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Abstract
In medical diagnostic systems, the most challenging task is to segment and classify the 
varieties of skin disorders from dermoscopic images. For this purpose, Bootstrapping 
of Fine-tuned Segmentation and Classification Network (BF-SegClassNet) model was 
designed, which uses (i) cycle-Generative Adversarial Network (GAN) as domain adapta-
tion, (ii) modified SegNet as segmentation and (iii) fine-tuned ResNet18 with Bootstrap-
ping as classification. But, the efficiency of cycle-GAN was degraded if the source domain 
differs largely from the target domain. Hence, in this article, a Fuzzy Transfer Learning 
(FTL) model is developed based on fuzzy logic as domain adaptation. In this model, 2 dif-
ferent stages are performed such as training and adaptation. During the training stage, the 
source labeled data is used to build the Fuzzy Inference System (FIS), which extracts infor-
mation from the source and transfers it to the target domain. The fuzzy sets and fuzzy rules 
created by an Adhoc Data-Driven Learning (ADDL) activity are included in the FIS. The 
created source FIS and the target data are used in the adaptation stage to adapt the fuzzy 
rule and the fuzzy rule base from the FIS to extract dissimilarities in the data and help 
bridge the contextual gap between the source and target. Thus, this FTL model is applied 
instead of cycleGAN to create more samples, which are further partitioned and classified 
by the BF-SegClassNet model efficiently. Finally, the testing outcomes exhibit that the FTL 
model attains a mean accuracy of 98.08% for the HAM dataset compared to the other GAN 
models.
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1  Introduction

Due to the obvious significance in learning how to cope with diseases and the dispari-
ties in differing remedies, skin or dermatological disorders are possibly the broadest and 
most diverse sub-fields of pharmaceuticals. Skin disorders are well-known among other 
disorders, particularly those that are rapidly spread [1] and can be harmful to mela-
noma if not detected in its early stages. Skin problems have tremendously increased 
in comparison to other types of disorders. According to many studies, skin disorders 
were the fourth leading source of nonfatal illness risk worldwide, highlighting derma-
tology’s importance in the ever-growing field of global health [2]. Skin illness can only 
be identified by dermatologists with extensive clinical experience and is hardly recur-
rent due to its magnitude, diversification, and familiarity. An untrained dermatologist 
is prone to misdiagnose it, which can worsen the illness and restrict accurate diagnosis. 
As a result, a quick and proper categorization of such disorders is critical by evaluating 
several features such as skin lesion shape, biological characteristics, color, context, and 
defect location [3].

Recognition is extremely difficult based on a self-governing assessment of therapeu-
tic dermatological characteristics, and epidermal features are not developed proactively. 
To overcome such challenges, a transfer learning model was built that uses deep learn-
ing structures to describe skin diseases [4]. Instead of implementing with the random 
initialization, pre-trained designs were applied to improve the weighting factors of deep 
learning through recurrent back-propagation. Over the centuries, several pre-trained 
DCNN variants, like AlexNet, GoogLeNet, VGGNet, and others, were deployed to dis-
cover skin abnormalities [5]. For adapting the skin disease classification system on the 
transient set, a 2-phase progressive transfer learning approach with a fully supervised 
Residual Network (ResNet152) model pre-trained on ImageNet [6] has been developed. 
Besides, cycle-Generative Adversarial Network (GAN) knowledge was employed as a 
transfer learning process for converting epidermal properties from the image domain 
to the target domain. Given the overall efficacy, DCNN’s cognitive knowledge proved 
invaluable for skin-like images. To address this issue, epidermal images were segre-
gated using the SegNet, a deep encoder-decoder structure, and the segregated images 
were classified using the DCNN [7]. But, the fine-delineation of the margins among the 
Regions-Of-Interest (ROIs) in the skin lesion was not accomplished.

