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A B S T R A C T

This work concentrates on the finite-time stability (FTS) analysis of fractional-order systems
(FOS) with impulsive effects and multi-state time delays. The condition which give assurance
for FTS of nonlinear FOS having impulsive behavior and multi-state time delay are derived by
utilizing the generalization of Gronwall’s inequality (GI). At last, two numerical examples are
given which provide the accuracy of the given result.

1. Introduction

In past two decades, fractional calculus started to develop well known as a promising area with crucial impressions on an
mproving number of innovative applications in applied and social sciences [1,2]. At present, fractional-order (FO) models are
pecially designed for real time physical systems. This approach specifies the significance of FOS rather than integer order systems
n the present technology. The analysis and applications of fractional differential equation in the applied mathematics and in other
ciences discussed in [3–7]. Time delay is the basis of instability and predictably arises in several practical models. So the stability
riteria draw an abundant application in various practical phenomena. In literature many authors discussed about stability of
ractional system described over the infinite interval of time with and without time delay [8–11]. Apart from this, another essential
oncept in physical situations that the dynamic activities of system described in a particular fixed interval. This notion is known as
TS and in literature, many authors studied the FTS concept for FO systems [12–17]. As one more key factor that the multi-state
ystem, in which transformation among the characteristics in each state will depend on the passage of duration and on inputs of
ystem. So, it is necessary to consider the FTS concept for nonlinear FOS with multi-state time delay.

On the other hand, impulsive behaviors exist in physical systems. Many practical systems have variable structures subject to
apid disturbances and impulsive sudden changes, which may result from abrupt phenomena [18,19]. Consequently, it is essential
o study the FOS driven by impulsive perturbation. In [20], the authors examined the FTS for nonlinear fractional-order system with
mpulse behavior. Wang et al. [21] studied FTS of discontinuous impulsive systems by using Lyapunov theorem. In [22], Wu et al.
nalyzed the FTS of reaction–diffusion impulsive system with and without time delay. Hei and Wu [23] investigated about FTS of
O time delay system by obtaining some inequalities using GI. In [24], the authors studied stability of linear integer order system
ith multiple time delay and also stability criteria for linear FO system with multi-state time delay is examined by Deng et al. [25].
TS of FO system with multi-state time delay is studied with the help of generalized GI by Liu and Zhong [26]. The FTS concept
or linear FO time delay systems by obtaining some sufficient condition is investigated in [27].

The concept of short-time stability or finite time stability has characteristic that the system restrains its trajectory to a predefined
ime varying domain over a finite time interval for a bounded initial condition. It is a stronger concept than asymptotical stability
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and has the settling-time characteristic, which presents an efficient tool for many engineering problems [28–30]. On the other hand,
the nonlinear system has some typical characteristics such as saturation, hysteresis, etc., which makes problem very interesting to
engineers, physicists and mathematicians because most real physical systems are inherently nonlinear in nature [31]. For example,
current–voltage characteristic of a diode represents a nonlinear phenomenon. In the previous literatures, researchers have utilized
many approaches such as characteristic equation method, Lyapunov technique, state solution approach to derive the sufficient
conditions for finite-time stability. Motivated from the above, we discuss the finite-time stability of fractional-order system with
multiple delays via generalized Gronwall’s approach using Caputo derivative. The core contributions are summarized below:
1. So far, we have found many research works on FO systems investigated with single-delay in state. For this work, we concentrate
the case that the FO systems with multiple delays in their states.
2. Compared with various earlier studies, FTS of nonlinear system with impulsive effects and multi-state time delay is firstly
presented for constructing more general FO model.
3. By employing generalized GI, we designed FTS conditions that can be easily validated by two numerical examples.

The remaining part of this work is arranged by following: Section 2 contains system description, some useful definitions and
lemmas. Sufficient condition that ensure the FTS of considered impulsive FOS with multi-state time delay is given in Section 3.
Section 4, in which two numerical examples are given to show the applicability of main results. Finally, the conclusion of this work
is given in Section 5.

