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1. Introduction

To construct real time situation models in applied sciences and more valuable fields, the implementation of stochastic
properties is very essential. So, numerous physical models are demonstrated with stochastic disturbances. The qualitative
characteristics of solutions such as controllability, existence, stability and uniqueness for linear and nonlinear systems with
stochastic effects have received a lot of attentions [1-3]. Among them, controllability acts an essential role in stochastic
control theory [4]. On the other hand, the approach for modelling the control type systems using fractional derivatives is
notable in several problems of natural surroundings [5-7].

In literature, experiments have proved that the fractional models give the best approximations to the experimental data
[8]. In certain applications the fractional representations show a performance improvement when compared to integer rep-
resentations. Further, some dynamical systems were accurately modeled by using the fractional-order systems due to the be-
havior of included sub-systems such as viscoelastic materials or some types of dampers. Particularly, the fractional oscillator
can be formed by introducing fractional-order derivative in the classical harmonic oscillator that describes a physical phe-
nomenon in a better way [9]. The sufficient conditions ensuring complete controllability are derived based on controllability
Grammian matrix defined by Mittag-Leffler matrix function and fixed point techniques [10]. The notion of controllability for
integer and fractional systems has been widely developed in [11-13].

The occurrence of delay in practical system is very common one and many researchers achieved several important results
[14-20]. Control delay systems have been used in the fields of man-machine systems, population models, remote control,
process control and biomedical systems. The control design for nonlinear stochastic systems and time delay systems has
been considered by many researchers, for example, the control design for 2D systems and conic-type nonlinear systems can

* Corresponding author.
E-mail address: arthi@psgrkcw.ac.in (G. Arthi).

https://doi.org/10.1016/j.amc.2021.126439
0096-3003/© 2021 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.amc.2021.126439
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2021.126439&domain=pdf
mailto:arthi@psgrkcw.ac.in
https://doi.org/10.1016/j.amc.2021.126439

G. Arthi and K. Suganya Applied Mathematics and Computation 410 (2021) 126439

be seen in [21-25] and the references therein. The control, observer and filter designs for various physical systems has been
discussed in [26-28]. The notion of controllability for integer and non-integer systems which involving delays in control and
state expressions have been extensively investigated by many authors [29,30] and references therein. Wei [31] studied the
solution expression and controllability concept of fractional control systems involving delay in control term. Recently, Nawaz
et al. [32] established controllability approach for linear fractional systems involving delay in control term. Damping effect
constantly leads to energy dissipation in various physical oscillatory systems. Especially, damping in mechanical systems
is affected by several friction processes. Viscoelasticity, oscillations and associated properties have abundant significance in
the modelling of electrical, mechanical and biological systems. Certain systems have some complex effects, which cannot be
defined by ordinary differential equations.

Fractional calculus is a useful technique for defining such type of complex phenomenon and it has attracted more at-
tention in the research community [33-35]. Balachandran et al. [36] examined controllability of delay fractional damped
systems. Sheng and Jiang [37] obtained sufficient conditions for the existence of solutions for fractional damped systems
are derived using the applications of fixed point theorems and inequalities such as the Holder and Gronwall inequalities. In
[38], the authors investigated the existence and exact controllability of fractional fractional evolution inclusions with damp-
ing based on sufficient conditions by using an appropraite fixed point theorem. But the higher order stochastic fractional
control delay systems with damping has been investigated yet.

However, there have been a small number of existing works appeared for the approach of controllability of stochastic
damped fractional systems. The controllability analysis for fractional order systems with stochastic effects is inspired by
various real time technical problems involving random variations and in recent years, many authors discussed about the
controllability concept of stochastic fractional systems. The higher order fractional stochastic systems play an important role
in telecommunication networks, biological systems, finance markets. Shukla et al. [39] established the suitable conditions for
approximately controllable of stochastic fractional system in L, space. Han and Yan [40] studied the controllability approach
of fractional system involving stochastic effects. Therefore, it is valuable to investigate the analysis of controllability for both
linear and nonlinear cases of stochastic fractional systems involving control delay and damping behaviour.

However, there has been no result stated on the approach of controllability for both linear and nonlinear higher order
stochastic fractional control delay systems involving damping behaviour which inspires us to carry out the present study.