As a result, a modified SegNet with Categorization known as SegClassNet [8] was 
developed, with the skin lesion images augmented by cycle-GAN giving as input. Ini-
tially, dilated convolution was employed rather than conventional convolution to get 
multi-scale contextual features while maintaining pixel density. The encoder then coded 
these features and transmitted them to the decoder, which was preceded by the drop-
out layer. In the dropout layer, Dynamic Conditional Random Fields (DCRFs) were 
employed to resolve the overfitting and obtain segregated skin images. Further, such 
segregated features were immediately submitted to ResNet18 to classify epidermal dis-
eases. But, it uses a standard error function, which restricts the network’s capacity to 
extract invariant features from epidermis images.

To address this issue, the F-SegClassNet [9] was constructed by modifying the 
ResNet18 layers with the integrated triplet and group losses. The ResNet18 classifier 
was used to learn the embedding from segregated images into the Euclidean space. 
Besides, l2 gap was calculated amid the corresponding segregated images from Euclid-
ean distance to learn invariant data of skin images using the integrated loss value. Then, 
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these l2 gaps were used to classify the segregated image features. Even though it uses 
cycle-GAN as an image enrichment system, it was not acceptable while the training 
samples were inadequate.

As a result, the BF-SegClassNet framework [10] was developed to overcome the imbal-
anced pictures in the training set by generating a set of pseudo-balanced training batches 
based on the features of the original epidermis image database. This BF-SegClassNet 
model was tailored to the particular characteristics of DCNNs, making it more capable 
of categorizing the skin infection image database with a highly unbalanced distribution of 
samples. Depending on this bootstrapping, a stronger balance across relatively complex 
image samples was accomplished to create a framework for robust automated skin infec-
tion categorization. In this model, the probability was calculated for the whole training 
examples and a novel collection termed bootstrap samples was constructed to keep the 
most important image samples. On the other hand, the knowledge transfer between source 
and target domains did not often increase the efficiency and it degrades the accuracy. The 
cycle-GAN domain adaptation was not highly efficient when the source domain varies 
largely from the target domain.

Therefore, this paper proposes the FTL model, which uses fuzzy logic to transfer knowl-
edge from contextually differing atmospheres and model a target domain in an intelligent 
environment using the labeled source data. This model can understand the inherent uncer-
tainty and dynamic nature of intelligent environments by adding estimation and better 
expressiveness of such uncertainty revealed within the data. This model comprises training 
and adaptation stages. During the training stage, the FIS is built by the source labeled data 
to extract knowledge from the source and transfer it to the target domain. The FIS includes 
the fuzzy sets and fuzzy rules, which are devised by an ADDL task. During the adaptation 
stage, the created source FIS and the target data are utilized to adapt the fuzzy rule and the 
fuzzy rule base from the FIS to extract dissimilarities in the data and support in bridging 
the contextual gap between the source and target. Thus, the FTL can be applied instead of 
cycleGAN as domain adaptation and the BF-SegClassNet model is applied to classify the 
skin disorder categories.

The phrase "advanced domain adaptation" refers to a strategy that makes use of spe-
cialised tools to modify a deep learning model to suit various and intricate skin disease 
domains. The process of precisely defining and classifying skin illnesses from medical 
image is referred to as "skin disease segmentation and classification" and is a crucial stage 
in the diagnosis and planning of treatment. To obtain stable performance across various 
skin disease datasets, the addition of "using bootstrapping of fine-tuned deep learner" sug-
gests the use of iterative and increased fine-tuning methods inside deep learning models. 
This suggests the creation of a cutting-edge methodology that makes use of domain adap-
tion methods, powerful deep learning models, and bootstrapping techniques to efficiently 
segment and categorise skin diseases from medical images. This method, which uses flex-
ible deep learning models to increase diagnostic accuracy, can revolutionise the detection 
of skin diseases and medical imaging. Its capacity to adapt to different domains guaran-
tees correct performance across a range of datasets, improving generalisation and lowering 
retraining costs. The model is made more reliable and adapted to the characteristics of skin 
diseases through recurrent bootstrapping and fine-tuning. This not only quickens therapeu-
tic processes but also makes telemedicine possible and makes dermatological research eas-
ier. This strategy has the potential to revolutionise dermatology and greatly enhance patient 
care by reducing variability and increasing model efficiency.

