Review of Literature

Medicinal plants have been considered as an important therapeutic aid for alleviating humankind. Nearly all cultures from ancient times till today have used plants as source of medicine. In many developing countries traditional medicine is still the mainstay of healthcare and most of the drugs and cures come from plants. Knowldege of plant chemical constituents is desirable, not only for the discovery of therapeutic agensts but also for the synthesis of complex chemical substances. In addition, the knowledge of the chemical constituents of plant would further be valuable in discovering the actual value of folk remedies. Therefore, the study on these phytochemicals in plants particularly of medicinal value is of great importance (Mujab *et al.*, 2003).

Secondary metabolites are the essential components of plants. It is important to quantify the chief active components of plants, which plays a major role in curing the ailments. The quality of secondary metabolites was affected by various environmental factors such as age, season, climatic condition, geographical variations and several other physical conditions influence the synthesis of the active phytochemical compounds in the plants which in turn affect their quality and curability. Hence a systematic study of crude drug by pharmacognostical techniques is important for proper identification and quality evaluation (Meenu *et al.*, 2011).

The medicinal effects of plant materials result from the combinations of secondary metabolites present in the plant such as alkaloids, steroids, tannins, flavonoids, resins, fatty acids, etc. Out of the total number of secondary metabolites reported in the natural products, 33,000 are terpenoids, 16,000 are alkaloids, and 8,182 are flavonoids. These being an essential part of the basic metabolism also have an ecological role and are often involved in plant protection against biotic or abiotic stresses. Some secondary metabolites such as flavonoids are also involved in cell pigmentation in flower and seed, which attract pollinators, seed dispersers and are also involved in plant reproduction. Moreover, plant secondary metabolites have pharmaceutical properties effective for human health (Jain *et al.*, 2019).

Medicinal and aromatic plants from different families have been used to cure various ailments of the people of our country but very little attention has been paid on the medicinal plants of Asteraceae in India. Asteraceae is considered as one of the highly advanced family having about 13 subfamilies, 1,911 genera, and 32,913 species (Hajra *et al.*, 1995; Mabberley, 1997).The genus *Eupatorium* is a flowering plant containing around 1200 species representing the family Asteraceae. Most of them are herbaceous perennials and few are shrubs. The various species from the genus *Eupatorium* are used in folklore medicine in different parts of the world for their medicinal properties (Albuquerque *et al.*, 2010).

Taxonomical position of *Eupatorium*

Class	:	Dicotyledonae
Series	:	Inferae
Order	:	Asterales
Family	:	Asteraceae
Genus	:	Eupatorium

6

Eupatorium glandulosum L.

Synonym

Eupatorium adenophorum, Ageratina adenophora

Distribution

It is distributed mainly in the tropical regions of America, Europe, Africa, and Asia. In India it is found in Sikkim, Meghalaya, Tripura, Uttar Pradesh and Tamil Nadu.

Botanical description

E. glandulosum is a perennial, branched, spreading shrub growing upto 2m height, stem and branches densely glandular pubescent, purplish dark; Leaves opposite and decussate, rhomboidal, tapering, crenate, serrate, petioles 3.5-5 cm long; Inflorescence- terminal on the main stem or branches; heads homogamous, white, flat-topped clustered; penduncles 5- 10 mm long, glandular, with a few linear bracteoles 3 mm long; involucral bracts, green, very glandular pubescent outside, in many series; Corolla tube 3 mm long; lobes 5, Stamens 5; ovary inferior, stigma 2-lobed; flowering February to May. The plant has an offensive smell when crushed.

Screening of selected Eupatorium species for pharmacognostical, anticancer and tissue culture studies

Medicinal uses

Leaves of *E. glandulosum* possess antiseptic, blood coagulant, analgesic and antipyretic, astringent, thermo genic and stimulant in folklore medicine in India (Mandal *et al.*, 1981; Ansari *et al.*, 1983; Kritikar and Basu, 1987; Rai and Sharma, 1994). The leaf juice has been applied on cut wounds to abate bleeding and also used to cure tooth ache and gum infection (Dahanukar *et al.*, 2000; Saha *et al.*, 2011).

The tribes of Meghalaya and Nagaland used the leaves to cure stomach ache (Kumar, 2002). Traditional practitioners in Darjeeling used the young leaves and shoots of *E. glandulosum* to treat jaundice, ulcers (Ansari *et al.*, 1983) and dysentery (Bantawa and Rai, 2009). The leaves contain a kind of valuable perfumery material which results in economic profit of cosmetic Industry (Vasanthi and Gopalakrishnan, 2013).

Plant part	Phytochemicals	Reference	
Aerial	β-cymene, α- phellandrene, γ-	Paul et al., 2002	
parts	curcumene, γ -2-carene, camphene and		
	endo bornyl acetate		
Leaves	Alkaloids, Tannins, Glycosides,	Nair et al., 1993; Ding et	
	Saponins, terpenes, Carbohydrates,	al., 1992; Voirine, 1995;	
	Phenolic compounds, anthroquinone	Mukherjee et al., 2001;	
	glycosides, Cadinane sesquiterpenes,	Sasikumar et al., 2005;	
	monoterpenes, diterpenes, coumarins,	Yan et al., 2006; Tian et	
	steroids, propanol, coumaric acid and	al., 2007; He et al., 2008;	
	phenyl proponoids, quercetagetin 7-O-	Li et al., 2008; Zhao et	
	(6"-acetyl- β -d-glucoside), 7-O-	al., 2009; Kurade et al.,	
	glucosides of 6-hydroxykaempferol,	2010; Yun et al., 2011;	
	quercetin, quercetagetin, 3,5,7-	Iyeswarya et al., 2013;	
	Trihydroxy-6, 4'-dimethoxyflavone	Zhang <i>et al.</i> , 2013;	
	and eupalitin 3-O-b- D-galacto	Rajeswary and	
	pyranoside	Govindarajan, 2013;	

Phytochemical studies

8

		Vasanthi and
		Gopalakrishnan, 2013;
		Samuel et al., 2013 and
		Desingh et al., 2014
Flowers	Coumarins, steroids, alkaloid, phenyl proponoid, polysaccharide, sesquiterpene lactones, flavonoids, kaempherol diglycoside derivative, quercetin-3-O-beta-d-glucopyronosi de, thujene, sabinene, terpinolene, linalool, camphor, borneol,cardinal, selina, amorphenes, p-cymene, bornyl acetate, camphene, amorphene, amorph-4-en-7-ol, 3-acetoxyamorpha- 4, 7(11)- dien-8-one and amorph-4,	BohlmannandGupta,1981;NairandSivakumar, 1990;Ding etal.,1992;AdhikariAdhikariandKrausetal.,1994;Weyerstahletal.iaetal.,Padaliaetal.,Question2009;Padaliaetal.,Question2010AdhikariandGopalakrishnan,2013
Root	Phenols, coumaric acid, propanol, 7- hydroxy-8, 9-dehydrothymol 9-O- trans-ferulate, 7-hydroxythymol 9-O- trans-ferulate, 7, 8-dihydroxythymol 9-O-trans-ferulate, 7, 8-dihydroxy thymol 9-O-cis-ferulate, methyl (7R)- 3-deoxy-4,5-epoxy-D-manno-2- octulosonate 8-O-trans-p-coumarate, methyl (7R)- 3- deoxy-4,5-epoxy-D- manno-2-octulosonate 8-O-cis-p- coumarate, and 3-(2-hydroxyphenyl) propyl methyl malonate	Zhong <i>et al.</i> , 2013

Pharmacognostical studies

Activities	Plant part	Reference
Antipyretic activity	Leaves	Mandal et al., 2005
Analgesic activity		
Anticancer activity	Leaves	Adebayo et al., 2010
Anticoccidal activity	Leaves	Yang et al., 2012
Anti inflammatory activity	Leaves	Abena <i>et al.</i> , 1993; Moura <i>et al.</i> , 2005 and Ashim <i>et al.</i> , 2011

