ligand to its target protein. For example, the ligand‟s 

conformational entropy obtained for the mutated complex 1oa8 with amantadine is 0.   

Sequence Descriptors: Sequence Descriptors have many features which aids in identifying 

the affinity. The commonly used descriptors are captured with the package protr in R and 

coded in R. Commonly used descriptors are amino acid composition, autocorrelation, CTD, 

Conjoint Triad, Quasi-sequence-order descriptors, Pseudo amino acid composition (PseAAC) 

[89]. 

Amino acid composition: The key elements of amino acids are hydrogen, nitrogen, oxygen 

and carbon. Many elements are found in the side chain of amino acids. Naturally occurring 

amino acids are more than 500 but only 20 amino acids are encoded in genetic code. There 

are three different amino acid composition namely single amino acid composition, dipeptide 

and tripeptide composition. The change in amino acid causes mutation and those changes can 

be monitored through amino acid composition. 

Autocorrelation: Autocorrelation descriptors are a class of topological descriptors, also 

known as molecular connectivity indices, describe the level of correlation between two 

objects. 

Conjoint triad: The conjoint triad descriptors consider the properties of one amino acid and 

its vicinal amino acids. It also considers three continuous amino acids as a unit. 
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Quasi-sequence-order descriptors: These descriptors are derived from the distance matrix 

between 20 amino acids 

Pseudo amino acid composition (PseAAC): It represents protein samples for improving 

protein subcellular localization prediction and membrane protein type prediction. 

CTD descriptors: It is the feature vector for predicting proteins targeted to various 

compartments in the hierarchical structure of cellular sorting pathway from protein sequence. 

Composition, Transition and Distribution (CTD) of amino acid attributes such as 

hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, secondary 

structure and solvent accessibility of the protein sequences. 

Autodock vina scores: An empirical scoring function calculates the affinity, or fitness, of 

protein-ligand binding by summing up the contributions of a number of individual terms. 

This score improves accuracy and speed. This scores has four features namely gauss, 

hydrophobic, hydrogen bonding and repulsion. Autodock vina scores obtained for the 

mutated complex 1oa8 with amantadine are -0.14984, 7.85, 222.698, 1.80, 7.006, 0 as 

binding affinity, gauss 1, gauss 2, repulsion, hydrophobic and hydrogen respectively. 

Feature Importance using correlation matrix: The correlation matrix is obtained for 

analyzing the importance of features as done in previous case. The correlation values lies 

between -1 to 1. The value 1 refers positive correlation, -1 demotes negative correlation and 0 

refers to there is no correlation. The correlation matrix of features is shown in Fig. 5.2. In this 

correlation matrix the feature cyscore and hydrophobic have the values of 0.6, the features 

gauss 1 and gauss 2 have the value of 0.9, the feature vanderwaals desolvation energy posses 

the value of 0.9, the feature intermolecular energy has the value of 0.7, the feature 

electrostatic energy has the value of 0.4. The features rf denotes random forest, rf1 and rf2 

have the low correlation values of 0.2. This matrix determines the relation between the 

independent variable (X) and dependent variable (Y).  
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Fig. 5.2 Correlation Matrix of Feature Vectors 

The feature importance technique is used to rank and evaluate the importance of 

features. The feature importance based on correlation matrix enables in identifying the 

contributive feature set with respect to binding affinity. By this way the feature values are 

validated and the P-value is determined for the contributive feature to discover its 

relationship with binding affinity. Permutation feature importance of feature vectors and the 

scores for each feature value are shown in Fig. 5.3 and Fig. 5.4 respectively. 
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Fig. 5.3 Permutation Feature Importance of Features  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Scores of Features 
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torsional  0.25              ATG 0.451 

rf1               0.31              gauss 1 0.045 

rf3              0.005             gauss 2 0.241         

rf8              0.247             repulsion 0.457 

hydrophobic 0.54              hydrogen 0.245 

cyscore               0.524            C8                0.564 

hydrogren bond  0.512         prop1.Tr2332 0.0124 

ligand entropy 0.231           prop3.G3.residue50 0.408 

A 0.45                            Xc2.lambda.2 0.01 

V 0.521                          total internal 0.45 

Q 0.541                          RMSD 0.235 

T 0.241                          CTG                0.458 

P 0.24                             M                0.254 
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The feature importance based on correlation matrix shows that the most contributive 

feature is binding energy. Binding energy is derived based on energy calculations, scoring 

functions and sequence descriptors. Thus the energy values with scoring functions and 

sequence descriptors are important for binding affinity prediction. P-value is calculated to 

reveal the relationship between dependant and independent variable. The P-value obtained is 

less than 0.05 and shows that the relationship between binding affinity and binding energy is 

strong. The P-value for binding energy and binding affinity is shown in Fig. 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 P-value of Binding Affinity with Binding Energy 