The following sections of the paper are outlined as (i) Section II focuses on the works 
regarding skin infection segmentation and classification, (ii) Section III explains the FTL 
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model for domain adaptation and Section IV demonstrates its performance. Section V sum-
marizes the study and outlines the improvements that will be made in the future.

2 � Literature survey

Hu et al. [11] designed a noel codebook learning method depending on Feature Similar-
ity Measurement (FSM) to efficiently quantify the actual features of melanoma. Then, the 
mixture of the linearly independent and linear prediction methods was used to calculate 
feature similarity. Also, a melanoma classification technique was applied depending on the 
FSM codebook learning method. The Bag-of-Features (BoF) histogram fusion method of 
different feature descriptors was adopted to classify benign and melanoma. But, it needs 
to adopt deep learner for automatically extracting high-level features, which defines the 
lesions.

Garcia-Arroyo et al. [12] presented an algorithm to partition the skin lesions in dermos-
copy images depending on the fuzzy classification of pixels and histogram thresholding. 
But the threshold value was fixed and it needs to properly select the fuzzy membership 
functions. Nida et al. [13] designed a deep learning model using region-based CNN and 
fuzzy C-means clustering to automatically partition the melanoma region in the dermo-
scopic images. On the other hand, different categories of skin disorders were needed to 
classify simultaneously.

Qin et al. [14] developed the skin lesion style-based GAN to effectively synthesize high-
quality skin lesion images and applied deep transfer learning to classify the skin tumor 
classes. This was used to help physicians in more proper diagnostic decisions. But it needs 
to solve the mode monotony of a few diagnostic types in synthetic images.

Gazioğlu & Kamaşak [15] analyzed the effects of objects and image quality on mela-
noma classification using different CNN structures. First, the melanoma image dataset was 
acquired and data augmentation was performed to increase the number of images per class 
in the dataset. Then, the CNN model was trained and tested using the degraded images to 
classify benign and melanoma lesions. But the accuracy was degraded because of the ruler 
in the images.

Tumpa & Kabir [16] applied a preprocessing of dermoscopic images to eliminate hairs 
with the maximum gradient intensity method and enhance the image quality. Then, par-
tition was applied using the OTSU thresholding method to divide skin lesions from the 
images. Also, various features were extracted from the partitioned images to train the Arti-
ficial Neural Network (ANN) and classify the skin diseases. But it has a high computation 
burden while increasing the number of images.

Abdelhalim et  al. [17] developed the Self-attention Progressive Growing of GANs 
(SPGGANs) to create more fine-grained skin lesion images for CNN-based melanoma rec-
ognition. In this model, the image was created by aggregating details from each feature 
position. Also, the discriminator was used to observe that highly detailed features in distant 
regions of the image were reliable with each other. Moreover, the Two-Timescale Update 
Rule (TTUR) was applied to SPGGAN (SPGGAN-TTUR) to enhance the stability while 
creating skin lesion images. But its training was influenced by the artifacts in the images 
and it needs to extract multi-level dependencies across skin lesion image areas.

Rahman et al. [18] designed a weighted mean ensemble learning-based framework to 
classify the variety of skin lesions. First, the skin lesion images were collected and pre-
processed to remove the noise from the images. Then, the data augmentation based on 
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rotation, flipping, shearing and zooming was performed to augment the training images. 
After that, different CNN models were trained and ensembled based on weights assigned to 
each model for classifying skin lesions. But it was complex to collect the data because they 
need a skilled clinician to manually annotate them.