Screening of selected Eupatorium species for pharmacognostical, anticancer and tissue culture studies

Anti-acetylcholinestrase activity	Flowers	Vasanthi and Gopalakrishnan, 2013
Antimicrobial activity	Leaves	Ekundayo <i>et al.</i> , 1988; Moody <i>et al.</i> , 2004; Akinyemi <i>et al.</i> ,2005; Sasikumar <i>et al.</i> , 2005; Chah <i>et al.</i> , 2006; Nabin and Geetha, 2009; Kurade <i>et al.</i> , 2010; Aditi <i>et al.</i> , 2013; Harish Kumar <i>et al.</i> , 2014 and Desingh <i>et al.</i> , 2014
Antioxidant activity	Leaves	Adebayo <i>et al.</i> , 2010; Damodar <i>et al.</i> , 2012; Samuel <i>et al.</i> , 2013; Vasanthi and Gopalakrishnan, 2013; Shekhar and Anju, 2014; Iyeswarya <i>et al.</i> , 2013 and Ralte and lallianrawna, 2014
Therapeutic activity	Leaves	Dadhich and Kanna, 2008; Shaba <i>et al.</i> , 2012 and Nonga <i>et al.</i> , 2013
Wound healing	Leaves	Durodola, 1977; Almagboul <i>et al.</i> , 1985; Oladejo <i>et al.</i> , 2003; Mustafa <i>et al.</i> , 2005; Chah <i>et al.</i> , 2006; Dash and Murthy, 2011; Harish kumar <i>et al.</i> , 2014 and Manimaran <i>et al.</i> , 2014
Antiproliferative activity	Leaves	Iyeswarya et al., 2013

Eupatorium odoratum L.

Synonym

Chromolaena odorata

Distribution

It is a native of Central and South America which has spread widely in central and western Africa, tropical America, West India, Southeast Asia and western part of Nigeria (Akinmoladun and Akinloye 2007; Ling *et al.*, 2007).

Botanical description

It is a perennial shrub that forms dense tangled bushes 1.5-2 m in height; Stem-brittle, pubescent; Root- fibrous root system; Leaves- opposite, acute, 3nerved, base obtuse or sub truncate; Petiole- long, Capitulate, axillary and terminal clusters; Peduncles- 1-3cm long, bracteate; bracts slender, 10-12mm long; involucres of about 4-5 series of bracts, pale with green nerves; Flower heads are borne in terminal corymbs, flowers are white; Florets about 20-30 or a few more, 10-12mm long; ovary- 4mm long; corolla slender trumpet form; pappus of dull white hairs 5mm long; Achenes glabrous; Seeds are small.

Medicinal uses

The leaves of *E.odoratum* contains antisplasmodic, antiprotozoal, antitrypanosomal, antibacterial, antiviral, anticancer and antihypertensive activities. It has also been reported to possess haemostatic (Akah, 1990), anti-inflammatory, astringent, diuretic and hepatoprotective activity (Alisi *et al.*, 2011), anticholesterolemic (Ikewuchi and Ikewuchi, 2011) and hypotensive activity (Watt and Brandwijk, 1962; Feng *et al.*, 1964; Weniger and Robinean, 1988; Iwu, 1993; Gonzalez *et al.*, 2011 and Ikewuchi *et al.*, 2012).

The leaves of *E. odoratum* are used to treat piles (Egunjobi, 1969), malaria (Pisuthanan *et al.*, 2005), diarrhea, diabetes (Odugbemi, 2006; Akinmoladun and Akinloye, 2007), burns, wounds and skin infections (Phan *et al.*, 2000; Phan *et al.*, 2001; Panda and Ghosh, 2010), and inflammation (Habtemariam, 2001; Owoyele *et al.*, 2005; Ayyanar and Ignacimuthu, 2009 and Hanh *et al.*, 2011),

Traditionally, fresh leaves or decoction have been used for the treatment of leech bite. In the southern part of Nigeria, the leaves are used for wound dressing, skin infection and to stop bleeding (Metwally and Ekejuba, 1981). A decoction of flowers is used as tonic, antipyretic and heart tonic (Bunyapraphatsara and Chokechaijaroenporn, 2000).

Phytochemical studies

Plant Name	Plant part	Phytochemicals	Reference
Eupatorium	Leaves	Alkaloid, tannins, glycosides, flavonoids, phenols, Terpenoids, Tannin, Saponin, Phlobatannin and Cardiac glycoside	Phan <i>et al.</i> , 2001; Afolabi <i>et al.</i> , 2007; Debashisha <i>et al.</i> , 2010; Srinivasa <i>et al.</i> , 2010; Anyasor <i>et al.</i> , 2011; Hung <i>et al.</i> , 2011; Nayak <i>et al.</i> , 2012 and Ikewuchi <i>et al.</i> , 2013
	Flower	Tannin, Phytosterols, Triterpinoids, Flavanoids, Coumarins, Quinones, Cardiac Glycosides, Terpenoids, Steroids, Acids, and Phenols	Munmi <i>et al.</i> , 2013; Muricken and Joy, 2015

Pharmacognostical studies

Activities	Plant part	Reference	
Antiviral activity	Leaves	Irobi, 1997	
Immunostimulant	Leaves	Lovkov et al., 1999	
activity			
Antipyretic activity	Leaves	Taiwo et al., 2000	
Anti-inflammatory	Leaves	Umukoro and Ashorobi, 2006; Lovkov et	
		al., 1999; Taiwo et al., 2000; Phan et al.,	
		2001; Owoyele <i>et al.</i> , 2005 and	
		Akinmoladun and Akinloye 2007	
Antiplasmodic	Leaves	Taiwo et al., 2000; Phan et al., 2001 and	
activity		Akinmoladun and Akinloye 2007	

Screening of selected Eupatorium species for pharmacognostical, anticancer and tissue culture studies

Antiprotozoal	Loovos	Dhan at al 2001 and Alimmoladum and	
Antipiotozoai	Leaves	Filai <i>et ul.</i> , 2001 allu Akiimolauun allu	
activity		Akinloye 2007	
Analgesic activity	Leaves	Jena and chakraborty, 2010	
Anthelmintic activity		Debashisha et al., 2010; Patel et al., 2010	
		and Velliangiri et al., 2011	
Wound healing	Leaves	Debashisha et al., 2010; Prabhudutta and	
activity		Arpita, 2010 and Anyasor et al., 2011	
Antioxidant activity	Leaves	Lovkov et al., 1999; Afolabi et al., 2007;	
		Akinmoladun and Akinloye 2007; Alisi et	
		al., 2011; Amatya and Tuladhar, 2011;	
		Anyasor et al., 2011; Venkataraman et	
		al., 2012 and Suresh et al., 2015	
Antimicrobial	Leaves	Inya agha et al., 1987; Lovkov et al.,	
activity	Flowers	1999; Bounda et al., 2001; Phan et al.,	
		2001; Akinmoladun et al., 2007; Cui et	
		al., 2009; Anyasor et al., 2011; Doss et	
		<i>al.</i> , 2011; Nayak <i>et al.</i> , 2012;	
		Venkataraman et al., 2012; Menonve et	
		<i>al.</i> , 2013; Munmi <i>et al.</i> , 2013 and	
		Muricken and Joy, 2015	

Eupatorium triplinerve Vahl

Synonym

Ayapana triplinervis

Botanical description

It is a smooth, perennial herb, 30 to 60 cm in height, semi-woody at the base. Leaves are aromatic, smooth, simple, opposite, sub-sessile, tri-nerved, acuminate, glabrous, and lanceolate; Stem reddish brown; Flowers- Headed corymb, numerous, 6 to 13 mm long, bearing about 20 pink flowers, 6 to 7 mm long. Fruit are achenes, narrowly oblong, 5 angled, and about 2 mm long.