The significant contributions are specified as below:

« [t is more essential to consider the fractional damped stochastic systems with higher order. Many of the previous results
on lower order fractional stochastic systems are often for delay in state. So, it is crucial to pay attention to the study of
higher order fractional stochastic systems which have control delay and damping behavior.

o Controllability Grammian matrix with Caputo fractional derivative is employed to developed the suitable conditions to
impose that the linear fractional damped stochastic control delay system of order ut —1<p1 <, A—1<py <A is
controllable.

» Besides, we formulated the controllability conditions for corresponding nonlinear fractional stochastic control delay sys-
tem with damping behaviour by employing Burkholder-Davis-Gundy’s inequality and Banach fixed point theorem.

The layout of this study is as follows: Section 2 contains numerous basic properties related to the study. Section 3 dis-
cusses the controllability results for the considered linear systems. Section 4 proves the controllability results for the con-
sidered nonlinear systems by the fixed point technique. Section 5 presents examples to validate the correctness of proposed
results and the conclusion is provided in Section 6.

2. Preliminaries

Let (2,.#,P) be the complete probability space with filtration {.%:};»o generated by m-dimensional Wiener process
and probability measure P on 2. D is differential operator and R™ is the m-dimensional Euclidean space, R, = [0, o). The
following properties are employed in the derivation of main results.

1 t hMmi+D (g)
r'(my—pq+1) fO (t—0)P1~™ do.

» Laplace transform of CFD is £{§Dh(t)}(§) = EPIH(E) — Z,Tlo’l ht) (£)gP1—1-x,

« MLF Ep, (z1) involving p; > 0 is Ep, (1) = ¥ ﬁjﬂ) p1>0, 71 €C.

* CFD of order p; (0 <mq < p; <my +1) is {D/h(t) =

. . . J
MLF Ep, 5, (z1) involving py, oy > 0 is Ep, p, (21) = Y3 m, 01>0, 2z eC.

. p1-P:
» Laplace transform of MLF E,, p,(z1) is L{t/’flEphp2 (£atP)} () = %;1 ;2 .
-1
e For p; =1, we have L{E, (+at”1)}(§) = gf,)ll—;a.

Lemma 2.1 ([41]). For t € [0, 7] and any r > 1, the iﬂzofvalued predictable process v (t), we have

t t
BCsup | [ v @&)dw©)™) < GE([ 19 ©)Id6) (1)

0<t<T

where G = (r(2r — 1))r(%)2r2~
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Consider the Cauchy fractional problem

{nguv(r) — ASDPry(t) = h(t), t€[0,T]=J,

y(0)=yo. y(0) =y1.....y*1(0) =y,1. (2)

with u —1<p; <u,A—1<py <Xiand A < — 1. Here, dimension of matrix A is n x n and the function h: 7 — R" is
continuous. Taking Laplace transform of (2), we get

EPY(E) —EMTy(0) —EM2Y/(0) — ... — EPIYRTI(0) — AEP2Y (§)
+ AEPTTY(0) + AEP2Y/(0) + ... + AEP Y1 (0) = H(E).

Now taking inverse Laplace transform, then using Laplace transform of MLF and convolution operator, the solution of (2) as
follows

n-1 r-1
yt) = Z y (O)trEpl—pz,Hr(Atpﬁm) - Zyr(O)Atpl7/)2”5,01—pz‘pl—p2+1+r(¢4tplipz)
r=0 r=0
t
[ =87 By (A= §)7 (). 3)

3. Linear case

Consider the linear fractional stochastic system with control delay and damping behavior of the form

oDYy(t) — AGDy(t) = Bu(t) + Cu(t — n) + a(r)%, teJ. (4)
y(0) =yo. y'(0) =y1,....y" 71 (0) =y,_1. (5)
u(t)y=¢), -n<t<0, (6)

where u —1<py<pu,A—-1<py<rand A <pu—1, AeR™" B,C e R™™M are constant matrices, state variable y € R", con-
trol input u(t) e R™, n >0 is a constant and ¢ is initial control function. w(t) is m—dimensional Wiener process with
F: generated by w(€),0<& <t and o : 7 — R™™ is a continuous function. State variable y(t) denoted in Hilbert space
L?gzt (J x Q,R") with ||y||f2 = sup,; E[ly(t)||2. The continuous map Z = Z([0, T];L?%) is defined from [0, 7] — L?%(J x
Q,R") satisfying sup;; E[ly(t)]|? < oo.