Indraswari et  al. [19] suggested the MobileNetV2 network classify the melanoma 
images into benign and malignant classes. But its efficiency was less because of an 
imbalanced dataset. Hasan et al. [20] developed an automated skin lesion classification 
using preprocessing and hybrid CNN. First, lesion segmentation, augmentation and class 
rebalancing were applied as preprocessing. Then, the hybrid CNN was applied to extract 
the different features and fuse them to predict a lesion class. But it fails to obtain satis-
factory class-balanced outcomes.

3 � Proposed methodology

In this section, the proposed FTL-based domain adaptation model is described briefly. 
Figure 1 demonstrates the block diagram of the proposed skin disease segmentation and 
classification system using FTL with the BF-SegClassNet model. First, the training and 
test dermoscopic images are acquired. Then, the training image set is fed to the FTL 
model as multi-domain adaptation, which maps the skin disease features from the source 
domain (input space) to the target domain (feature space). Based on this FTL, training 
images are augmented and given to the modified SegNet to segregate the skin lesion visu-
als with high-resolution pixels. Further, the BF-SegClassNet classifier is trained by the 
segregated images and tested by the test images to classify the types of skin diseases.

3.1 � Dataset

The HAM10000 dataset [21] is initially obtained from the ISIC archive and is available 
at https://​isic-​archi​ve.​com/. It contains all skin images, with 505 lesions recognized by 
pathology, and has 10,015 skin images of seven different types. Actinic keratosis, basal 
cell carcinoma, benign keratosis, dermatofibroma, melanoma, melanocytic nevus, and vas-
cular lesion are seven different types of skin disorders. After acquiring the dataset, 70% of 

Fig. 1   Block Diagram of the Proposed Skin Diseases Segmentation and Classification System

https://isic-archive.com/
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the images (7011 images) are considered for the training set and 30% of the images (3004 
images) are considered for the test set randomly. The training images are then augmented 
based on the FTL as a domain adaptation scheme to enhance the classification accuracy.

3.2 � Domain adaptation based on fuzzy transfer learning

The major modules in the FTL are illustrated in Fig. 2. In this architecture, 2 different tasks 
are executed: (i) transfer of the fuzzy concepts and their relationships and (ii) the adapta-
tion of the fuzzy modules using knowledge of the application context. In the initial phase, 
this system utilizes the source of labeled data to commence the training task. The training 
task utilizes this source data to build the FIS. The architecture of the FIS comprises fuzzy 
sets and fuzzy rules.

The FIS is utilized to extract the knowledge from the source and transfer it to the target 
domain. This task of transferring data is a basic phase of the FTL model. The FTL extracts 
data from the source domain to serve as a primary training step for the target domain. The 
second phase of the model investigates the adaptation of the FIS, which utilizes the data 
from the unlabeled dataset tied with prior learned data. This task adapts the individual 
units of the FIS to obtain the deviations in the data. Modifications from the scenario to the 
scenario are absorbed via alterations made within the domains of the fuzzy sets and adap-
tations to the rule base.

Based on this structure, the FTL model can transfer the data to help in bridging the 
knowledge gap. By an online adaptation task, newly added data is absorbed. The source 
domain 

(
DS

)
 is described as:

In Eq. (1), x ∈ X are input images, y ∈ Y  is output, n is the number of input, m is the 
number of output and P is the number of data tuples within the domain. Likewise, the tar-
get domain 

(
DT

)
 and adaptive domain 

(
DA

)
 are described. Also, the domain is described 

(1)DS =
{(

xS
n
, yS

m

)}P

S

Fig. 2   Overview of FTL model
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using time, which is applied to define the domains to enable the utilization of time arithme-
tic. In this model, a time is defined as a bounded collection of real numbers as:

In Eqns. (2) & (3), aL and aR are the left and right endpoints of the time A . When the 
respective endpoints of 2 time periods A and B are identical, these two time periods A and 
B are identical. Therefore, A = B , when aL = bL and aR = bR . When aR < bL or bL > aR , 
the intersection of 2 time periods is null (A ∩ B = ∅) . According to this description and 
using the time notation, the source domain time is described as:

As well, the domain is described using its relationship to fuzzy sets. The source domain 
with n inputs and m outputs is described by

In Eq. (5), fXS
n
 denotes the collection of fuzzy input sets and fYm denotes the collection 

of fuzzy output sets. Besides, fXS
n
 is described as:

In Eq. (6), vs and vl are the sets very small, small, medium, large and very large, corre-
spondingly. Such fuzzy sets are created as common, continuous and triangular.