Distribution

It is distributed in Tropical regions. It is mainly found in America and Mexico and introduced in many parts of the world.

Medicinal uses

E. triplinerve is widely used in folk medicine as analgesic, anticoagulant, antiparasitic, anthelmintic and sedative. It helps in treating ulcers, haemorrhages, anxiolytic and antidepressive (Yadava and Saini, 1990; Bose *et al.*, 2007). Besides, it also used to cure fever with convulsions, burning

sensations, indigestion, pneumonia, cough, mucus and tingling sensations within the body (Hossan *et al.*, 2009).

Leaves are used as stimulant, tonic in small doses and laxative when taken in large quantity. A hot infusion is used as emetic and diaphoretic. Decoction of the leaves were used as an antiseptic and haemostatic; useful against haemorrhage and to clean foul ulcers. An aqueous extract of the dried leaves is a cardiac stimulant. Fresh leaves are used to cure wounds and stomach ache (Yusuf *et al.*, 2009 and Melo *et al.*, 2013).

Phytochemicals	Reference
Alkaloid, Flavonoids, Saponin,	Chaturvedi and Mulchandani,
Tannin, Quinon, Steroid,	1989; Garg and Nakhare, 1993;
Triterpenoid, Coumarin,	Mala et al., 1999; Anne and
Volatile Oil, Carbohydrate,	Claude, 2009; Jaripa et al.,
Protein, Amino acid,	2010; Christy and Anusha,
Glycosides, Phenolic	2012; Sugumar et al., 2014;
compound, alkanes, carboxylic	Shirly and Dwi, 2011 and
aldehydes, ketones, aromatic	Sugumar and Karthikeyan, 2015
esters, Thymohydroquinone	
dimethyl ether Caryophyllene,	
coumarin, volatile oil, Essential	
oil, ayapanin and ayapin	
Borneol, isoeugenol,	Garg and Nakhare, 1993
thymohydroquinone	
	Phytochemicals Alkaloid, Flavonoids, Saponin, Tannin, Quinon, Steroid, Triterpenoid, Coumarin, Volatile Oil, Carbohydrate, Protein, Amino acid, Glycosides, Phenolic compound, alkanes, carboxylic aldehydes, ketones, aromatic esters, Thymohydroquinone dimethyl ether Caryophyllene, coumarin, volatile oil, Essential oil, ayapanin and ayapin Borneol, isoeugenol, thymohydroquinone

Phytochemical studies

Pharmacognostical studies

Activities	Plant part	Reference
Analgesic	Leaves	
Antiparasitic		
Anticoagulant,		Leslie, 2006; Mathew et al., 2016
CNS Depressant		
Antiulcerous and		
Antitussive		
Heptoprotective activity	Leaves	Bose <i>et al.</i> , 2007
Antioxidant activity	Leaves	Bose et al., 2007; Anirban et al., 2012;
		Melo et al., 2013 and Madhubanti et al.,
		2015
Anthelminitic	Leaves	Leslie, 2006; Subash et al., 2012
Antinociceptive activity	Leaves	Cheriyan et al., 2009 and Parimala et al.,
		2012
Anti-inflammatory activity	Leaves	Parimala et al., 2012; Binoy et al., 2013
		and Sukanlaya et al., 2015
Antimalarial activity	Leaves	Vidushi, 2013
Antimicrobial activity	Leaves	Gupta et al., 2002; Gupta et al., 2004;
		Sasikumar et al., 2005; Shafiqur and
		Mohammad, 2008; Jaripa et al., 2010
		and Tamyris et al., 2014
Anticancer activity	Leaves	Madhubanti et al., 2015

GCMS analysis

The aqueous and methanol extract of whole plant of *E. odoratum* confirmed 7 and 37 compounds respectively. The major compounds were 2, 4, 6-tris-(1-phenylethyl)-phenol, Neophytadiene, 4-Acetyl-3-Hydroxy-2, 6-Dimethoxy toluene, Methyl commate and (3S)-7-O-Methoxy methyl vestitol (Venkatraman *et al.*, 2012).

The GC MS analysis of whole plant of *E. triplinerve* showed eleven differnt compounds namely 2-hydroxy-1,3-propanediyl ester (19.18%), Octadecanoic acid (19.18%), hexadecanoic acid (14.65%), 2,6,10-trimethyl,14-

ethylene-14-pentadecne (9.84%), 2-hydroxy-3-[(9E) -9-octadecenoyloxy] propyl(9E)-9-octadecenoate (8.79%), 1-undecanol (7.82%), 1,14-tetradecanediol (6.78%), Decanoic acid, 8-methyl-, methyl ester (3.86%), Bicyclo [4.1.0] heptane, 7-butyl- (2.38%) and 1-hexyl-1-nitrocyclohexane (2.09%) (Christy and Anusha, 2012).

The flowers of *E. glandulosum* revealed the presence of twenty five compounds contains 91.3% of oils. The essential oil was dominated by sesquiterpene hydrocarbons (36.5) and oxygenated sesquiterpenoids (45.4%). The major compounds are copaen (19.72%), α -bisabolol (9.8%), azulenone (9.5%) and 4, 4- dimethyl-3- (3- methylbut- 3- enylidine) - 2- methylene bicycle (4.1.0) and heptanes (8.9%) (Vasanthi and Gopalakrishnan, 2013).

HPTLC Analysis

The High performance thin layer chromatography (HPTLC) has become one of the most important tools for the qualitative and quantitative determination of active substances (Attimarad *et al.*, 2011). By the fingerprint approach, it is possible to obtain a proper identification of the plant material. It is emerging in the field of pharmaceutical industries, molecular biology, human genetics, clinical chemistry, forensic chemistry, biochemistry, cosmetology, food and drug analysis and environmental analysis. (Morlock *et al.*, 2006). Many such reports were available for the evidence of utilization of HPTLC in fingerprinting analysis of drugs of natural origin, and hence, the increasing acceptance of natural products is well suited to provide the core scaffolds for future drugs (Chakraborthy, 2009; Hong *et al.*, 2009; Puranik *et al.*, 2010; Patel *et al.*, 2010).

Table 1

S.No	Plant Name	Part Used	Compound	References
1	Coleus forskohlii	Callus	forskolin	Malathy and Pap, 1999
2	Podophyllum hexandrum	Callus	Podophyllotoxin	Ahmad <i>et al.</i> , 2007
3	Plumbago indica	Root	Plumbagin	Unnikrishnan <i>et</i>
4	Plumbago zeylanica		-	<i>al.</i> , 2008
5	Nymphaea stellata	Flower	Quercetin	Rakesh <i>et al.</i> , 2009
6	Eruca sativa	leaf	Gallic Acid, Rutin, Quercetin	Sajeeth <i>et al.</i> , 2010
7	Nothapodytes foetida	Callus	Camptothecin	Ajay <i>et al.</i> , 2010
8	Rauwolfia serpentina	Root	Reserpine	Panwar and Guru, 2011
9	Azadirachta indica	leaf	Quercetin-3-O- β-D-Glucoside	Aarti <i>et al.</i> , 2012; Pratima <i>et al.</i> , 2014
10	Pluchea lanceolata	Callus	Daidzein	Kavi <i>et al.</i> , 2012
11	Boerhavia diffusa	Whole plant	Boeravinone and β-Sitosterol	Aldon <i>et al.</i> , 2013
12	Charybdis congesta	Callus	Scillarin, Scilliroside	Shiva <i>et al.</i> , 2013
13	Gymnema sylvestre	Callus	Gymnemic Acid	Bakrudeen <i>et al.</i> , 2013
14	Lagenaria siceraria	Fruit	Quercetin	Sharada <i>et al.</i> , 2013
15	Sesbania sesban	Stem	Quercetin	Mythili and Ravindhran, 2013
16	Tylophora indica	Callus	Kaempferol	Pratibha and Abhay, 2013
17	Artemisia annua	Whole plant	Artemisinin	Widmer <i>et al.</i> , 2014
18	Clausena excavate	Seeds	Coumarin	Adlis et al., 2014