The solution of (4)-(6) can be expressed as

n—1 A-1
y) = Zyr(O)trEﬂrpz,Hr(Atpﬁpz) - Zyr(o)/ltpl7p2+rEp1fpz,mfpz+1+r(¢4tp‘7pz)

r=0 r=0

t
[0 (A7) [Bu) +cute -~ mde +o6) P e

0 dg§

Then by changing the order of integration,
n-1 A1
Y(t) = Z.VrtrEpl—pz,lJrr(-Atm 7p2) - ZYrAtm 7p2+rEp1—pz.pl—p2+l+r(-Atp1 7p2)

r=0 r=0

0
+ (t =1 =& Ep,_p, p, (At — 1) = §)")CP(E)dE

t-n
[ =6 (A=)
+ (t =0 =) Ep . (At — 1 = E)PP)Clu(E )dE

t
) O 5T By p (A = )P Bu(§)dE

-n

t B
+ [ =67 (A= ([ o 0w () )at. (7)
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Definition 3.1. On 7, system (4)-(6) is known as controllable if V yg,y1,..., Yu-1.y7 € R", if there 3 a control u(t) such
that y(t) satisfies y(0) = yo,y'(0) = y1,....y*"1(0) =y, 1, y(T) = yr.

Theorem 3.2. For u —1 < p; <, A—1<py <A and A < u — 1, linear system (4)-(6) is controllable if and only if the n x n
Grammian matrix

T
W= r [(T - é)pli]El)] —0P2,01 (A(T - é)ﬂl*pz)B][(T - g)pli]E,lh—pz«ﬂ] (A(T - E)plipz)B]*dg
-7

T—
+ /0 T = 67 Epypypy (ACT = EYPPYB 1 (T = 1] = E)P " Epy . o (A(T =1 — £)7-P2)C]

X [(T - é)plilEp1—,02,,01 ('A(T_ é)plipz)B + (T_ ’7 - S)plilEm—pz,pl ('A(T_ ’7 - g)plipz )c]*ds

is nonsingular on t € J.

Proof. Let W be nonsingular, then choose u(t) involving yg, y1, .., Yu-1 & y7 as below
DI(T. )W 1(R). te[0.T—n]
u t _ 1 > C ) B 8
© {Dg(T, Ow-(k). telT-n.TI (8)
Here

Di(7.t) =[(T - t)pl_lEpl—sz/O] (AT =) P)B+ (T - n— t)pl_lEpl_pzvp] (A(T —n— t)P1=r2)c],
Dy (T, t) =(T = )P Ep, . py (AT — )P 7P2) B,

p—1 A-1
K :1/2 [yT - ZerrEpl—pz.lJrr(ATpl_pz) + ZyrATpl_pZHEp] —pz,p17p2+1+r(ATpl_pz)
r=0 r=0

0
- / (T =0 = E) By py (AT — 1 — £)P192)Cp (8 )dE
-n

T §
[T B AT =) ([ a(ﬁ)dww))ds}.

At t = T, the solution of system (4)-(6) as

u—=1 A-1
y(T) = Z _VrTrE,o] —p2, 141 (ATplipz) - ZJ’rATpI7p2+rE,o1—pz,pl—pz+1+r(-ATp] 7p2)
r=0 r=0

0
+f (T-n- g)plilEplfpzapl (AT —n - g)plipz)c(]j(é)d%‘
-n
T
+ f n I:(T - g)m*]EPl*Pzﬁ] (A(T — E)Pl*pz)B
0
+ (T =0 =8P Ep _pyp (AT — 1 — g)pl,pz)c]

x [(T—é)pl-lspl_pz.p] (A(T = E)PP)B 4 (T =1 — £)P " Epy_py o (A(T 1 —sw-m)c]*

n—1 r-1
X Wq (1 /2 I:yT - ZerTE/Ul*Pz,lJrr(ATpﬁpz) + ZYrATpl7p2+rE,01*,021/)1*/02+1+r(~’47—p] 7p2)
r=0 r=0

0
- / (T = 10— &)Y Epy_pyops (AT — 1 — E)PP2)C (€ )dE
-n
T )
- / (T—é)ﬂl-lfm_m,pl(AUr—sw-m)( / a(ﬂ)dw(ﬂ))d&])dé
0 0

.
+ / (T = E)7 " Epy_py o (ACT — E)PPYB(T — €)1 Epy_py py (A(T — £)P12) B

T-n
n—-1 r-1
v (1/2 [yT = D VT Eppy1ar (ATPP2) 3 e ATPV P Ey oyt (AT?1F2)
r=0 r=0

0
- / (T =0 = E) By oy (AT — 1 — E)PP2)C (E)dE
-n

4
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- /O T =6 By AT - &) ( /0 som)dw(ﬂ))ds])de