The target domain with l inputs is described by

In Eq. (7), fXT
n
 denotes the collection of fuzzy input sets. The rule bases applied within 

the following tasks are described by a similar notation. A rule base that involves n anteced-
ents and m consequent sets is represented by

In Eq. (8), R refers to the rule base, X refers to the input image, Y  refers to the related 
output and P refers to the number of rules.

The initial phase of the FTL model is the formation of the FIS. Fuzzy rules and fuzzy 
sets are generated through the utilization of an ADDL task, which is determined from 
numerical data. This scheme utilizes numerical data to create the sets and rules.

The source domain DS is transferred to model a predictive operation of a target domain 
DT . The relationship between DS and DT influences the model output. The 2 domains are 
classified as correlated when there is an implicit or explicit correlation between them. The 
correlation can determine the need for knowledge adaptation from the source domain and 
the learning process. No adaptation is necessary when the domains are identical and the 
learning processes are addressing a similar issue; but this is uncommon in real-time sys-
tems. When the domains are partitioned, the adaptation procedure is required. The compo-
nents of the adaptable FIS are changed to allow the model to understand these alterations 

(2)A =
[
aL, aR

]
=
{
a ∶ aL ≤ a ≤ aR, a ∈ ℝ

}

(3)B =
[
bL, bR

]
=
{
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}
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=
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}
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n

}
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from the source to the target domains. This domain adaptation via learning has the follow-
ing phases:

Phase 1: External source domain adaptation  During the transfer of learning structures 
from one contextual domain to another, a knowledge gap might emerge. Differences in the 
domains themselves, as well as variations in the learning structure can be represented. The 
FTL modifies the upper and lower bounds within the domain to adjust these variations in 
the source and target domains. The fuzzy sets initiate a stretching or expanding procedure. 
This model modifies the range of the period for an input instance of all databases based 
on any variance determined between the adaptable FIS and the new input values. First, 
DS is defined as data tuples 

(
x1, x2, y

)
 , where x1, x2 are inputs and y is the output. The new 

domain is created depending on DS including the variations obtained via the adaptation 
task. This is represented as DA , which defines the missing data between the source and 
target domains.

Then, all data points are examined to capture data. The input period is adapted when the 
value enlarges beyond the left 

(
xL
)
 or right 

(
xR
)
 limits. So, a new set structure is created. 

Any domain adaption leads to a similar distribution across the sets because of the identi-
cal spacing. Domain expansion needs a simple update to the footprint of all sets. To adjust 
sets with unevenly distributed membership functions, a scaling function is essential. In this 
study, a triangular function is utilized and is described by

In Eq. (9), x refers to the input value, c refers to the function centroid and w refers to the 
width. The sets are transferred by the centroid points when the domain is transferred in a 
negative or positive direction. The distance between each point is identical.

Any domain expansion or compression necessitates that the sets are transferred based 
on the scaling. When the target domain is embedded in the source domain, the alternated 
method is needed to adjust both set structure and domains.

Because the adaptation exists, the linguistic values allocated to the fuzzy sets remain 
unchanged. With the adaptation of the sets themselves, the linguistic labels provided to 
them are transferred from the source domain to the target domain. This relates to a linguis-
tic label’s contextual idea. Fuzzy subsets are defined as not being random and absolute, but 
rather depending on the criteria of a situation, according to a contextual idea. The situa-
tion is represented here by the timeframe of the array of an image. The adaptation essen-
tially modifies the mapping of linguistic variables to the modified base set. The linguistic 
variables established during the creation of the sets from the source data remain constant 
throughout the situation in which the fuzzy sets are included.