The feature values from 307 mutated docked complexes in PML corpus are captured 

and normalized using min-max normalization. Binding affinity values are derived from 

autodock and amplified with feature vectors. The summary of the features are depicted 

below. 

 

   

 

 

 

 

 

 

 

SUMMARY OUTPUT 

       
Regression Statistics 

      
Multiple R 0.592851 

       
R Square 0.351473 

       Adjusted R 

Square 0.34934 

       
Standard Error 1.02925 

       
Observations 307 

       

         
ANOVA 

        

 

Df SS MS F Significance F 

  
Regression 1 174.5336 174.5336 164.7545 1.98E-30 

   
Residual 304 322.0442 1.059356 

     
Total 305 496.5776 

      

         

 

Coefficients 

Standard 

Error t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

50.0% 

Upper 

50.0% 

Intercept -1.58138 0.266796 -5.9273 8.35E-09 -2.10638 -1.05638 -2.10638 -1.05638 

binding_energy 0.54873 0.04275 12.83567 1.98E-30 0.464606 0.632855 0.464606 0.632855 
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A total of 509 features are extracted from each docked complex and the PMLD dataset 

with 307 instances of dimension 509 is developed. The feature values for sample docked 

complex of mut-1oa8 with amantadine are given below. The sample dataset is given in 

Appendix A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Features                          Count                              

Autodock vina scores           4                                  

cyscore                                  5                                  

rf-score                                 36                                

sequence descriptors            436                                  

       Energy Calculations             27 

       Total                                     509 

 

0.457142857 0.11372549 0.605 0.8 0.266731739 0.533063428 0.456521739 

0.892631579 0.113513514 0.85645933 0 0.038010462 0.397925976  

0.288157403 0.396518452 0.524308588 0.387096774 0.368685377 0.411631244 

0.559109964 0.378619296 0.381390783 0.362093607 0.393234918 0.27027027 

0.476286023 0.499454958             0          0       0     0     0       0      0.6   0.42        

0.54         0.6        0.7        0.47       0.57   0.23  0.8  0.58    0.8     0.12       0.34   0.24           

0.45         0.34       0.23    0.67    0.76   0.45      0.9  0.54     0.9     0.56       0.23   0.67           

0.085365854 0.04065040  0.05691057 0.056910567 0.0081301 0.121951 0.06097561 0.040650407 

0.008130081 0.040650407 0.097560976   0.0813008    0.0325203   0.024390244 0.0203252    

0.077235772 0.04878049  0.00813008 0.044715447 0.0447154 0.4186992     0.32520325   

0.256097561 0.337398374 0.422764228 0.239837398 0.300813008 0.2723577 0.426829268 

0.308943089 0.451219512 0.239837398 0.12195122 0.699186992 0.178861789 0.528455285 

0.219512195 0.25203252 0.349593496 0.418699187 0.231707317 0.27755102 0.191836735 

0.195918367 0.314285714 0.159183673 0.171428571 0.183673469 0.236734694 0.240816327 

0.293877551 0.155102041 0.175510204 0.167346939 0.053061224 0.265306122 0.232653061 

0.253061224 0.102040816 0.273469388 0.159183673 0.195918367 0.62601626 0.57723577 

0.68292683  0.98373984  1  0.81300813   0.98373984  0.28455285 0.01626016 0.18699187 

0.406504065 0.79674797 0.37398374 0.79674797 1   0.406504065 0.73170732 0.08943089 

0.04065041 0.49593496 0.406504065 0.6097561    0.18699187 0.76422764  0.49593496 

0.81300813  0.76422764 0.69105691 0.04878049  0.18699187 1  0.57723577 0.68292683 