The following notations are carried over throughout this paper. R𝑛 is the 𝑛-dimensional Euclidean space. R𝑛×𝑚 and R𝑛×𝑛

consist of all matrices of dimensions 𝑛 × 𝑚 and 𝑛 × 𝑛, respectively. 𝜎max() denotes largest singular value of matrix . Explicitly,
𝜎max() =

√

𝜆max(𝑇). 𝑇 denotes the transpose of . Also, ‖⋅‖ indicates the max norm.

2. Problem formulation

Consider the nonlinear FO multi-state time delay system with impulsive effects,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶
0 𝐷

𝛼1
𝑡 𝑦(𝑡) = 0𝑦(𝑡) +

𝑛
∑

𝑖=1
𝑖𝑦(𝑡 − 𝜌𝑖) + 𝑓 (𝑡, 𝑦(𝑡)) + 𝑢(𝑡), 𝑡 ∈ 𝐿′,

𝛥𝑦(𝑡𝑘) = 𝑀𝑘(𝑦(𝑡−𝑘 )), 𝑘 = 1, 2,… , 𝑚,
𝑦(𝑡) = 𝛹𝑦(𝑡), −𝜌 ≤ 𝑡 ≤ 0,

(1)

where 0 < 𝛼1 < 1, 𝐶
0 𝐷

𝛼1
𝑡 represents Caputo derivative of FO 𝛼1. The matrices 0,𝑖, (𝑖 = 1, 2,… , 𝑛) are in R𝑛×𝑛 and matrix  in

R𝑛×𝑚, 𝑢(𝑡) ∈ R𝑚 denoted as control vector, state variable 𝑦(𝑡) ∈ R𝑛 and 𝜌 = max(𝜌1, 𝜌2,… , 𝜌𝑛), 𝜌𝑖 is a constant with 𝜌𝑖 > 0. Also,
𝐿 = [0, 𝑇 ], 𝐿′ = 𝐿−

{

𝑡1, 𝑡2,… , 𝑡𝑚
}

and 0 = 𝑡0 < ⋯ < 𝑡𝑚 = 𝑇 < ∞, 𝑓 ∶ 𝐿×R𝑛 → R𝑛, 𝑀𝑘 ∶ R𝑛 → R𝑛, 𝑘 = 1, 2,… , 𝑚. 𝛥𝑦(𝑡𝑘) = 𝑦(𝑡+𝑘 )−𝑦(𝑡−𝑘 ),
where 𝑦(𝑡+𝑘 ) = lim𝜖→0+ 𝑦(𝑡𝑘 + 𝜖) and 𝑦(𝑡−𝑘 ) = lim𝜖→0− 𝑦(𝑡𝑘 + 𝜖).

Now, we impose the following hypothesis:
(𝐇𝟏) ∶ On [0, 𝑇 ], 𝑓 (𝑡, 𝑦(𝑡)) is Lipschitz continuous and there exist 𝐿1 > 0 such that

‖𝑓 (𝑡, 𝑦(𝑡))‖ ≤ 𝐿1‖𝑦(𝑡)‖, 𝑓𝑜𝑟 𝑡 ∈ 𝐿, 𝑦 ∈ R𝑛.

Next, we provide some useful lemmas, definitions which are helpful to derive our main result.

Definition 2.1 ([2]). For two parameter, the Mittag Leffler function is given by

𝐸𝛼1 ,𝛼2 (𝑥) =
∞
∑

𝑟=0

𝑥𝑟

𝛤 (𝛼1𝑟 + 𝛼2)
, 𝑥 ∈ C, 𝛼1 > 0, 𝛼2 > 0. (2)

Assume 𝛼2 = 1, then (2) converts

𝐸𝛼1 ,1(𝑥) =
∞
∑

𝑟=0

𝑥𝑟

𝛤 (𝛼1𝑟 + 1)
≡ 𝐸𝛼1 (𝑥). (3)

Definition 2.2 ([32]). The system given by (1) is finite-time stable with respect to
{

𝑡0, 𝐿, 𝛿, 𝜖, 𝛼1𝑢
}

, if ‖‖
‖

𝛹𝑦
‖

‖

‖

< 𝛿 and ∀ 𝑡 ∈ 𝐿, ‖𝑢(𝑡)‖ <
𝛼1𝑢 implies ‖𝑦(𝑡)‖ < 𝜖, ∀ 𝑡 ∈ 𝐿.