Phase II: Internal source domain adaptation  This phase is also subjected to the source 
domains. The source domain transfer will need adaptation to eliminate the knowledge gap, 
which is defined by variations in the domain periods. Phase I reduces the discrepancies by 
expanding the total size of the domain range by lowering the left bound or expanding the 
right bound if needed. But, when transferring the source to the target, the domain will need 
to be reduced, either partially or completely, to modify within the source bounds. In this 
phase, the following processes are performed:

(9)A(x) =

{(
1 −

|x−c|
w

)
, if c − w ≤ x ≤ c + w

0, or else
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1.	 Initialization: It initializes the FIS by analyzing the image from the source domain to 
increase an input period. The source domain input period is represented as DI

S
(X) =

[
xL, xR

]
 

with xL is the lowest range and xR is the highest range of all inputs in the domain.
2.	 Correlation: The target domain contains very restricted image accessibility. To solve this 

problem, the adaptation model evaluates local highest and least ranges to source data. 
Because the target domain obtains data points, local minima and maxima are computed. 
When specific or both of such ranges exist within the period defined by the xL and xR , 
a proximity measure is used to determine whether the domain is adjusted or not. The 
proximity depends on the Gaussian membership function, which is according to the 
source input domain period. The outcome from the proximity factor is compared to the 
fixed threshold. If the threshold range is attained, the domains are adjusted according 
to the ranges from the target domain.

3.	 Negative impact: Adjustment of the input domains is forecasted depending on its effect 
on the entire fuzzy system. To determine the effect of this adjustment, an evaluation 
between the highest membership of the rule base prior to the transfer and equal after 
transfer. The system returns to its prior state when the value is reduced, which focuses 
on the adjustment and prevents the negative adaptation.

The initial 2 processes concentrate on the input variable domains and so the antecedent 
sets. Image is accessible to make adjustments within these domains. The unlabeled image 
makes direct adjustment of the target successive domains difficult. To solve this issue, the 
3rd process merges the image created by the model with fresh domain data.

Phase III: Target domain adjustment via gradient control  This phase concentrates on the 
modification of the subsequent sets. This task utilizes an image from the target domain 
united with an image from the model itself. It enables feedback from the adjustment model. 
The processes performed in this phase are the following:

1.	 Image collection: A predefined n dimension sliding window (SL) of image is acquired 
from DS and DT for all input variables x ∈ X and y ∈ Y  . The output range for DT is 
obtained from the FTL model. The source outcome is obtained from the given labeled 
image. Gradients are created depending on SL between the input and output range. It 
enables us to understand the correlation at all data points. The gradients are the basis of 
the consequent adjustment.

2.	 Gradient formation: Gradients are generated for all source and target inputs and the 
source output. The outcome from the FTL model is utilized to create the target output 
gradient. The image data is regularized by the typical score technique as:

In Eq. (10), z refers to the output, x refers to the input value, x and � are the average and 
the standard variance of SL.

3.	 Gradient comparison: A comparison is performed at all individual input values by 
utilizing the gradients obtained across all source and target domain input and output 
variables.

4.	 Consequent adjustment: The gradients of the values are used to translate the source 
input and output values to the target input and output values. Variations emphasize the 

(10)z =
x − x

�
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need to adjust the consequent sets by mapping the source gradient to the target gradient. 
Adjustments to the target consequent domain period are influenced by changes between 
the source and target consequent gradients. The consequent adjustment is defined by

In Eq. (11), �(� = 0.1) refers to the training variable to weight the effect of the gradi-
ent delta, gS refers to the gradient of the source SL for n inputs that may be defined as 
gSi…n

∈ [−1, 1] , gT refers to the gradient of the target SL for n inputs that may be defined as 
gTi…n

∈ [−1, 1] and dDA refers to the delta utilized to adjust the consequent sets.
The primary 3 processes of the adjustment task are concerned with changing the fuzzy 

sets. Also, it adjusts the fuzzy rule-base to observe the contextual alterations during all 
executions.