T )
+ /0 (T—é)ﬂl-llsm_pz,plmﬁ—s)ﬂl-m)( /0 o(ﬁ)dw(ﬁ))ds.
=Yr

Therefore on 7, system (4)-(6) is controllable.
Assume system (4)-(6) is controllable and let W is singular. If W is singular, then there 3 z # 0 such that

-
e /T [(T = &) Epy . CACT = &) P)B][(T = )7 Epypy p, (A(T — )71 B] zdE
-n
T-n
+z*/ I:(T_é:)pl_lEpl*ﬂz,pl(A(T—é)/’l—ﬂz)B
0

+(T —-n—- E)’Ol_lEp]—,Dz,pl (A(T —n — E)pl—pz)c:l

X I:(T_ g)p1*1Ep]7p2,pl (A(T - 5)»01*,02)8

+ (T_ 77 - E)m*]Em—pz,p] (A(T— 7’) — E)plipz)CiI*Zdé —0.
Hence

(T - S)p]_lEprpz.m (AT =§)P)B =0, (9)

and
2 [(T = ) B (AT = )7 )B4+ (T =0 = )7 By, (AT = = £)7 )] 0. (10)
Using (9) in (10), we get z*(7 — = &)P11Ep _p) o (A(T = —£)P17P2)C =0, t e J.
Therefore the system (4)-(6) is controllable there 3 u(t) that transfers from 0 to y; =z at t = 7 based on the starting
points yo =y; =...=Y,-1 =0 and ending point y7 = z.
T-n
yr=z=[ [T =6 By (AT =) PB4 (T = =)
T
X Epy—py.p0 CA(T — 1 — 5)"""2)6]U(S)d€+ /7 (T = &) Epy .o (A(T — £)P7P) Bu(§)d&
-n
0
[ TP B (AT = 0= )7 )0 ()
-n
T )
[T = AT = ([ @)awd) )ag
Thus

T—
zz :/o ”Z*[(T— EYONE, o (A(T = E)PP)B 4 (T —n — &)1

T
X Epy o (ACT =1 = )P P)C Ju(6)ds + /T

Z(T = §)P 7 Epy—py.p (A(T = §)P1772) Bu(§ )d&
n
0
+ f (T =1 = E)PEp_p o (AT — 1 — £)P1=P2)Ch(£)dE
-n

T P
+ fo 2T = §)" Epy -y (AT = )77 [0 o (9)dw(?))d

Then, the following
T-n
[ 21T =67 o (AT = )7 54 (T = = )7

.
% Epypy.pn (A(T =1 = E)P=P2)Cu(€)dE + /

(T - S)p]_1Ep1 —popi CA(T = &)= Bu(§ )d&
n
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and

0
/ T =0 =&Y E, o (AT — 1 — E)PP)C(E )dE
-n

T s
+/ (T =€) Ep_pon: (A(T—s)p"m)(/ o (9)dw(D))d& — 0
0 0
implies z*z = 0. This is a contradiction to z # 0. Thus the matrix W is nonsingular. O

Remark 3.3. If p; € (0,1], 0o € (1,2], 4 =2, and o =0, then the systems (4)-(6) reduced to the system which has been
discussed in [42].

4. Nonlinear case

Consider the nonlinear stochastic fractional control delay system with damping behavior of the form

S0y (1) — ASDY(®) = Bu(t) +Cutt — m) + h(t.y(©) + o (. ye) D e g, (1)
¥(0) =Yyo. ¥'(0) =y1,....y* 1 (0) =y, 1. (12)
u(t)y=¢t), -n<t<0, (13)

where p—1<p;y<pu, A—1l<py<iandA <pu-1, A B,C and n are same as in (4)-(6). Also, h: 7 xR" - R" and o :
J x R" — R™™M are continuous functions.
Then the solution of system (11)-(13) is given by

= A1
y(t) = ZyrtrEpl—pz,]Jrr(Atplipz) — ZyrAtpl7p2+rEp17p2,p1,p2+]+r(/4tp17'02)
r=0 r=0

+f Z (6= 1= £V Ep,_p, py (At = — E)"P)C(§)dE

+f (=) TEyy (At — )P P)R(E, Y(E))dE

+f (=) Epy (A o ( [ Sa<ﬂ,y<ﬁ>)dw(ﬁ>)dé
[ €8 B (A= 5B - )

XEpi—py.00 (At =1 — «S)”""Z)C]U(S)d5+ t (t = &) Epppy.p (At = )P P2)Bu(§)dE. (14)
-1