The system (1) with 𝑢(𝑡) ≡ 0 is known as finite-time stable w.r.t
{

𝑡0, 𝐿, 𝛿, 𝜖
}

, if ‖‖
‖

𝛹𝑦
‖

‖

‖

< 𝛿 implies ‖𝑦(𝑡)‖ < 𝜖, ∀ 𝑡 ∈ 𝐿, where 𝛿, 𝜖
are positive constants.
2
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Lemma 2.3 ([33]). Let 𝛼1 ∈ (0, 1). The solution of (1) is also a solution of following integral equation.

𝑦(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝛹𝑦(𝑡), 𝑡 ∈ [−𝜌, 0],
𝛹𝑦(0) +

1
𝛤 (𝛼1)

∫ 𝑡
0 (𝑡 − 𝜅)𝛼1−1

[

0𝑦(𝜅) +
𝑛
∑

𝑖=1
𝑖𝑦(𝜅 − 𝜌𝑖) + 𝑓 (𝜅, 𝑦(𝜅)) + 𝑢(𝜅)

]

d𝜅, 𝑡 ∈ [0, 𝑡1),

⋮
𝛹𝑦(0) +

∑𝑛
𝑘=1 𝑀𝑘𝑦(𝑡𝑘) +

1
𝛤 (𝛼1)

∫ 𝑡
0 (𝑡 − 𝜅)𝛼1−1

[

0𝑦(𝜅) +
𝑛
∑

𝑖=1
𝑖𝑦(𝜅 − 𝜌𝑖) + 𝑓 (𝜅, 𝑦(𝜅)) + 𝑢(𝜅)

]

d𝜅, 𝑡 ∈ [𝑡𝑛, 𝑡𝑛 + 1),

⋮
𝛹𝑦(0) +

∑𝑚
𝑘=1 𝑀𝑘𝑦(𝑡𝑘) +

1
𝛤 (𝛼1)

∫ 𝑡
0 (𝑡 − 𝜅)𝛼1−1

[

0𝑦(𝜅) +
𝑛
∑

𝑖=1
𝑖𝑦(𝜅 − 𝜌𝑖) + 𝑓 (𝜅, 𝑦(𝜅)) + 𝑢(𝜅)

]

d𝜅, 𝑡 ∈ [𝑡𝑚, 𝑇 ].

(4)

Lemma 2.4 ([34]). Assume 𝑦(𝑡) > 0, 𝑞(𝑡) > 0 be locally integrable and the continuous function 𝑠(𝑡) > 0 is nondecreasing on 𝑡 ∈ [0, 𝑇 ). Now
𝑠(𝑡) ≤ 𝑀 , 𝛼1 > 0 with

𝑦(𝑡) ≤ 𝑞(𝑡) + 𝑠(𝑡)∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1𝑦(𝜅)d𝜅, 0 ≤ 𝑡 < 𝑇 ,

Then

𝑦(𝑡) ≤ 𝑞(𝑡) + ∫

𝑡

0

[ ∞
∑

𝑛=1

(

𝑠(𝑡)𝛤 (𝛼1)
)𝑛

𝛤 (𝑛𝛼1)
(𝑡 − 𝜅)𝑛𝛼1−1𝑞(𝜅)

]

d𝜅, 0 ≤ 𝑡 < 𝑇 .