Phase IV: Rule base adjustment through source rule comparison  Earlier phases are con-
centrated on domain adjustment. As well, the variations exist within the rule base struc-
ture. The knowledge of the FTL model is included in the fuzzy sets and fuzzy rules. The 
knowledge gaps are addressed to employ adaptable FIS to the new situation via changing 
the rule base. The rule base is adjusted by analyzing prior pruned rules and integrating the 
target domain image. The usage of an extensive rule base is related to the transfer learning 
concept of the FIS development.

The initial process is to analyze the extensive rule base A to recognize the rules that strike 
by the image from DT . The rule that strikes with the maximum membership value from all 
data points is retained in the dynamic rule base C . The collected rules are evaluated with the 
reduced rule base B depending on those with similar antecedent values. All reduced rule base 
rules that strike are evaluated with the dynamic rule base. Those rules that contain higher 
membership values are retained, eliminating the comparable rule from the dynamic rule base. 
The higher weighting defines higher applicability to the new domain. When the recognized 
rule in B is not within C , this is included. The addition of the rules from the extensive rule 
base helps in providing missing knowledge data needed by the new domain.

Phase V: Rule adjustment by Euclidean distance measure  The last phase of the adjust-
ment is also concentrated on the fuzzy rule base. Earlier learned data can be used to bridge 
the gap in knowledge needed to execute a new assignment. Additional data is needed to 
bridge the gap and try to preserve each of the fragments where discrepancies exist. In the 
FTL model, data of the new domain can only be partially defined in the fuzzy rule base. 
Additional rules have to be created for supporting the rule base. Because the target domain 
is an unlabeled dataset, this method relies on a combination of learning from recently col-
lected data and prior experience in the form of an extensive rule base. Different procedures 
are employed to create antecedent and consequent fuzzy sets.

The primary task is to obtain an output from all the input variables. The anteced-
ent sets are adjusted depending on earlier acquired data. The unavailability of relevant 
data necessitates a new method. There is a mapping between the input values and the 
consequent output from a related rule. The mapping is produced by the Euclidean dis-
tance depending on the input values from the unlabeled image to localize the nearest 
related consequent set. All sets are provided a related input value during the creation of 
the extensive rule base.

Thus, this FTL as a domain adaptation can adjust the source and target domain images to 
augment the number of training images. Once the augmented training image set is obtained, 

(11)dDA = �

∑n

i=1

(
gSi − gTi

)
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the modified SegNet is applied to split the skin lesion images with high-resolution pixels. 
Further, those images are used to train the BF-ResNet18 classifier and so the trained classifier 
can be useful to classify the test images into different categories of skin diseases.

Algorithm for Proposed Skin Disease Segmentation and Classification Model:

Input: HAM image dataset and ImageNet

Output: Classified categories of skin diseases

Begin

Split the dataset into training and test sets;

( )

Map the epidermis visual features from the ImageNet (source domain) to the HAM

(target domain) by FTL;

Get the enriched epidermis disorder images for learning;

Obtain the ROIs of skin lesions by learning the modified SegNet;

Partition the segmented image set into a positive and a negative set;

Create the bootstrapped samples to solve the class imbalance problem;

Train the fine-tuned ResNet18 classifier;

Get the trained model and validate it using the test images to classify the skin disease types;

End

4 � Experimental results

In this section, the performance of FTL with the BF-SegClassNet model is evalu-
ated through implementing it in Python 3.7.8. From the HAM dataset, 70% of skin 
lesion visuals from all classes are utilized for training and the remaining 30% from all 
classes are utilized for testing. Also, the performance is evaluated with the classical 
domain adaptation models depending on the precision, recall, f-measure and accu-
racy. The sample input images from HAM dataset for all skin disorder categories are 
given in Fig. 3.