List of plants studied using HPTLC fingerprinting techniques

Screening of selected Eupatorium species for pharmacognostical, anticancer and tissue culture studies

19	Ocimum sanctum	Leaves	Eugenol	Nargis and Sharique, 2014
20	Nyctanthes arbortristis	Leaf	α-sitosterol, α - amyrin, caffeic acid	Kayalvizhi and Richa Shri, 2014
21	Toddalia asiatica	Callus and plant	Nitidine	Chinthala and Ciddi, 2014
22	Ocimum basilicum		Gallic acid.	
23	Mentha arvensis	Aerial	ferrulic acid,	A sho at al. 2015
24	Hyptis suaveolens	parts	quercetin and	Asha et ut., 2015
25	Coleus aromaticus		rutin	
26	Catharanthus roseus	Callus	Vincristine	Barkat <i>et al.</i> , 2015
27	Pterocarpus marsupium	Callus and plant	Pterostilbene	Patel, 2015
28	Crataeva nurvala	Leaves	Quercetin	Dhar <i>et al.</i> , 2016
20	Den on hulleur nime sterre	Leaves	Quercetin	Anjoo and Ajay,
29	Бгуорпушит ріппанит	Stem	stigmasterol	2017
30	Guiera senegalensis	Leaves	Rutin, quercetin, naringenin, and gallic acid	Perwez <i>et al.</i> , 2017
31	Holarrhena antidysenterica	Callus	Conessine	Mahato and Mehta, 2017
32	Moringa oleifera	Seeds	Diosgenin	Asha and Balasaheb, 2017
33	Naringi crenulata	Callus	Quercetin	Neelam <i>et al.</i> , 2017
34	Calamus rotang	Leaves	Quercetin, rutin	Pallavi and Hemalatha, 2018

RAPD Analysis

The Random Amplified Polymorphic DNA (RAPD) technique is an effective method for analysing genetic variability. It is based on a modified PCR method and uses short oligonucleotide primers of arbitrary sequence to amplify unknown fragments of genomic DNA (Nybom, 2004). It is a reliable method for characterizing variation among species, within a species and among populations. RAPD profile construction has several advantages, such as rapidity of process, low cost and the use of small amounts of plant material.

Molecular markers have been successfully used to study the source of introduction and variability due to new environment. PCR based RAPD has been extensively used to study genetic structure of populations. Among various molecular markers, the RAPD technique is simple, rapid and requires only a few nano grams of DNA, has no requirement of prior information of the DNA sequence and has feasibility of automation with higher frequency of polymorphism, which makes it suitable for routine application for the analysis of genetic diversity (Young *et al.*, 2001).

A variety of DNA markers are available that facilitate assessment of genetic variability in plants. The most common markers include Restriction Fragment Length Polymorphism (RFLP), numerous genetic marker assays based on PCR such as Random Amplified Polymorphic DNA (RAPD), Simple Sequence Repeats (SSR) and Amplified Fragment Length Polymorphism (AFLP). RAPD technique has been extensively used in plants and animals for evaluation of intra-specific and inter-specific genetic variation and determination of phylogenetic relationship. (Karp *et al.*, 1997).

Martins *et al* (2003) analyzed the genetic diversity of *Prunus dulcis* cultivars using RAPD and ISSR markers to study their association with foreign cultivars. Six RAPD and five ISSR primers were used to find their reproducibility and polymorphism. They found that out of 124 PCR fragments. Among them 120 were polymorphic and all the plants could be discriminated and compose a heterozygous group.

The six different genera from Asteraceae family growing wild in Egypt such as Achilliea fragrantisma, Achilliea santolina, Anacyclus monanthos, Artemisia arborescens, Artemisia judaica, Glebionis coronaria, Cotula barbata. Cotola cinerea and Matricaria aurea has been analysed for their phylogenetic relationship using 26 RAPD primers. Among them 15 primers revealed polymorphism (Twab and Zahran, 2010).

RAPD markers are used to assess genetic variation in different population of *Betulaalnoides* (Jie *et al.*, 2003), *Changium smyrnioides* (Chengxin *et al.*, 2003), *Porphyra* species (Huh *et al.*, 2006), *Musa* species (Pankaj *et al.*, 2007), *Brassica* species (Sanchita *et al.*, 2008), *Trichodesma indicum* (Neelambra *et al.*, 2009), *Lycnophora ericoides* (Melo *et al.*, 2009), *Cynachum* species (Moon *et al.*, 2010), *Dalbergia sissoo* (Ginwal and Maurya, 2010), *Piper* species (Sandeep *et al.*, 2010), *Coleus* species (Muthusamy *et al.*, 2011), *Suaeda* species (Gurudeeban, 2011), Hibiscus species (Prasad, 2014), *Coleus* sp (Paul *et al.*, 2015), *Hawthorn* species (Moghadam *et al.*, 2016) and *Ocimum* species (Patel *et al.*, 2015).

Hoshi *et al* (2013) analysed three Japanese Aster species such as *Aster ageratoides, Aster iinumae* and *Aster microcephalus* using various RAPD primers. *A. Ageratoides* and *A. Microcephalus* possess high number bands in common whereas less similarity was found in *A.iinumae*. The genetic diversity was studied in fifteen populations of three species of *Anthemis melampodina, Anthemis pseudocotula and Anthemis bornmuelleri* using different RAPD primers. A close genetic relation was observed between *A. melampodina* and *A. Pseudocotula* whereas *A. Bornmuelleri* showed wide variation compare to other two species (Hasan and Qari *et al.*, 2017).

Suresha *et al* (2017) analyzed fourteen parental genotypes of *Helianthus annuus* for genetic diversity using 15 RAPD and 44 SSR primers. The genetic similarity index data of SSR and RAPD markers showed very wide range of variation among 14 sunflower genotypes.

Screening of selected Eupatorium species for pharmacognostical, anticancer and tissue culture studies

Cancer

Cancer is the rapid and uncontrolled formation of abnormal cells, which may mass together to form a tumour cells proliferate throughout the body. Cancer cells usually attack and demolish the normal cells. These cells are born due to imbalance in the body. If the process is not arrested, it may develop and causes death. The ability of the body to control cell multiplicity is achieved by a network of overlapping molecular mechanisms which direct cell proliferation and death. Any alteration in this balance (birth and death of cells), has a potential, if uncorrected, to alter the number of cells in an organ or tissue. Such changes may result in cancer, a disease that is manifested in many forms depending primarily on the organ from which it evolves.

Globally, cancer is one of the leading causes of death. According to American Cancer Society (ACS) in 2009, an estimation of about 1,500,000 new cases and over 500,000 deaths are expected to be recorded in US. South Africa experiences one of the highest incidence rates of cancer in Africa. Every one in four males and six females have the potential of developing cancer. The current statistics by the National Cancer Registry of South Africa indicate that cancers of the bladder, colon, breast, cervix, lungs and melanoma are among the most common (Mqoqi *et al.*, 2004).