0.13821138 1    0.76422764  0.49593496 0.81300813   0.98373984  0.69105691 

0.67479675 0.18699187 0.845528455  0.23577236 0.74796748 0.81300813    0.76422764 

0.69105691 0.89430894 0.18699187 0.845528455 0.64227642  0.74796748  0.79674797       1   

0.406504065 0.73170732 0.08943089 0.04065041 0.49593496   0.032520325 0.73170732 

0.33333333 0.43902439 0.05691057 0.406504065 0.6097561 0.25203252 0.79674797           1      

1   0.64227642 0.74796748 0.92682927 0.59349593 0.406504065  0.29268293 0.68292683 

0.024482287 0.024213799 0.024529542 0.024630116 0.026939709 2.855112358  2.855112358  
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Model Building 

Binding affinity predictive models are developed using various regression algorithms 

such as linear regression, random forest, support vector regression and artificial neural 

network. The same hyper parameters such as number of iterations, number of estimators, 

learning rate are used here. Tuning of hyper parameters achieves the precise prediction rate. 

The dataset of 509 instances is split into training and testing as 458 instances for training and 

51 instances for testing. The performances of the models are evaluated by means of various 

metrics such as explained variance score, mean squared error, root mean squared error, R2 

score, median absolute error, mean absolute error and P-value. 

Performance metrics like explained variance score and mean squared error are 

considered as significant metrics in regression task where explained variance score should be 

higher and the error rate should be low. The other error metrics like root mean squared error, 

median absolute error and mean absolute error should be minimal. R2 score value should be 

higher and P-value is less than 0.05 to determine the relationship stronger. The results of 

predictive models based on protein-mutated-ligand-docking dataset are given in section 

below. 

5.2 EXPERIMENT AND RESULTS 

Experiments have been carried out by implementing standard regression techniques 

namely linear regression, support vector regression, artificial neural network and random 

forest with PMLD dataset using the scikit learn tool. The standard 10-fold cross validation 

technique is used to estimate the impact on the predictive performance. The results obtained 

from the regression models are analyzed through performance measures namely explained 

variance score, mean squared error, root mean squared error, median absolute error, mean 

absolute error. The results are tabulated in Table 5.1. 

Table 5.1 Performance Results of Binding Affinity Predictive Models Based on 

Protein-Mutated-Ligand Docking 

Machine 

Learning 

Algorithms 

Explained 

Variance 

Score 

R2 

score 

Mean 

Squared 

error 

Root 

Mean 

Squared 

Error 

Median 

Absolute 

Error 

Mean 

Absolute 

error 

LR 0.68 0.68 0.45 0.67 0.49 0.34 

SVR 0.70 0.70 0.32 0.57 0.35 0.23 

RF 0.87 0.87 0.2 0.4 0.22 0.15 

ANN 0.75 0.75 0.30 0.59 0.39 0.27 
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Table 5.1 indicates that the linear regression predictive model based on protein-mutated-

ligand docking obtains the explained variance score and the error rate as 0.68 and 0.45 

respectively. The results of root mean squared error, median absolute error, mean absolute 

error and R2 score obtained are 0.67, 0.49, 0.34 and 0.68 respectively. The SVR predictive 

model acquired the explained variance score and the error rate as 0.70 and 0.32 respectively. 

The results of root mean squared error, median absolute error, mean absolute error and R2 

score acquired are 0.57, 0.35, 0.23 and 0.70 respectively. The RF predictive model obtained 

the explained variance score and the error rate as 0.87 and 0.2 respectively. The results of 

root mean squared error, median absolute error, mean absolute error and R2 score attained are 

0.4, 0.22, 0.15 and 0.87 respectively. The ANN predictive model yields the explained 

variance score and the error rate as 0.75 and 0.30 respectively. The results of root mean 

squared error, median absolute error, mean absolute error and R2 score attained are 0.59, 

0.39, 0.27 and 0.75 respectively. Among the predictive models based on protein-mutated-

ligand docking, random forest achieves the highest prediction rate and minimum error rate. In 

this experiment the number of features is high and the random forest algorithm does not 

assume the linear relationship between the features. As a result the explained variance score 

is high and error rate is minimum in case of random forest as compared to the other 

regression algorithms. The performance results of the binding affinity predictive models with 

PMLD dataset to various metrics are portrayed in Fig. 5.6 to Fig. 5.11. 