Corollary 2.5 ([34]). From the assumption of above Lemma 2.4 and on [0, 𝑇 ], function 𝑞(𝑡) is nondecreasing. Then

𝑦(𝑡) ≤ 𝑞(𝑡)𝐸𝛼1

(

𝑠(𝑡)(𝛤 (𝛼1))𝑡𝛼1
)

.

3. Main results

In this section we shall investigate the finite-time stability problem for nonlinear fractional system with impulse effects and
involving multi-state time delays by constructing some inequalities and using Gronwall inequality approach.

Theorem 3.1. The nonlinear impulsive FOS (1) having multi-state time delay is finite time stable if it satisfies,

𝛿
(

1 +
𝜎(𝑛 + 1)𝑡𝛼1
𝛤 (𝛼1 + 1)

+
𝑏𝛼1𝑢𝑡𝛼1

𝛤 (𝛼1 + 1)

)

𝐸𝛼1

{(

𝜎(𝑛 + 1) + 𝐿1
)

𝑡𝛼1
}

+
∑

0<𝑡𝑘<𝑡
𝜎𝑚𝑎𝑥(𝑀𝑘) ‖‖𝑦(𝑡𝑘)‖‖ < 𝜖, (5)

here 𝜎𝑚𝑎𝑥(⋅) is largest singular value of matrix (⋅).

roof. The solution of impulsive FO system with multi-state time delay (1) is

𝑦(𝑡) = 𝑦(0) + 1
𝛤 (𝛼1) ∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1

[

0𝑦(𝜅) +
𝑛
∑

𝑖=1
𝑖𝑦(𝜅 − 𝜌𝑖)

+𝑓 (𝜅, 𝑦(𝜅)) + 𝑢(𝜅)

]

d𝜅 +
𝑚
∑

𝑘=1
𝑀𝑘𝑦(𝑡𝑘). (6)

Taking norm to Eq. (6), we get

‖𝑦(𝑡)‖ ≤ ‖𝑦(0)‖ + 1
𝛤 (𝛼1) ∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1‖‖

‖

0𝑦(𝜅) +
𝑛
∑

𝑖=1
𝑖𝑦(𝜅 − 𝜌𝑖)

+ 𝑓 (𝜅, 𝑦(𝜅)) + 𝑢(𝜅)‖‖
‖

d𝜅 +
𝑚
∑

𝑘=1

‖

‖

𝑀𝑘
‖

‖

‖

‖

𝑦(𝑡𝑘)‖‖ . (7)

Now

‖

‖

‖

0𝑦(𝜅) +
𝑛
∑

𝑖=1
𝑖𝑦(𝜅 − 𝜌𝑖) + 𝑓 (𝜅, 𝑦(𝜅)) + 𝑢(𝜅)‖‖

‖

≤ ‖

‖

0
‖

‖

‖𝑦(𝜅)‖ +
𝑛
∑

𝑖=1

‖

‖

𝑖
‖

‖

‖

‖

𝑦(𝜅 − 𝜌𝑖)‖‖
+ ‖𝑓 (𝜅, 𝑦(𝜅))‖ + ‖‖ ‖𝑢(𝜅)‖ . (8)

3
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Let 𝜎𝑚𝑎𝑥(⋅) is largest singular value of a given matrix (⋅) and also 𝜎 = max0≤𝑖≤𝑛 𝜎𝑚𝑎𝑥(𝑖), 𝑏 = 𝜎𝑚𝑎𝑥(), From the above consideration
e get,

‖

‖

𝑖
‖

‖

≤ 𝜎; ∀𝑖 = 0, 1, 2,… , 𝑛. (9)

ubstitute (9) and also applying the hypothesis (𝐇𝟏) in (8)

‖

‖

‖

0𝑦(𝜅) +
𝑛
∑

𝑖=1
𝑖𝑦(𝜅 − 𝜌𝑖) + 𝑓 (𝜅, 𝑦(𝜅)) + 𝑢(𝜅)‖‖

‖

≤ 𝜎 ‖𝑦(𝜅)‖ +
𝑛
∑

𝑖=1
𝜎 ‖

‖

𝑦(𝜅 − 𝜌𝑖)‖‖ + 𝐿1 ‖𝑦(𝜅)‖

+ 𝑏 ‖𝑢(𝜅)‖ . (10)