S.No	Parts of the body	Type of cancer occur
1	Blood and Lymphatic Systems	Hodgkin's disease, Leukaemia's Lymphomas, Multiple myeloma
2	Skin	Malignant Melanoma
3	Digestive System	Oesophageal cancer, Stomach cancer, Pancreas cancer, Liver cancer, Colon and Rectal cancer and Anal cancer

Types of Cancer affecting different parts of the body

Table 2

4	Urinary system	Kidney cancer, Bladder cancer, Testis cancer, Prostate cancer		
5	Body parts affected in women	Breast cancer, Ovarian cancer, Gynecological cancer, Choriocarcinoma		
6	Miscellaneous cancers	Brain cancer, Bone cancer, Characinoid cancer, Nasopharyngeal cancer, Retroperitoneal, Soft tissue cancer and Thyroid cancer		

Cancer scenario in world

Cancer stands second after cardiovascular disorders in the list of diseases responsible for maximum deaths in the world (Jemal *et al.*, 2011). In 2008, about seven million deaths were attributed to cancer alone with 20–26 million new cases (Nath *et al.*, 2013). The estimated numbers of new cancer cases worldwide are about 1,685,210 in 2016 (American Cancer Society, 2016). Asia which consists 60% of the total global population bear the burden of about half of the world's cancer cases (Sankaranarayanan *et al.*, 2014). About one third of the deaths due to cancer were reported in Asia pacific countries and the death rate was projected to increase to 16 million in 2025 in this region (Shin *et al.*, 2012). More than 70% of cancer deaths occurred in low- and middle-income countries. Deaths due to cancer are projected to continuously increase and it has been estimated that there will be 11.5 million deaths in the year 2030 (Russo *et al.*, 2006) and 27 million new cancer cases and 17.5 million cancer deaths are projected to occur in the world by 2050 (Douglas, 2015).

Cancer scenario in India

The International Agency for Research on Cancer assessed that 8% of cancer deaths were recorded worldwide and 6% in India (Ferlay *et al.*, 2013). It is a major health problem worldwide due to lack of early detection methods (Chanda and Nagani, 2013). According to WHO, India has a cancer mortality

rate of 79 per 100,000 deaths and accounts for over 6 % of total deaths (Takiar *et al.*, 2010). The Indian population has been mounting over the last few decades. The approximate cases of cancer deaths was recorded as 0.44 million, 0.51 million, during the year 2011 and 2016 respectively. The estimated number of cancer mortality would increase to 0.70 million by the year 2026. Mortality of cancer in males is higher when compared to females (Souza *et al.*, 2013).

Colon Cancer

Colon cancer is a world-wide health problem affecting both men and women. Researchers throughout the world focused mostly on breast and skin cancer. It is the fourth most common cancer in the world with 1.3 million new cases each year. The incidence and mortality rates for colon cancer have been increasing in most of the countries, particularly US, European and part of Asian countries.

The number of deaths estimated for colorectal cancer was 693,333 in 2012. When looking at India and USA, the incidence, mortality, and prevalence rates are all consistently higher in USA while the incidence is higher in males in both the countries. In USA, it was the fourth most common cancer and in India, it is the fifth most common cancer (Ferlay *et al.*, 2013; Bray *et al.*, 2013).

The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer (Palaniselvam, *et al.*, 2014).

Importance of plants in curing cancer

Cancer is one of the most dangerous diseases in humans and presently there is an extensive scientific discovery of new anti cancer agents developed from natural products (Kasahara and Hemini, 1998). The U.S Natural Cancer Institute recognized the use of plants as anticancer agent in 1950.

Despite the major scientific and technological progress in the treatment and management of cancer, no reliable and definitive cure has been found. This has led to an increase in the dependence of patients on unconventional medical therapies. All over the world, especially in the developing countries the traditional use of plants in the treatment of ailments has been on the increase (Richardson *et al.*, 1999).

Several drugs are available in the market to treat various types of cancer. But they are not completely effective and safe. The major problem in the cancer chemotherapy is the prolonged toxicity of the well-established chemical drugs. The plant derived products have been proved effective and safe in the treatment and management of various cancers to some extent. The anticancer drugs were extracted from many plants are found to be potential in curing cancer.

The secondary metabolites derived from plants have biological activities that can be assayed in the laboratory, providing a scientific rationale for the use of the particular plant. In this regard, it has been estimated that about a quarter of all modern drugs were originally derived from plant sources (Kinghorn and Balandrin, 1993; Aung *et al.*, 2017).

A recent survey shows that more than 60% of cancer patients use vitamins or herbs as therapy (Madhuri and Pandey, 2008). Globally, the incidence of use of plant-derived products for cancer treatment is 10% to 40%, reaching 50% in Asiatic patients (Tascilar *et al.*, 2006; Molassiotis *et al.*,

2006). Studies on natural products for cancer prevention had resulted in availability of about 3000 anti-cancer drugs. Most of the pharmaceutical industry of modern era often relies on plants as a source of raw material and essential ingredients of medicine (Sadia *et al.*, 2013). Researchers are trying to identify, characterize and provide solid scientific basis for plant based drugs to be used in cancer treatment (Hafidh *et al.*, 2013). Several plant-based anticancer agents including taxol, vinblastine, vincristine, camptothecin derivatives, topotecan, irinotecan, and epipodophyllotoxins are in clinical use all over the world (Shruti and Archana, 2015).

Plants from Asteraceae family for cancer treatment

Asteraceae is the largest family of dicotyledons, comprising 950 genera and 20,000 species, of which 697 species occur in India. It is regarded as the most advanced, highly evolved and is considered to occupy the highest position in the plant kingdom and first largest terrestrial plant family.

According to earlier reports, 78 families were documented to fight against different types of cancer. Among them 17 plants from asteraceae, 15 from euphorbiaceae, 12 from apocynaceae and 11 from fabaceae were the most predominant families. Plants from Asteraceae (35%) and Euphorbiaceae (33%) families were used in Kenya and India for the treatment of cancer. The plants from 35 families were used in the *in vitro* studies for anticancer activity. Among them majority of the plants used in the study were from Fabaceae, Asteraceae and Anacardiaceae. Thirty two plants belonging to 23 families were tested in cancer induced animal model for their cancer activity. From the study it was confirmed that leaves are the most active part of most of the plants used, possess anticancer activity (Akash *et al.*, 2017). Flavonoids, terpenoids, tannins and saponins were the most frequently reported secondary metabolites in Asteraceae family could be the possible reason for high efficacy of the plants from Asteraceae (Carvalho *et al.*, 2013).

Table 3

S.No	Plant Name	Family	Part used	Type of Cancer	References
1	Daphne mezereum	Thymelaeaceae	Leaves	Lymphocytic leukemia	Kupchan and Baxter, 1975
2	Pfaffia paniculata	Amaranthaceae	Root	Breast Melanoma	Takemoto <i>et al.</i> , 1983
3	Gossypium hirsutum	Malvaceae	Seed	Centrl nervous system	Coyle et al., 1994
4	Centella asiatica	Apiaceae	Leaves	Lung	Babu et al., 1995
5	Zingiber officinale	Zingiberaceae	Rhizome	Skin	Katiyar <i>et al.</i> , 1996
6	Camellia sinensis	Theaceae	Leaves	Prostate	Taylor and Wilt, 1999
7	Momordica charantia	Cucurbitaceae	Fruit	Breast	
8	Salvia miltiorrhiza	Lamiaceae	Leaves	Breast	Yoon et al., 1999
9	Terminalia chebula	Combretaceae	Fruits	Breast, Prostate	Saleem <i>et al.</i> , 2002
10	Curcuma longa	Zinziberaceae	Rhizome	Stomach	Agarwal <i>et al.</i> , 2003
11	Allium sativum	Amaryllidaceae	Bulb	Kidney, Stomach	Thomson and Ali, 2003
12	Annona Muricata	Annonaceae	Leaves	Lung, breast, Pancreatic, Prostatic	Muriel, 2004
13	Scutellaria barbata	Lamiaceae	Leaves	Lung	Yin et al., 2004
14	Calotropis procera	Ascleipiadaceae	Leaves	Hepatoma, Non hepatoma	Choedan <i>et al.</i> , 2006
15	Tinospora cordifolia	Menispermaceae	Leaves	Ehrlich ascites carcinoma	Jagetia and Rao, 2006
16	Aspidosperma tomentosum	Apocynaceae	Aerial part	Breast	Kohn <i>et al.</i> , 2006

List of Plants evaluated to treat various types of cancers

Screening of selected Eupatorium species for pharmacognostical, anticancer and tissue culture studies