 

Fig. 5.6 Explained Variance Score of Binding Affinity Predictive Models Based 

on Protein-Mutated-Ligand Docking 
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Fig. 5.7 R2 Score of Binding Affinity Predictive Models Based on Protein-

Mutated-Ligand Docking 

 

Fig. 5.8 Mean Squared Error of Binding Affinity Predictive Models Based on 

Protein-Mutated-Ligand Docking 
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Fig. 5.9 Root Mean Squared Error of Binding Affinity Predictive Models Based 

on Protein-Mutated-Ligand Docking 

 

Fig. 5.10 Median Absolute Error of Binding Affinity Predictive Models Based on 

Protein-Mutated-Ligand Docking 
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Fig. 5.11 Mean Absolute Error of Binding Affinity Predictive Models Based on 

Protein-Mutated-Ligand Docking 

From Fig. 5.6, it is observed that the predictive model based on random forest achieves 

higher explained variance score than the other regression algorithms. Fig. 5.7 reveals that the 

R2 score curve goes superior for random forest and inferior for other predictive models. It is 

exposed from Fig. 5.8, the random forest predictive model obtains the low error rate 

compared to the other regression algorithms. From Fig. 5.9 to Fig. 5.11 discloses that the 

curve for random forest goes inferior in error rate wherein the other regression models 

achieve higher error rate. This concludes that the predictive model based on random forest 

outperform other predictive models based on linear regression, support vector regression and 

artificial neural network. 

Comparative Analysis of Predictive Models Based on Protein-Ligand Docking and 

Protein-Mutated-Ligand Docking 

The performance results of predictive models based on protein-mutated-ligand docking 

is compared with predictive models based on protein-ligand docking and the comparative 

results are analyzed. The predictive models built through protein-mutated-ligand docking are 

helpful to capture the changes in protein sequence that occurs due to repeat mutation. While 

the predictive models built through protein-ligand docking are not mutated to capture the 

changes. Random forest performed better than other regression algorithms for the predictive 

models based on protein-ligand docking and protein-mutated-ligand docking. The 
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comparative results of predictive models based on protein-ligand docking and protein-

mutated-ligand docking is presented in Table 5.2. 

 

Table 5.2 Comparative Results of Binding Affinity Prediction Based on Regression 

Models 

Algorithms Random Forest Linear Regression Support Vector 

Regression 

Artificial Neural 

Network 

Dataset PLD PMLD PLD PMLD PLD PMLD PLD PMLD 

Explained Variance 

Score 

0.85 0.87 0.70 0.68 0.76 0.70 0.82 0.75 

R2 Score 

0.85 0.87 0.70 0.68 0.76 0.70 0.82 0.75 

Mean Squared 

Error 0.20 0.2 0.32 0.45 0.30 0.32 0.20 0.30 

Root Mean 

Squared Error 0.44 0.4 0.57 0.67 0.57 0.57 0.44 0.59 

Mean Absolute 

Error 0.15 0.15 0.23 0.34 0.22 0.23 0.15 0.27 

Median Absolute 

Error 0.25 0.22 0.35 0.49 0.30 0.35 0.22 0.39 

 

Table 5.2 shows that the random forest predictive model based on protein-ligand 

docking yields the explained variance score and error rate as 0.85 and 0.2 respectively 

whereas the explained variance score and mean squared error for the predictive model based 

on protein-mutated-ligand docking is 0.87 and 0.2 respectively. The results of root mean 

squared error, mean absolute error, median absolute error, R2 score for random forest 

predictive model based on protein-ligand docking is 0.44, 0.15, 0.25 and 0.85 respectively. 

The results of root mean squared error, mean absolute error, median absolute error, R2 score 

for random forest predictive model based on protein-mutated-ligand docking is 0.4, 0.15, 

0.22 and 0.87 respectively.  