Also,
‖

‖

𝑦(𝜅 − 𝜌𝑖)‖‖ ≤ sup
𝑡−𝜌≤𝑡≤𝑡

‖

‖

𝑦(𝑡)‖
‖

, ∀𝑖 = 1, 2,… , 𝑛. (11)

Now applying the above relation (11) in (10), we obtain
‖

‖

‖

‖

‖

0𝑦(𝜅) +
𝑛
∑

𝑖=1
𝑖𝑦(𝜅 − 𝜌𝑖) + 𝑓 (𝜅, 𝑦(𝜅)) + 𝑢(𝜅)

‖

‖

‖

‖

‖

≤ 𝜎(𝑛 + 1)

{

sup
𝑡−𝜌≤𝑡≤𝑡

‖

‖

𝑦(𝑡)‖
‖

+ ‖

‖

‖

𝛹𝑦
‖

‖

‖

}

+𝐿1 ‖𝑦(𝜅)‖ + 𝑏 ‖𝑢(𝜅)‖ . (12)

Substitute the above equation (12) in (7),

‖𝑦(𝑡)‖ ≤ ‖𝑦(0)‖ + 1
𝛤 (𝛼1) ∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1

[

𝜎(𝑛 + 1)

(

sup
𝜅−𝜌≤𝑡≤𝜅

‖

‖

𝑦(𝑡)‖
‖

+ ‖

‖

‖

𝛹𝑦
‖

‖

‖

)

+𝐿1 ‖𝑦(𝜅)‖ + 𝑏𝛼1𝑢

]

d𝜅 +
∑

0<𝑡𝑘<𝑡
𝜎𝑚𝑎𝑥(𝑀𝑘) ‖‖𝑦(𝑡𝑘)‖‖ .

The above equation implies

‖𝑦(𝑡)‖ ≤ ‖

‖

‖

𝛹𝑦
‖

‖

‖

(

1 +
𝜎(𝑛 + 1)
𝛤 (𝛼1 + 1)

𝑡𝛼1
)

+
𝑏𝛼1𝑢

𝛤 (𝛼1 + 1)
𝑡𝛼1 +

𝜎(𝑛 + 1) + 𝐿1
𝛤 (𝛼1)

× ∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1 sup

𝜅−𝜌≤𝑡≤𝜅
‖

‖

𝑦(𝑡)‖
‖

d𝜅 +
∑

0<𝑡𝑘<𝑡
𝜎𝑚𝑎𝑥(𝑀𝑘) ‖‖𝑦(𝑡𝑘)‖‖ . (13)

Now let

𝑞(𝑡) = ‖

‖

‖

𝛹𝑦
‖

‖

‖

(

1 +
𝜎(𝑛 + 1)
𝛤 (𝛼1 + 1)

𝑡𝛼1
)

+
𝑏𝛼1𝑢

𝛤 (𝛼1 + 1)
𝑡𝛼1 ,

and also take

𝑠(𝑡) =
𝜎(𝑛 + 1) + 𝐿1

𝛤 (𝛼1)
.

herefore from above equation (13), we get

‖𝑦(𝑡)‖ ≤ sup
𝑡−𝜌≤𝑡≤𝑡

‖

‖

𝑦(𝑡)‖
‖

≤ 𝑞(𝑡) + 𝑠(𝑡)∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1 sup

𝜅−𝜌≤𝑡≤𝜅
‖

‖

𝑦(𝑡)‖
‖

d𝜅

+
∑

0<𝑡𝑘<𝑡
𝜎𝑚𝑎𝑥(𝑀𝑘) ‖‖𝑦(𝑡𝑘)‖‖ . (14)

Now using GI, we get

‖𝑦(𝑡)‖ ≤ sup
𝑡−𝜌≤𝑡≤𝑡

‖

‖

𝑦(𝑡)‖
‖

≤ 𝑞(𝑡)𝐸𝛼1

(

𝑠(𝑡)𝛤 (𝛼1)𝑡𝛼1
)

+
∑

0<𝑡𝑘<𝑡
𝜎𝑚𝑎𝑥(𝑀𝑘) ‖‖𝑦(𝑡𝑘)‖‖ .