The control term described as

I owly, tel0,T-n]
”(t)—{mf(rt)ww, telT-n.T) (15)

Here
D1 (7.1) :[(T — )" Ep, o (AT =) PB4 (T =1 =) Ep ) o (AT =1 — t)pl—pz)c]
Dy (T, t) =(T — )P Ep_py.p, (A(T = £)P1=P2)B

n—1 r-1
y =1/2 {YT - ZYr'TTEm fﬂz,Hr(ATp]_pz) + ZYrATpl_pZHEpﬁpz.pﬁszJrr(ATpl_pz)
r=0 r=0

0

- / (T =0 = E) By oy (AT — 1 — E)PP2)C (E)dE
-n
d

- /O (T = &) Epypy o (A(T — E)PP2)R(E, y(£))dE

T )
- [ (T = )" Ep o (AT = )77 f o(ﬂ,yw»dw(ﬂ))ds}
0 0

Remark 4.1. The results developed for linear systems using controllability Grammian matrix is not enough to prove the
controllability of nonlinear systems due to its fundamental assumptions that the nodal dynamics are described by a set of

6
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linear higher-order differential equations. So, for nonlinear systems require a different set of tools compared with linear
systems, in this paper we will use the well known Banach fixed point theory approach.
Throughout the section, we make the following assumptions:

(H1) Linear fractional stochastic control delay system involving damping behavior (4)-(6) is controllable on 7.
(H2) h and o are continuous and there 3 N > 0,L > 0 such that

IhE NI < NA+lylI1?),  lloEnI* <La+ Iy,
(H3) For every y1,y, € R" and t > 0, there exist N > 0, L > 0 such that
[h(t,y1) = h(t, y)II> < Nlys = y2l%. llo(¢.y1) — o (. y2)II* < Lllyr = yal?
For convenience, let us present the following representations:

uy = ”trEp]—pz.Hr(Atpﬁm)||2s U = ”Atp]7p2+rEp1—pz.p1—p2+l+r(At'D]7p2)||2s Uz = ||¢(§)||2
0
v = / E[(t =1 — &) Ep,—p,.p0 (At — 1 — §)7P2)C||?dE. (16)
-n

Theorem 4.2. Let (H1) — (H3) hold. For p —1 < p; <, A—1 < py <A and A < u — 1, the nonlinear system (11)-(13)Vt e J
is controllable if the following condition holds:
7—2/)1—1
2,0] -1

6y (M2I2 + V212 + 1) (4L, L+ TN) < 1, (17)

where

M= ”[(t - E)pl_lE,01—/)2,p1 (A(t - é:)ﬂl—/)z)[g + (t - 77 - E)pl_lE,01—pz,P1 (A(t - 77 - E)pl_pz)c]”z
M = [1(¢ = &) Epy—py.py (AL = E)P)BI%, 1= W, g = [Ep,—p,., (At = E)7P2) 1%

Proof. Define a nonlinear operator A from Z to Z as below

n—1 A-1
(AJ/) (t) = Z .VrtrE,ol —p2, 141 (-Atp] P ) - Zyr-Atp] 7p2+rE;01 —P2.p1— P2+ 14T (‘Atp] e )
r=0 r=0

+f i(t NP Ep (A — 7 — )PP (E)dE

b [ €8 (A~ £ y(E))dE

+f (= E)P B,y (AL ([ aa(ﬂ,yw))dw(ﬂ))ds

+ [ €= B A= 08

=0 =) By (A = 1= §)"P)C [u()d

[ 6y (A~ E)P ) Bu(E)dE. (18)

t=n

By Theorem 3.2, the control u(t) transfers (14) from yo to y+ provided that A has a fixed point in Z. To verify control-
lability concept of system (11)-(13), it is equivalent to illustrate that A has a fixed point by means of Banach contraction
approach in Z. At this stage, the proof is split as dual.