The linear regression predictive model based on protein-ligand docking yields the 

explained variance score and error rate as 0.70 and 0.32 respectively whereas the explained 

variance score and error rate for predictive model based on protein-mutated-ligand docking is 

0.68 and 0.45 respectively. The results of root mean squared error, mean absolute error, 

median absolute error, R2 score for linear regression predictive model based on protein-

ligand docking is 0.57, 0.23, 0.35 and 0.70 respectively. The results of root mean squared 

error, mean absolute error, median absolute error, R2 score for linear regression predictive 
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model based on protein-mutated-ligand docking is 0.67, 0.34, 0.49 and 0.68 respectively. The 

support vector regression predictive model based on protein-ligand docking produces the 

explained variance score of 0.76 and the error rate is 0.30. The SVR predictive model based 

on protein-mutated-ligand docking produces the explained variance score and error rate as 

0.70 and 0.32 respectively. The results of root mean squared error, mean absolute error, 

median absolute error and R2 score for SVR predictive model based on protein-ligand 

docking is 0.57, 0.22, 0.30 and 0.76 respectively. The results of root mean squared error, 

mean absolute error, median absolute error and R2 score for SVR predictive model based on 

protein-mutated-ligand docking is 0.57, 0.23, 0.35 and 0.70 respectively.  

The artificial neural network predictive model based on protein-ligand docking 

produces the explained variance score and error rate as 0.82 and 0.20 respectively. The ANN 

predictive model based on protein-mutated-ligand docking obtains the explained variance 

score and error rate as 0.75 and 0.30 respectively. The results of root mean squared error, 

mean absolute error, median absolute error and R2 score for ANN predictive model based on 

protein-ligand docking is 0.44, 0.15, 0.22 and 0.82 respectively. The results of root mean 

squared error, mean absolute error, median absolute error and R2 score for ANN predictive 

model based on protein-mutated-ligand docking is 0.59, 0.27, 0.39 and 0.75 respectively. 

Among the predictive models based on protein-ligand docking and protein-mutated-ligand 

docking, random forest achieves the highest prediction rate and lower error rate than the other 

predictive models. The comparative results of predictive models based on protein-ligand 

docking and protein-mutated-ligand docking are shown in Fig. 5.12. 
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Fig. 5.12 Comparative Results of Binding Affinity Prediction Using Regression 

Fig. 5.12 shows that the random forest predictive model based on protein-mutated-

ligand docking is high in prediction rate whereas the random forest predictive model based on 

protein-ligand docking achieves the less prediction rate. Random forest achieves lower error 

rate for other metrics such as root mean squared error, mean absolute error and median 

absolute error than the other predictive models. This proves that the random forest predictive 

model based on protein-mutated-ligand docking achieves high prediction rate as the changes 

in sequences and structures are captured.  

Findings 

The experimental results shows that the features extracted from the mutated docked 

complexes highly contribute in predicting binding affinity. PFI shows the importance of each 

feature vectors where the binding energy attains the high score. P-value of binding energy 

with binding affinity shows that the value is lower than 0.05 and this reveals that the 

relationship is strong between binding energy and binding affinity. The comparative results 

confirm that the binding affinity predictive models based on protein-mutated-ligand docking 

achieve the highest prediction rate than the predictive models based on protein-ligand 

docking. Random forest based affinity binding predictive model reveals that explained 

variance score is higher and the mean squared is low than other regression algorithms. The 

error rate associated with binding affinity predictive models is less for random forest model 

and hence it is suitable for prediction of binding affinity for other disorders.  This proves that 
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the work can be performed for all types of mutation where it helps in identifying the drugs for 

all types of mutation.    

SUMMARY 

       This chapter exemplify the binding affinity predictive models as different regression 

problems. The changes in protein sequence and structure due to mutation are identified by 

capturing more features like sequence descriptors and scoring functions during feature 

extraction and the same has been described. The implementation of various regression 

techniques executed through protein-mutated-ligand dataset has been described in detail. The 

experimental results of four predictive models have been reported in detail and the 

comparative analysis is also presented. The comparison of predictive models based on 

protein-mutated-ligand docking and predictive models based on protein-ligand docking with 

respect to various evaluation metrics has been illustrated with tables and charts. The 

development of binding affinity predictive models based on protein-protein interaction will 

be discussed in next chapter. 

Remarks  

The paper titled Affinity Prediction Using Mutated Protein-Ligand Docking with 

Regression Techniques of SCA, has been published in International Journal of Recent 

Technology and Engineering, Vol 8, Issue 2, July 2019, pp 3642-3648. (Scopus indexed) 

 

 

 

 

 

 

 

 

 

 

 

 