Now applying the condition of FTS to the above equation, we obtain

‖𝑦(𝑡)‖ ≤
(

𝛿
(

1 +
𝜎(𝑛 + 1)
𝛤 (𝛼1 + 1)

𝑡𝛼1
)

+
𝑏𝛼1𝑢

𝛤 (𝛼1 + 1)
𝑡𝛼1

)

𝐸𝛼1

(

(𝜎(𝑛 + 1) + 𝐿1)𝑡𝛼1
)

+
∑

0<𝑡𝑘<𝑡
𝜎𝑚𝑎𝑥(𝑀𝑘) ‖‖𝑦(𝑡𝑘)‖‖ .

rom (5), we have

‖𝑦(𝑡)‖ < 𝜖, ∀ 𝑡 ∈ 𝐿.

Theorem 3.2. Assume that ∑0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘) < 1 holds. With this assumption the system given by (1) is finite time stable if the inequality

(

𝛿
(

1 + 𝜎(𝑛+1)
𝛤 (𝛼1+1)

𝑡𝛼1
)

+ 𝑏𝛼1𝑢
𝛤 (𝛼1+1)

𝑡𝛼1
)

∑ 𝐸𝛼1

(

(𝜎(𝑛 + 1) + 𝐿1)
∑ 𝑡𝛼1

)

< 𝜖, (15)

1 − 0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘) 1 − 0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)

4
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N

holds. Here 𝜎𝑚𝑎𝑥(⋅) denote largest singular value of matrix (⋅).

Proof. Following the similar proof of Theorem 3.1, we have

‖𝑦(𝑡)‖ ≤ ‖𝑦(0)‖ + 1
𝛤 (𝛼1) ∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1

[

𝜎(𝑛 + 1)

(

sup
𝜅−𝜌≤𝑡≤𝜅

‖

‖

𝑦(𝑡)‖
‖

+ ‖

‖

‖

𝛹𝑦
‖

‖

‖

)

+𝐿1 ‖𝑦(𝜅)‖ + 𝑏𝛼1𝑢

]

d𝜅 +
∑

0<𝑡𝑘<𝑡
𝜎𝑚𝑎𝑥(𝑀𝑘) ‖‖𝑦(𝑡𝑘)‖‖ . (16)

From the assumption ∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘) < 1, we obtain
(

1 −
∑

0<𝑡𝑘<𝑡
𝜎𝑚𝑎𝑥(𝑀𝑘)

)

‖𝑦(𝑡)‖ ≤
(

‖

‖

‖

𝛹𝑦
‖

‖

‖

(

1 +
𝜎(𝑛 + 1)
𝛤 (𝛼1 + 1)

𝑡𝛼1
)

+
𝑏𝛼1𝑢

𝛤 (𝛼1 + 1)
𝑡𝛼1

)

+
𝜎(𝑛 + 1) + 𝐿1

𝛤 (𝛼1) ∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1 sup

𝜅−𝜌≤𝑡≤𝜅
‖

‖

𝑦(𝑡)‖
‖

d𝜅.