17	Citrus maxima	Rutaceae	Fruit	Lung	Lim et al., 2006	
18	Oroxylum indicum	Bignoniaceae	Leaves	Breast	Narisa <i>et al.</i> , 2006	
19	Cedrus deodara	Pinaceae	Leaves	Leukemia	Shashi et al., 2006	
20	Cirsium japonicum	Asteraceae	Leaves	Stomach	Liu et al., 2007	
21	Cynodon dactylon	Poaceae	Leaves	Laryngeal	Sultana and Lee, 2007	
22	Annona glabra	Annonaceae	Leaves	Leukemia	Cochrane <i>et al.</i> , 2008	
23	Ardisia crenata	Myrsinaceae	Leaves	Liver	Li et al., 2008	
24	Gynostemma pentaphylum	Cucurbitaceae	Leaves	Lung	Lu et al., 2008	
25	Blumea babamitera	Rutaceae	Leaves	Breast	Norikura <i>et al.</i> , 2008	
26	Actaea racemosa	Ranunculaceae	Leaves	Liver	Einbonda <i>et al.</i> , 2009	
27	Gymnema sylvestre	Asclepiadaceae	Leaves	Breast	Khanna and Kannabiran, 2009	
28	Rheum officinale	Polygonaceae	Rhizome	Lung adeno carcinoma, Breast	Li et al., 2009	
29	Acorus calamus	Araceae	Essential oil	Lung, Cervical	Rajkumar <i>et al.</i> , 2009	
30	Trailliaedoxa gracilis	Rubiaceae	Whole plant	Small intestine	Bernhards <i>et al.</i> , 2010	
31	Anemopsis californica	Saururaceae	Leaves, root and stem	Breast	Catherine <i>et al.</i> , 2010	
32	Biophytum sensitivum	Oxalidaceae	Leaves	Lung	Guruvayoorappan and Kuttan, 2007; Bhaskar and Rajalakshmi, 2010	
33	Artocarpus obtusus	Moraceae	Leaves	Leukemia, Breast cancer	Zeraga <i>et al.</i> , 2010	
34	Cichorium intybus	Asteraceae,	Seeds	Prostrate,	Nawab <i>et al.</i> 2011	
35	Artemisia vulgaris	Rubiaceae	Flower	שוכמאו		

36	Smilax glabra	Smilacaceae	Rhizome	Prostrate,	Nawah et al. 2011	
37	Swertia chirayta	Gentianaceae	Whole plant	Breast		
38	Solanum nigrum	Solanaceae	Berries	Prostrate, Breast and Cervical	Sanjay <i>et al.</i> , 2009; Nawab <i>et al.</i> 2011	
39	Amoora rohituka	Meliaceae	Stem bark	Breast	Rabi <i>et al.</i> , 2002; Chan <i>et al.</i> , 2011	
40	Bacopa monnieri	Scrophulariaceae	Leaves	Ehrlich Ascites Carcinoma	Ghosh <i>et al.</i> , 2011	
41	Abelmoschus moschatus	Malvaceae	Seed	Lung	Gul et al., 2011	
42	Argemone mexicana	Papavaraceae	Leaves	Cervical Breast cancer	Kiranmayi <i>et al.</i> , 2011	
43	Podophyllum emodii	Berberidaceae	Leaves	Lymphomas, bronchial, testicular	Prema <i>et al.</i> , 2011	
44	Linum usitatissimum	Linaceae	Leaves	Breast	Sakarkar and Deshmukh, 2011	
45	Blumea balsamifera	Asteraceae	Leaves	Lung	Saewan <i>et al.</i> , 2011	
46	Glochidion zeylanicum	Euphorbiaceae	Roots Root	Liver Prostrate	Reiko <i>et al.</i> , 2004; Sharma <i>et al.</i> , 2011	
47	Phyllanthus emblica	Phyllanthaceae	Fruit	Lung	Sawhney <i>et al.</i> , 2011	
48	Cola nitida	Sterculiaceae	Nut	Breast	Susi et al., 2011	
49	Nelumbo nucifera	Nelumbonaceae	Leaves	Breast	Yang <i>et al.</i> , 2011	
50	Calea pinnatifida	Asteraceae	Aerial plant	Kidney	Gabriela <i>et al.</i> , 2012	
51	Alangium salviifolium	Alangiaceae	Seeds, flowers, roots and leaves	Blood lymphocyte	Ronok <i>et al.</i> , 2011; Laizuman <i>et al.</i> , 2012	
52	Boerhaavia diffusa	Boraginaceae	Roots Leaves	Breast	Manu and Kuttan, 2007; Ahmed <i>et</i> <i>al.</i> , 2007; Merina <i>et al.</i> , 2012	

53	Emblica officinalis	Euphorbiaceae	Fruit	Lymphoma, melanoma	Merina <i>et al.</i> , 2012
54	Catharanthus roseus	Apocynaceae	Flower	Lymphoma, Leukemia, Breast and lung	Michael <i>et al.</i> , 2012
55	Erthrophleum suaveolens	Caesalpiniaceae	Leaves	Prostrate Breast	Fadeyi et al., 2013
56	Berberi saristata	Berberidaceae	Root	Prostrate, Ovary, Breast	Gaidhani <i>et al.</i> , 2013
57	Withania somnifera	Solanaceae	Rhizome	and Lung	
58	Barleria grandiflora	Acanthacae	Leaves	Lung	Nishantet al., 2014
59	Moringa oleifera	Moringaceae	Leaf	Breast	Nair and Varalakshmi 2011; Charoensin, 2014
60	Artemisia indica	Asteraceae			
61	Eupatorium odoratum		Laguag	Breast	Bipranash <i>et al.</i> ,
62	Maesa macrophylla	Primulaceae	Leaves	Prostrate	2015
63	Phlogacanthus thyrsiformis	Acanthaceae			
64	Momordica dioica	Cucurbitaceae	Fruit	Breast, lung	Gayathri <i>et al.</i> , 2016
65	Cucurbita maxima	Cucurbitaceae		Liver	Murganatham <i>et al.</i> , 2016
66	Saxifraga stolonifera	Saxifragaceae	Leaf	Tumor cell line	Nagata <i>et al.</i> , 2016
67	Plumbago zeylanica	Plumbaginaceae	Roots	Prostate	Roy et al., 2017

31

Table 4

S.No	Plant Name	Family	Part used	References
1	Helianthella quinquenervis	Asteraceae	Root	Castaneda et al., 1996
2	Adenophyllum aurantium	Asteraceae	Leaves	
3	Begonia heracleifolia	Begoniaceae	Rhizome	Frei et al., 1998
4	Epaltes mexicana	Asteraceae	Leaves	
5	Tradescantia zebrina	Commelinaceae	Aerial part	
6	Schkuhria schkuhrioides	Asteraceae	Aerial part	Delgado et al., 1998
7	Camellia sinensis	Theaceae	Leaves	Taylor and Wilt, 1999
8	Amoora rohituka	Meliaceae	Leaves	
9	Amoora rohituka	Meliaceae	Leaves	Mans <i>et al.</i> , 2000
10	Dysoxylum binectariferum	Meliaceae	Leaves	
11	Allium sativum	Amaryllidaceae	Fruit	Thomson and Ali, 2003
12	Aronia melanocarpa	Rosaceae	Leaves	Malik et al., 2003
13	Pentalinon andrieuxii	Apocynaceae	Root, leaves	Chan <i>et al.</i> , 2003
14	Annona Muricata	Annonaceae	Leaves	Muriel, 2004
15	Curcuma zedoaria	Zingiberaceae	Whole plant	Seo et al., 2005
16	Camptotheca acuminate	Nyssaceae	Leaves	Fuchs et al., 2006
17	Centaurea montana			
18	Centaurea schischkinii	Asteraceae	Seeds	Shoeb, 2006
19	Matricaria chamomilla	Asteraceae	Whole plant	Srivastava and Gupta, 2007
20	Citrus aurantifolia	Rutaceae	Fruit	Patil <i>et al.</i> , 2008
21	Platycodon grandiflorum	Campanulaceae	Leaves	Lee et al., 2008
22	Taraxacum officinale	Asteraceae	Leaves	Sigstedt et al., 2008