Initially, we illustrate that the operator A maps Z — Z. From (18), we obtain

pu-1 2
sup El(AY©)[? =7 5up B T yitEy, 1, (AL7)
0<t<T 0<t=T —0

A1

+7 Os?pTIE D O YrAtPTPITE o o —pyetar (AEP17P2)
st= r=0

‘ 2

0 2
+7 sup E / (t—n—swl-lfpﬁm‘p]u(t—n—s>pl-ﬂz>c¢<s>ds\)
-n

0<t<T

t 2
+7 sup E /0 (t = E)P By o (CA(E — E)PPR(E, () dE H

O<t<T
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+7 swp B [ €~ 81 7y a1 | “o . y@naw) e |

0<t<T

- 70851237’1*3:” ‘/(;[77’ [(t — %-)p]_lEp]—pz,,ol (At - &) ")B

2
+ (=1 =) Epypy py (At =17 — sw*mc]u(s)ds H

+7 sup E
0<t<T

7
23Ry
b=1

Using Holder inequality, Lemma 2.1 (here C; = 4) and (16), we have the subsequent estimates:

-1 2 u—1
R1 S7Z]E <7y ZE”)’rHZ’
r=0

t 2
(t = )P Epy_py o (A( — £)P ) Bu(E)dE H

t-n

.VrtrEpl —p2 141 (-/‘tl'p1 2 )

r=0
A1 2 A1
Ra <7 ZEH}’rAfp“pZHEM —papr—pat1ar (APTTP2Y N < Ty ZE||yr||27
r=0 r=0

0 2
R3 <76 f E =B By (A0~ €)1 )CH €)dE | <7,

t 2
Ra <78 [ €= 6) En gy (A - £ PR (E 7 (E)) e

2p1—1

- T
§7u42Tp17_1NT /0 (1 +Elly(€)|1?)dé

2

Rs 528EH /0 () By (A~ S /O 5 o (9. y(@))dw(D) )dé

- 7—2,01—1
5281,[4[.5[,2’017_1 0

' (/06“ +E||J’(l9)llz)dz9>d$,

Re smH /0 - (€= )7 By (A= £)7P)B

2
+ (6= =) Ep,py py (A =1 — £)P *"Z)C]u(S)dé

n—1 A1
<2AM*P(T — 77)[JEIIJ/TII2 +u Y Elyll? +uz Y Ellyell* + vius
r=0 r=0
2p1-1

T T 5 ~7’2P1_1 T 8 P
sy N7 [ BV @IS +duslo Ly [ ([ iy )ae |

R7 §7E‘

t
/t [t = &) Epypy py (A = E)=P)B][(T = &) Ep, g, (A(T = §)7P)B]"
-n

n—1 r-1

X W_l (1/2 I:yT - Z-y"TrEﬁH —p2, 141 (ATPl—Pz) + ZyTATpl_p2+rEﬂ1 —02,01 *Pz+1+r(ATp]_p2)
r=0 r=0

0
- / (T =1 =6 Ep,_py po (AT = — E)P1=P2)Ch (€ )dE
-n

.,
- /O (T = £)° 7 Epy o (A(T — £)PPYR(E, y(£))dE
T 1) 2
- / (T = &) Ep_py (A(T—é)ﬂfm)( / o(ﬂ,yw))dw(ﬁ))ds])dsu
0 0

8

(19)

(20)

(21)

(22)

(23)

(24)
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n—1 A-1
5211\/121277[E||yr||2 + Z Elly[1? +us Zﬂfllyrll2 + Vi3

7—2/)1 7’,01
ruad R [y © e+ auato L [ ([l Y] (25)
From (19)-(25), we have
n—1 7—2p -1
Sup. El[(AYO))1? < Tuy Y Ellyr||* + 7uy ZIEIIyrII2 s+ Ty NT/ (1+E[ly)[1*)dg
r=0 r=0
T2 2 272 2
+2Bualo Ly f A +Ely®)| )dﬂ>d$+21Ml (T—n)[EHyTH
n—1 r-1 ,7_2 p1—1
+u1ZEnyrnz+u22E||yr||2+v1u3+u4zp NT/ (1+Ely©)[1?)dg
r=0 r=0
¥ 7—2,01 7212 2
oLy / (1 +Ely@)[[2)d?) s]+211v1 Er[Elyr
n—-1 A-1 7—
+u1ZEnyruz+u22Enyrn2+v1u3+u42 NT/ (1+Ely©)[1?)dg
r=0 r=0
~ 7'2,01
aualo Ly — (/ (1 +Elly@)| )dﬁ)dg]
T
<1+ /0 (1+Ely@)?)ds | <c(1 +T sup EV@IP), (26)

where C is constant. Hence A maps Z into Z.
Next, for any yq,y, € Z, we show that the contraction mapping of A on Z.