Precision is calculated as:

Recall is calculated as:
(12)

Precision =
No.of exactly classified skin disease images

No.of exactly classified skin disease images + No.of inexactly classified skin disease images

(13)

Recall =
No.of exactly classified skin disease images

No.of exactly classified skin disease images + No.of inexactly classified healthy images
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F-measure is calculated by

Accuracy is calculated as:

The values of precision, recall, f-measure and accuracy obtained by the different 
domain adaptation models such as FTL, cycle-GAN [6], style-based GAN [14] and 
SPGGAN-TTUR [17] on HAM10000 and ImageNet databases are listed in Table 1. The 
graphical depiction of these outcomes is presented in Fig. 4.

These test outcomes indicate that the FTL model as a domain adaptation realizes bet-
ter efficiency compared to the different GAN models to transfer the knowledge from the 

(14)F − measure = 2 ×
Precision ⋅ Recall

Precision + Recall

(15)Accuracy =
TP + True Negative (TN)

TP + TN + FP + FN

Actinic Keratosis 

Basal Cell Carcinoma 

Benign Keratosis 

Dermatofibroma 

Melonama 

Melanocytic Nevus 

Vascular Lesion 

Fig. 3   Sample Input Images for Various Kinds of Epidermis Infections
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source domain to the target domain. As far as skin image augmentation is concerned, 
the FTL model is greatly helpful in terms of its efficiency.

The values of precision, recall, f-measure and accuracy achieved by the different 
classifier models such as FTL-BF-SegClassNet, MobileNetV2 [19], Hybrid CNN [20], 
ResNet-152 [6], SegClassNet [8], F-SegClassNet [9] and BF-SegClassNet [10] imple-
mented on HAM dataset are listed in Table 2. The graphical illustration of these out-
comes is provided in Fig. 5.

These test outcomes define that the FTL-BF-SegClassNet model accomplishes the 
maximum efficiency compared to the other classifier models to segment and classify 
the skin disease categories. As far as skin image segmentation and classification is con-
cerned, the FTL-BF-SegClassNet model is very powerful in terms of its efficiency.

5 � Conclusion

In this study, the FTL with BF-SegClassNet model was presented to improve the domain 
adaptation process for dermoscopic images. First, the HAM10000 dataset was acquired 
and given to the FTL model, which executes training and adaptation processes to augment 

Table 1   Findings of Various Domain Adaptation Models on HAM Dataset

Metrics Style-based GAN Cycle-GAN SPGGAN-TTUR​ FTL

Precision (%) 85.74 89.35 90.61 93.98
Recall (%) 86.21 90.02 91.45 94.33
F-measure (%) 85.98 89.69 91.03 94.16
Accuracy (%) 86.26 90.11 91.52 94.74
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Fig. 4   Analysis of Different Domain Adaptation Models on HAM10000 Dataset
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the number of training images. In this FTL model, the source labeled image was utilized 
to create the FIS in the training phase, which captures data from the input space and trans-
fers it to the feature space. Also, the ADDL method was applied to generate the fuzzy sets 
and fuzzy rules. In the adaptation phase, the created source FIS and the target data were 
considered to adjust the fuzzy rule and the fuzzy rule base to extract dissimilarities in the 
data and help bridge the contextual gap between the input and feature spaces. According 
to these processes, more skin images were created and segmented by the modified SegNet. 
Further, the BF-SegClassNet classifier was trained by the segmented images to classify the 
skin disease categories. To end, the findings proved that the FTL with BF-SegClassNet on 
the HAM database has 98.08% of mean accuracy than all other models.

Data availability  All the data is collected from the simulation reports of the software and tools used by the 
authors. Authors are working on implementing the same using real world data with appropriate permissions.
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