List of Plants evaluated scientifically to treat colon cancer

23	Cinnamomum zeylanicum	Lauraceae	Bark	Singh et al., 2009
24	Citrus limon	Rutaceae	Fruits	Hirata <i>et al.</i> , 2009
25	Pyrus malus	Rosaceae	Bark, fruit	Madhuri and Pandey, 2009
26	Tradescantia discolor	Commelinaceae	Leaves	Mena et al., 2009
27	Anemopsis californica	Saururaceae	Leaves, root, stem	Catherine et al., 2010
28	Aesculus hippocastanum	Sapindaceae	Leaves	Zhang <i>et al.</i> , 2010
29	Berberis vulgaris	Berberidaceae	Roots Stem bark	Bono et al., 2010
30	Curcuma longa	Zingiberaceae	Rhizome	Park and Conteas, 2010
31	Plumbago zeylanica	Plumbaginaceae	Leaves	Checker et al., 2010
32	Abelmoschus moschatus	Malvaceae	Seed	Gul et al., 2011
33	Artemisia Vulgaris	Asteraceae	Flower	
34	Cichorium intybus		Seeds	
35	Smilax glabra	Smilacaceae	Rhizome	Nawab et al. 2011
36	Solanum nigrum	Solanaceae	Berries	
37	Swertia chirayta	Gentianaceae	Whole plant	
38	Coccinia grandis	Cucurbitaceae	Leaves	Satheesh and Murugan, 2011
39	Croton macrobotrys	Euphorbiaceae	Whole plant	Motta <i>et al.</i> , 2011
40	Glochidion zeylanicum	Euphorbiaceae	Roots	Reiko <i>et al.</i> , 2004 and Sharma <i>et al.</i> , 2011
41	Indigofera linnaei	Fabaceae	Leaves	Kumar <i>et al.</i> , 2011
42	Solanum lycopersicum	Solanaceae	Fruit	Hahm <i>et al.</i> , 2011
43	Sylibum marianum	Asteraceae	Leaves, flowers	Ramasamy and Agarwal, 2008 and Colombo <i>et al.</i> , 2011
44	Hedyotis diffusa	Rubiaceae	Whole plant	Cai et al., 2012
	Moringa oleifera	Moringaceae	Seed	Shaban <i>et al.</i> , 2012
45	Liriodendron tulipifera	Magnoliaceae	Stem, leaves and roots	Wang <i>et al.</i> , 2012
46	Viscum album	Santalaceae	Sprouts	Bhouri et al., 2012
47	Ophiorrhiza rugosa	Rubiaceae	Leaves and roots	Raveendran et al., 2012

48	Momordica charantia	Cucurbitaceae	Leaves, Roots	Weng et al., 2013
49	Lavatera cashmeriana	Malvaceae	Seeds	Rakashanda <i>et al.</i> , 2013
50	Picrorhiza kurroa	Plantaginaceae	Rhizome	Gaidhani et al., 2013
51	Punica granatum	Lythraceae	Fruit	Syed et al., 2013
52	Tabernaemontana divaricata	Apocynaceae	Leaves	Bao et al., 2013
53	Polygonum cuspidatum	Polygonaceae	Whole plant	Ali et al., 2014
54	Vitis vinifera	Vitaceae	Fruit	Lim and Park, 2009 and Cheah <i>et al.</i> , 2014
55	Eupatorium cannabinum	Asteraceae	Leaves	Varandas et al., 2014
56	Colchicum autumnale	Colchicaceae	Seeds	Lin et al., 2015
57	Oldenlandia diffusa	Rubiaceae	Stem Leaves, Fruit peel	Wozniak <i>et al.</i> , 2015
58	Panax ginseng	Araliaceae	Roots, Leaves	Du <i>et al.</i> , 2013 and Wang <i>et al.</i> , 2015
59	Passiflora caerulea	Passifloraceae	Flower	Leon et al., 2015
60	Combretum caffrum	Combretaeae	Bark, kernal and fruit	Lauritano et al., 2016
61	Ginkgo biloba	Ginkgoaceae	Leaves	Xiong <i>et al.</i> , 2016
62	Glycine max	Fabaceae	Seeds	Srikanth and Chen, 2016
63	Nigella sativa	Ranunculaceae	Seed	Tu et al., 2016
64	Pisum sativum	Fabaceae	Seeds	Runchana and Wanne, 2017
65	Piper nigrum	Piperaceae	Fruit	Prashant et al., 2017

Tissue culture

Micropropagation is a very advantageous technique for the conservation and amplification of rare or endangered medicinal plants (Debergh, 1992). It provides rapid, year-round production of new plants from minimal tissue samples. This makes the technique preferable for the production of medicinal plants. The literature survey revealed that the selected plants possess various medicinal properties but there is limited information are available regarding callus induction and micro propagation through tissue culture.

In vitro propagation of medicinal plants

In vitro mass multiplication methods were developed for some important medicinal plants like *Podophyllum hexandrum* (Nadeem *et al.*, 2000), *Pinellia ternata* (Satish *et al.*, 2002), *Ceropegia candelabrum* (Beena *et al.*, 2003), *Saussurea obvallata* (Joshi and Dhar., 2003), *Aloe vera* (Zhihua *et al.*, 2004), *Tylophora indica* (Mohammed *et al.*, 2007), *Panax ginseng* (Zhao, 2009), *Holostemma ada-kodien* and *Ipomoea mauritiana* (Geetha *et al.*, 2009), *Chlorophytum borivilianum* (Kumar *et al.*, 2010), *Ochradenus baccatus* (Fahad, 2013), *Iris sanguine* (Wang *et al.*, 2018), *Tylophora indica* (Najar *et al.*, 2018), *Vitex negundo* (Kumar *et al.*, 2018), *Ceropegia juncea* (Binish and Nayagi, 2019), *Dianthus caryophyllus* (Doad *et al.*, 2019) and *Malus domestica* (Jaime *et al.*, 2019).

Shoot tip culture

Shoot tip and axillary buds having preformed meristems usually develop axillary shoots on a high cytokinin concentration. The multiplication rates through this technique vary with genotype and the cytokinin requirement has been extremely variable. Kaviani *et al* (2011) reported the micropropagation of *Matthiola incana using* shoot tips on MS medium supplemented with 2 mg/L of Kn.

Kharrazi *et al* (2011) presented an efficient protocol for the micro propagation of *Dianthus caryophyllus* using shoot tip culture. The optimum medium for micropropagation is MS medium with 2mg/l BAP and 0.2 mg/l. Multiple shoot regeneration was also reported in *Dendranthema grandiflora* from axillary buds cultured in modified MS medium with BA (0.1mg/l) and GA3 (0.5 mg/l) (Keresa *et al.*, 2012). A high rate of multiple shoot tip and nodal

cuttings cultured in MS medium containing 0.1 mg/l of BAP and 0.1 mg/L of NAA (Markovic *et al.*, 2013).

Successful shoot tip culture have been developed in *Chlorophytum* borivilianum (Purohit et al., 1994), Zingiber zerumbet, Scrophularia yoshimurae (Satish et al., 2002), Gentiana lutea (Zeleznik et al., 2002), Rauwolfia serpentina (Vandana et al., 2003), Mentha arvensis (Chishti and Siddiqui, 2003), Morinda citrifolia (Gajakosh et al., 2010), Saussurea rebaudiana (Das et al., 2011), Vinca rosea (Rukhama et al., 2013), Plectranthus amboinicus (Zuraida et al., 2015), Plectranthus bourneae (Rajaram et al., 2015), Solanum tuberosum (Hussaini et al., 2015), Phoenix dactylifera (Khayri and Naik, 2017), Gerbera jamesonii (Winarto and Yufdy, 2017), Lycopersicon esculentum (Banu et al., 2017), Manihot esculenta (Carvalho et al., 2017), Achyranthes aspera (Ishwarya et al., 2018), Colocasia esculenta (Acedo et al., 2018), Gymnema sylvestre (Isah, 2019) and Mucuna pruriens (Alam and Anis, 2019).