E[[(Ay1)(©®) = (Ay2) ©) 17

/(JQT—E)W‘EM_,)Z,M (A(T—&)ﬂﬂ’w[/;S (0 @31 =0 (9.y29)) ) dw() |d HZ
2
|

woite || [ 7605 AT -6 )] [ (003100 o320 ) weo) Jae |

< 61\/1212{

O A N U T D [XCR A B AT

| [1 T -0 AT - e [nE 1) - 620 et ]

+ 6 /Ot(t—wHEp_pz,pl (A(r—é)pfm)[/oa (0 @310 -0 @350 )dw(®) |d H2

t 2
468 [ (6= 67 En (A= )77 [0 31 (6)) — hE ya(6) | |
2 B 4 6
L 6M°P Y Sy +6M PPy Sy + ) Sp. 27)
b=1 b=3 b=5
Now, we have the subsequent estimations

51 < 24MPP2 /0 O LT (AT = §)m] [0 8 (031 =0 (9,329 ) dw() |a Hz

2p1-1

T T )
< 212 _ 2
< 24MPualoly _lfo (/0 Elly1(9) -y (D)l )dﬁ)dé (28)

T 2
S, < 6M2P / (T—sw*b‘pfmm(A(T—swm [h@,yl(s))—h@,yz(s))]déH

p1—1

= oneruNg U [T El @) o6 (29)
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- T2p1~1 T 8
5 < 240 PusloLy—— [ ([ (BIn @) - y20)1?)as ) (30)
Sa < 6N, TN — / Elly1(§) - y2(§)I%ds (31)
T2m-1 T s
85524u4LUL2p1_1 ([ EIyi@) = ya)17)d0 )ag (32)
o= 6w TN [ Bl (6) - a(©)lde (33)

Then (27) together Wlth inequalities (28)-(33), we get
E[l(Ay)(©) = (Ay) (]2 < 6u427p (M2 4 NP2 + 1)[4L, L / ( / (Ellys (9) - > () |)d ) dg

mv/ Elly: (§) — y2(&)[|%dE]

2p1-1

(1\/1212 +M?I2 +1)(4LsL+ TN) sup E|y; (t) — y2(t)||>d& (34)

< 6y
2101 O<t<T

From (17), A is a contraction mapping on Z. Thus, A has a unique fixed point. So, system (11)-(13) is controllable on 7. O

Remark 4.3. When p; € (0, 1], p1 € (1,2], w =2, and C = 0 = 0, the system (11)-(13) reduces to the system studied in [36].
In system (11)-(13) if the fractional orders p; =1, p, =0 and u =1, then the considered system is reduced to fractional
order system studied in [46]. So the obtained results are generalization to the above results and can be regard as a special
case of our result.

Remark 4.4. It should be noted that the suitable conditions for controllability analysis of fractional damped systems with
control delay using the fixed point techniques has been derived in [42,43]. Further, the controllability of nonlinear fractional
damped systems have been analyzed in [44-46]. However, in practice many dynamical systems together with damped re-
sources are subjected to random loading. So, there is a real need for stochastic models of fractionally damped resources and
formations. Also, delay effects are an essential phenomenon in any control process and unavoidable. Thus the key purpose
of the present research is to bridge such a gap by making an attempt to deal with the fractional damped systems with
stochastic effects and control delays. Comparing with [42-46], the results in this paper are new and original, as they have
not considered the stochastic effects.

5. Examples

To discuss the practical applications of the system discussed in this paper, we consider a fractional moving spring oscil-
lator in a oil or in a thicker liquid described by

SDPy(t) — a§DJy(t) + by(t) = 0.

It is noted that the above equation represents the fractional dynamics of moving spring oscillator given by j(t) + ay(t) +
by(t) =0, where 'y’ is the location of the oscillator, a is a constant related to the liquid and b is a constant related to the
spring. In this section we will discuss the controllability results when the input delays and stochastic effects appear in the
above system dynamics via two examples for both linear and non-linear cases.

Example 5.1. Consider the linear higher order fractional damped stochastic control delay system (4)-(6) with p; = 1.5, p; =
0.5, n=0.5,

(8 i i o[

From Theorem 3.2, we have
2
w :ASI(Z — 5)0'5E1,1.5("4(2 - S))B][(z — E)O'SE],I,S(.A(Z _ E))B]*dé.

15
+/0 [(2—8)E115(AQ2 - £)B+ (1.5 - §)%E; 15(A(1.5 - §))C]
x [(2=&)%E1 15(AQR - §))B+ (1.5 - §)%°E; 15(A(1.5 - §))C]"d§.