Then, we have

‖𝑦(𝑡)‖ ≤

(

‖

‖

‖

𝛹𝑦
‖

‖

‖

(

1 + 𝜎(𝑛+1)
𝛤 (𝛼1+1)

𝑡𝛼1
)

+ 𝑏𝛼1𝑢
𝛤 (𝛼1+1)

𝑡𝛼1
)

(

1 −
∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)
) +

𝜎(𝑛 + 1) + 𝐿1

𝛤 (𝛼1)
(

1 −
∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)
)

× ∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1 sup

𝜅−𝜌≤𝑡≤𝜅
‖

‖

𝑦(𝑡)‖
‖

d𝜅. (17)

ow let

𝑞(𝑡) =

‖

‖

‖

𝛹𝑦
‖

‖

‖

(

1 + 𝜎(𝑛+1)
𝛤 (𝛼1+1)

𝑡𝛼1
)

+ 𝑏𝛼1𝑢
𝛤 (𝛼1+1)

𝑡𝛼1
(

1 −
∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)
) ,

and

𝑠(𝑡) =
𝜎(𝑛 + 1) + 𝐿1

𝛤 (𝛼1)
(

1 −
∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)
) .

The Eq. (17) implies

‖𝑦(𝑡)‖ ≤ sup
𝑡−𝜌≤𝑡≤𝑡

‖

‖

𝑦(𝑡)‖
‖

≤ 𝑞(𝑡) + 𝑠(𝑡)∫

𝑡

0
(𝑡 − 𝜅)𝛼1−1 sup

𝜅−𝜌≤𝑡≤𝜅
‖

‖

𝑦(𝑡)‖
‖

d𝜅,

then the function 𝑞(𝑡) > 0. By Corollary 2.5, we obtain

‖𝑦(𝑡)‖ ≤ sup
𝑡−𝜌≤𝑡≤𝑡

‖

‖

𝑦(𝑡)‖
‖

≤ 𝑞(𝑡)𝐸𝛼1

{

𝑠(𝑡)
(

𝛤 (𝛼1)𝑡𝛼1
)}

.

Then, we have

‖𝑦(𝑡)‖ ≤
𝛿
(

1 + 𝜎(𝑛+1)𝑡𝛼1
𝛤 (𝛼1+1)

)

+ 𝑏𝛼1𝑢𝑡𝛼1
𝛤 (𝛼1+1)

1 −
∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)
𝐸𝛼1

(
(

𝜎(𝑛 + 1) + 𝐿1
)

𝑡𝛼1

1 −
∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)

)

.

Hence from (15), we get ‖𝑦(𝑡)‖ ≤ 𝜖,∀ 𝑡 ∈ 𝐿.

Corollary 3.3. If 𝛼1 = 1, then system (1) which can be modified into integer order model is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑦(𝑡)
𝑑𝑡 = 0𝑦(𝑡) +

𝑛
∑

𝑖=1
𝑖𝑦(𝑡 − 𝜌𝑖) + 𝑓 (𝑡, 𝑦(𝑡)) + 𝑢(𝑡), 𝑡 ∈ 𝐿′,

𝛥𝑦(𝑡𝑘) = 𝑀𝑘(𝑦(𝑡−𝑘 )), 𝑘 = 1, 2,… , 𝑚,

𝑦(𝑡) = 𝛹𝑦(𝑡), −𝜌 ≤ 𝑡 ≤ 0,

(18)

is FTS if the following condition is satisfied,
(

𝛿
(

1 + 𝜎(𝑛+1)
𝛤 (2) 𝑡

)

+ 𝑏𝛼1𝑢
𝛤 (2) 𝑡

)

1 −
∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)
𝑒

(

(𝜎(𝑛+1)+𝐿1)
1−

∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥 (𝑀𝑘 )
𝑡
)

< 𝜖. (19)
5



G. Arthi and N. Brindha Results in Control and Optimization 2 (2021) 100010
Corollary 3.4. The linear impulsive fractional-order system with multi-state time delay,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶
0 𝐷

𝛼1
𝑡 𝑦(𝑡) = 0𝑦(𝑡) +

𝑛
∑

𝑖=1
𝑖𝑦(𝑡 − 𝜌𝑖) + 𝑢(𝑡), 𝑡 ∈ 𝐿′,

𝛥𝑦(𝑡𝑘) = 𝑀𝑘(𝑦(𝑡−𝑘 )), 𝑘 = 1, 2,… , 𝑚,
𝑦(𝑡) = 𝛹𝑦(𝑡), −𝜌 ≤ 𝑡 ≤ 0,

(20)

is FTS if the following condition is satisfied,
(

𝛿
(

1 + 𝜎(𝑛+1)
𝛤 (𝛼1+1)