Stem culture

Stem segments are considered as one of the best suited explants for quick response under *in vitro* culture. Multiple shoots were regenerated from internodal explants of *Huernia hystrix* cultured on MS medium supplemented with 5.37 μ M NAA and 22.19 μ M BA (Amoo *et al.*, 2009).

A protocol for micro propagation of *Hemidesmus indicus* using nodal segments have been developed on MS medium supplemented with 0.054 ppm of NAA and 1.5ppm of Kinetin (Patnaik and Debata, 1996). The clonal multiplication was reported in *Syzygium alternifolium* from nodal explants using BAP (4ppm) and NAA (0.5ppm) (Khan *et al.*, 1998).

The nodal and shoot tip of *Chrysanthemum morifolium* showed 95% of response for the multiple shoot regeneration on MS medium supplemented with

1.0 mg/l BAP (Karim *et al.*, 2002). The nodal segments of *Mucuna pruriens* showed highest efficiency of shoot induction in half strength MS medium supplemented with 5mg/l of BA and 0.5mg/l of NAA (Faisal *et al.*, 2006).

The physiological effect of different plant growth regulators on *in vitro* multiplication of *Cocculus hirsutus* was studied. Multiple shoots were induced from the nodal segments of stem in MS medium containing BAP or Kn alone or in combination. Maximum number of shoots (45 ± 0.69 shoots per explant) was observed on the medium containing BAP (0.5 mg/l) along with additives like adenine sulphate (50.0 mg/l) and glutamine (150 mg/l) (Meena *et al.*, 2012).

The plantlets were micropropagated using node and internodal explants in *Cedrela montana* (Basto *et al.*, 2012), *Coccinia grandis* (Patel *et al.*, 2015), *Plectranthus bourneae* (Rajaram *et al.*, 2015), *Dendrobium jerdonianum* (Mary and Divakar, 2016), *Bambusa vulgaris* (Kaladhar *et al.*, 2017), *Lycopersicon esculentum* (Banu *et al.*, 2017), *Asparagus densiflorus* (Anna, 2017), *Eucalyptus species* (Trueman *et al.*, 2018), *Psychotria ipecacuanha* (Silva, 2018) and *Magnolia sirindhorniae* (Cui *et al.*, 2019) under *in vitro* condition.

Leaf culture

Leaves of medicinal plants are rich in secondary metabolites. Therefore, they are used as explants in tissue culture to increase the secondary metabolites. *Withania somnifera* is a herb having numerous medicinal values, widely used in ayurvedic drug preparations. An efficient protocol for *in vitro* plant regeneration via direct adventitious shoot proliferation from leaf explants of Ashwaganda is developed. MS medium containing 1.5mg/l BAP and 1.5mg/l IAA was found to be the best medium for maximum *in vitro* response. An improved *in vitro* shoot bud elongation and rooting was achieved on MS medium fortified with 0.15mg/l GA3 and 5mg/l IBA respectively (Kumar *et al.*, 2011).

Screening of selected Eupatorium species for pharmacognostical, anticancer and tissue culture studies

Naing *et al* (2014) developed a protocol for shoot induction directly from leaf segments of the *Chrysanthemum* in MS basal medium supplemented with 1 mg/l of BA + 2 mg/l.

Multiple shoots developed from leaf cultures are reported in Syzygium alternifolium (Khan et al., 1999), Kniphofia leucocephala (Cartan and Staden, 2003), Gentiana macrophylla (Cao et al., 2005), Chlorophytum arundinaceum (Lattoo et al., 2006), Saussurea involucrata (Binguo et al., 2007), Catharanthus roseus (Taha et al., 2008), Gentiana kurroo (Fiuk and Rybczynski, 2008), Abelmoschus esculentus (Kabir et al., 2008), Satyrium nepalense (Mahendran and Bai, 2009), Oncidiun stramimeum (Escobar et al., 2008), Cyrtopodium punctatum (Dutra et al., 2009), Picrorhiza kurroa (Arif, 2010), Kelussia odoratissima (Omid et al., 2013), Dendrobium jerdonianum (Mary and Divakar, 2016), Gerbera jamesonii (Winarto and Yufdy, 2017), Solanum nigrum (Zou et al., 2017), Lysimachia davurica (Zhang et al., 2017), Fraxinus nigra (Lee and Pijut, 2017) and Malus domestica (Jaime et al., 2019).

Callus culture

Callus is an undifferentiated mass of tissue which appears on explants within a few weeks of transfer to the growth medium with suitable hormones (Bhojwani and Razdan, 1996). *Baliospermum montanum* cultured in MS medium supplemented with 2.0 mg/l of 2, 4-D produced highest percentage of callus (Johnson *et al.*, 2010). The nodal explants of *Aegle marmelos* were cultured on MS medium with 1.5 mg/l of 2, 4-D induced maximum amount of callus (Abirami and Suresh Kumar, 2013).

Micropropagation through callus culture have been carried out in some medicinal plants such as *Eryngium foetidum* (Arockiasami and Ignacimuthu, 1998), *Euphorbia nivulia* (Sunandakumari *et al.*, 2005), *Tylophora indica* (Dennis and Boban, 2005), *Saussurea obvallata* (Dhar and Joshi, 2005), *Cassia angustifolia* (Agrawal and Sardar, 2006), *Bacopa monnieri* (Arun *et al.*, 2013),

Ceropegia pusilla (Kalimuthu and Prabakaran, 2014), *Oryza sativa* (Din *et al.*, 2016), *Chlorophytum borivilianum* (Nakasha *et al.*, 2016), *Azadirachta indica* (Gehlot *et al.*, 2017), *Brassica napus* (Naz *et al.*, 2018), *Saccharum officinarum* (Thorat *et al.*, 2018), Withania somnifera (Gaurav *et al.*, 2018) and Solanum lycopersicum (Saeed *et al.*, 2019).

Micropropagation of rare medicinal plants

Micropropagation was achieved in rare and endangered medicinal plants such as Escobaria missouriensis, Sclerocactus spinosior and Toumeyapa pyracantha (Philip et al., 1990), Chlorophytum borivilianum (Purohit et al., 1994), Saussurea lappa (Sudhakar et al., 1997), Chlorophytum arundinaceum (Lattoo et al., 2006), Vanasushava pedata (Karuppusamy et al., 2006), Hydrastis canadensis (He et al., 2007), Saussurea esthonica (Agnese et al., 2010), Semecarpus kathalekanensis (Hurakadle et al., 2011), Ceropegia thwaitesii (Muthukrishnan et al., 2012), Ceropegia elegans (Krishnareddy and Pullaiah, 2012), Acorus calamus, Lavandula officinalis, Coleus forskohlii, Elaeocarpus spharicus, Gentiana kurroo, Indigofera tinctoria, Jurinea mollis, Picrorrhiza kurroa, Pyrethrum cinerariaefolium, Psoralea corylifolia, Paris polyphylla, Rheum emodi, Saussurea lappa, Stevia rebaudiana, Salvia sclarea, Swertia cordata, Valeriana wallichii (Verma et al., 2012), Dysophylla myosuroides (Savithramma et al., 2012), Bacopa monnieri (Sharuti and Narender, 2013), Ceropegia pusilla (Kalimuthu and Prabakaran, 2014), Tylophora indica, Thogalum sps (Pan et al., 2013), Thymus broussonetii (Nordineet al., 2014), Swertia chiravita (Vikas, 2014), Begonia homonyma (Kumari et al., 2017) and Bryonia laciniosa (Vijayashalini et al., 2017).