10
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Then we can find

2 22-§)

E115(AR—-§)) = |:2(2ﬂ5) f
7=

4

05 202-%)"
2-&)"E115(A2 - &)B= 2(2¢§)05 ’

os 2(1.5-£)"°
(1.5-&)"E115(A(1.5-&))C = 72(1‘ﬁ5)15 ,

NG

2 2 [4Q-£)°  4(-§)?
/1 @8 E11s(A2 = )BIIQ2 - §)™Er15(AQ2 - §)BI'd§ = /1 ) [mﬂg)z G }dé

~10.0199 0.0531
~10.0531 0.1592 |

Ned N

2(2-£)15+2(1.5-§)0%
— 1.7725
- [ 2(275)0.572(1‘575)1.5 ] ’

1.7725

22-§)13 2(1.5-£)05
[2-8)E115(AQ2 - £)B+ (1.5 - £)*°E115(A1.5 = E))Cl = 5 F s |+ | oereys

15
/0 [(2 = £)95E; 15(AQ — £))B+ (1.5 — £)°9E; 1 5 (A(15 — £))C]

<12~ £)°%E1 1 5(AQ ~ £))B -+ (15 - £)°%E 1 5(A(15 — £))Cl'dE = [1(},5225871 82332}

Hence, the controllability matrix W for the system (4)-(6) is found as

W= 11.848 0.9788
~10.9788 0.6597 |’

which is positive definite. Therefore, the considered linear system is controllable.

Example 5.2. Consider the nonlinear higher order fractional damped stochastic control delay system (11)-(13) with p; = 3.5,
02 =2.5,1n=0.5,

t
1 1 0 1 0 THONT® In(cosh y1)
A=(1 0 2|,B=|0|,c=|1]| h(tyt)= ¥2(0) and o (t,y(t)) = % .
0 -1 1 0 0 1) i
0 sin ys
Then we can find
8(4-§) 8(4-8) 8
15/(r)  15/(r)  15/(7)
8 16(4-§)

8(4-¢)
Ei35(A(4-§)) = B By 15/ |
8 —8(4-§) 8(4-%)
15/(r)  15/(r)  15\/(7)
8(4-£)S

15,
(4-§)*Er35 (AU -§)B = | 075
8(4-£)2°

154/ ()

4 0.00004 0.00004 0.0001
/ [(4—&)*°E135(A(4—£))B][(4 - £)*°E135(A(4 — §))B]*dé = [ 0.00004 0.00004 0.0001 |,
35 0.0001  0.0001  0.0002

4
/0 (T = £)25E; 35 (AT — £))B + (T — 1 — £)25E; 35(A(T —  — £))C]
(T — &)*E1 35(A(T —E)B+ (T —n — ) E135(A(T —n — §))Cl*d&

1



G. Arthi and K. Suganya Applied Mathematics and Computation 410 (2021) 126439

1862.7073  1400.9032 —353.7895
=( 1400.9032 1055.2066  —263.403
—353.7895 —263.403 71.6719

Hence, the controllability matrix W for the system (11)-(13) is found by

1862.70734  1400.90324 —353.7894
w =[ 1400.90324 1055.20664 —263.4029
—353.7894  -263.4029 71.6721

which is positive definite. Further, h and o satisfies the hypotheses of Theorem 4.2. Also, the corresponding linear system is
controllable. Hence the nonlinear higher order fractional damped stochastic system (11)-(13) is controllable on 7.

Remark 5.3. The paper is mainly focusing on the higher order damped fractional-order systems with noise. The noise is
a crucial feature of the information processing in various applications such as neuron model, electronic models like RC
circuit and LCR model. When the stochastic resonance applied to a damped fractional-order systems, it is closely related to
the natural environment. Particularly, the problem under consideration is useful to characterize visco-elastic properties of
beams and plates, nonlinear fractional-order harmonic oscillators with stochastic noise.

6. Conclusion

Controllability design for both linear and nonlinear cases of higher order stochastic fractional control delay system in-
volving damping behavior were discussed. Based on controllability Grammian matrix, controllability design for the consid-
ered linear stochastic fractional damped system have been attained under suitable assumptions. By using Burkholder-Davis-
Gundy’s inequality and Banach contraction concept, the controllability conditions for the corresponding nonlinear system
have been addressed under some hypotheses together with the statement that the linear fractional system is controllable.
To demonstrate the importance of the attained result, two examples are included. Besides, the model proposed in this pa-
per can also be extended to systems involving impulsive effects, various delay effects and fractional Brownian motion which
gives fruitful results and will be discussed in our future works.
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