𝑡𝛼1
)

+ 𝑏𝛼1𝑢
𝛤 (𝛼1+1)

𝑡𝛼1
)

1 −
∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)
𝐸𝛼1

(

𝜎(𝑛 + 1)
1 −

∑

0<𝑡𝑘<𝑡 𝜎𝑚𝑎𝑥(𝑀𝑘)
𝑡𝛼1

)

< 𝜖. (21)

Remark 3.5. In many real world applications, the system state value does not exceed some bounds during the time interval. In this
case, the asymptotic stability is not enough because the system could be stable but it may contain undesirable transient performances
in some time intervals. Thus it may be useful to consider the stability of such systems with respect to certain subsets of state space
which are defined a priori. Compared with asymptotic stability, the systems with finite-time convergence demonstrate some nice
features such as faster convergence and high accuracies. Due to these features the finite-time stability is one of the most appealing
tool in practice.

4. Numerical examples

Example 4.1. Consider the nonlinear impulsive FO multi-state time delay system (1) having the fractional-order 𝛼1 = 0.5.
Let

0 =
[

1 0
0 −2

]

, 1 =
[

−2 0
0 4

]

, 2 =
[

0 0
0.1 −0.2

]

,  =
[

0
1

]

, 𝑀𝑘 =
[

0.5 0
0 0.5

]

and also take the nonlinear term 𝑓 (𝑡, 𝑦(𝑡)) =
[

tanh(𝑦1(𝑡))
tanh(𝑦2(𝑡))

]

. Now, for 𝜌1 = 0.1, 𝜌2 = 0.01, we can calculate that 𝜎 = 4, 𝜎max(𝑀𝑘) =

0.5, 𝐿1 = 1 and 𝑏 = 1. The aim is to validate the FTS condition (15) w.r.t
{

𝑡0 = 0, 𝛿 = 0.1, 𝜖 = 100, 𝛼1𝑢 = 1, 𝜌 = 0.1
}

. Then by the FTS
condition of Theorem 3.2, it is easy to attain the estimated time of FTS is 𝑇 ≈ 0.2795.

Example 4.2. Consider the nonlinear impulsive integer-order multi-state time delay system (18) with 𝛼1 = 1.
Let

0 =
[

0.2 0
0 0.3

]

, 1 =
[

0 0
0.4 0.2

]

, 2 =
[

0 1
−2 0

]

,  =
[

0
3

]

,𝑀𝑘 =
[

0.5 0
0 0.5

]

and also take the nonlinear term 𝑓 (𝑡, 𝑦(𝑡)) =
[

sin(𝑦1(𝑡))
cos(𝑦2(𝑡))

]

. Now, for 𝜌1 = 0.1, 𝜌2 = 0.01, we can calculate that 𝜎 = 2, 𝜎max(𝑀𝑘) =

0.5, 𝐿1 = 1 and 𝑏 = 3. The aim is to validate the FTS condition (19) w.r.t
{

𝑡0 = 0, 𝛿 = 0.1, 𝜖 = 100, 𝛼1𝑢 = 1, 𝜌 = 0.1
}

. Then by the FTS
condition of Corollary 3.3, it is easy to attain the estimated time of FTS is 𝑇 ≈ 0.2736.

5. Conclusion

In this work, the FTS of nonlinear impulsive FOS with order 𝛼1 ∈ (0, 1) having multi-state time delay is studied. Sufficient
conditions are derived for the FTS of considered system by using the GI approach. Finally, the numerical examples which are
presented to examine the main result. Moreover, the results obtained in this paper can be extended to stochastic systems with delay
effects, which will be considered in future.
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